mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-02 17:59:46 +08:00
328 lines
12 KiB
C++
328 lines
12 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_RANDOMSETTER_H
|
|
#define EIGEN_RANDOMSETTER_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** Represents a std::map
|
|
*
|
|
* \see RandomSetter
|
|
*/
|
|
template<typename Scalar> struct StdMapTraits
|
|
{
|
|
typedef int KeyType;
|
|
typedef std::map<KeyType,Scalar> Type;
|
|
enum {
|
|
IsSorted = 1
|
|
};
|
|
|
|
static void setInvalidKey(Type&, const KeyType&) {}
|
|
};
|
|
|
|
#ifdef EIGEN_UNORDERED_MAP_SUPPORT
|
|
/** Represents a std::unordered_map
|
|
*
|
|
* To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file
|
|
* yourself making sure that unordered_map is defined in the std namespace.
|
|
*
|
|
* For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do:
|
|
* \code
|
|
* #include <tr1/unordered_map>
|
|
* #define EIGEN_UNORDERED_MAP_SUPPORT
|
|
* namespace std {
|
|
* using std::tr1::unordered_map;
|
|
* }
|
|
* \endcode
|
|
*
|
|
* \see RandomSetter
|
|
*/
|
|
template<typename Scalar> struct StdUnorderedMapTraits
|
|
{
|
|
typedef int KeyType;
|
|
typedef std::unordered_map<KeyType,Scalar> Type;
|
|
enum {
|
|
IsSorted = 0
|
|
};
|
|
|
|
static void setInvalidKey(Type&, const KeyType&) {}
|
|
};
|
|
#endif // EIGEN_UNORDERED_MAP_SUPPORT
|
|
|
|
#ifdef _DENSE_HASH_MAP_H_
|
|
/** Represents a google::dense_hash_map
|
|
*
|
|
* \see RandomSetter
|
|
*/
|
|
template<typename Scalar> struct GoogleDenseHashMapTraits
|
|
{
|
|
typedef int KeyType;
|
|
typedef google::dense_hash_map<KeyType,Scalar> Type;
|
|
enum {
|
|
IsSorted = 0
|
|
};
|
|
|
|
static void setInvalidKey(Type& map, const KeyType& k)
|
|
{ map.set_empty_key(k); }
|
|
};
|
|
#endif
|
|
|
|
#ifdef _SPARSE_HASH_MAP_H_
|
|
/** Represents a google::sparse_hash_map
|
|
*
|
|
* \see RandomSetter
|
|
*/
|
|
template<typename Scalar> struct GoogleSparseHashMapTraits
|
|
{
|
|
typedef int KeyType;
|
|
typedef google::sparse_hash_map<KeyType,Scalar> Type;
|
|
enum {
|
|
IsSorted = 0
|
|
};
|
|
|
|
static void setInvalidKey(Type&, const KeyType&) {}
|
|
};
|
|
#endif
|
|
|
|
/** \class RandomSetter
|
|
*
|
|
* \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
|
|
*
|
|
* \param SparseMatrixType the type of the sparse matrix we are updating
|
|
* \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
|
|
* Its default value depends on the system.
|
|
* \param OuterPacketBits defines the number of rows (or columns) manage by a single map object
|
|
* as a power of two exponent.
|
|
*
|
|
* This class temporarily represents a sparse matrix object using a generic map implementation allowing for
|
|
* efficient random access. The conversion from the compressed representation to a hash_map object is performed
|
|
* in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
|
|
* suggest the use of nested blocks as in this example:
|
|
*
|
|
* \code
|
|
* SparseMatrix<double> m(rows,cols);
|
|
* {
|
|
* RandomSetter<SparseMatrix<double> > w(m);
|
|
* // don't use m but w instead with read/write random access to the coefficients:
|
|
* for(;;)
|
|
* w(rand(),rand()) = rand;
|
|
* }
|
|
* // when w is deleted, the data are copied back to m
|
|
* // and m is ready to use.
|
|
* \endcode
|
|
*
|
|
* Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
|
|
* involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
|
|
* use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
|
|
* To reach optimal performance, this value should be adjusted according to the average number of nonzeros
|
|
* per rows/columns.
|
|
*
|
|
* The possible values for the template parameter MapTraits are:
|
|
* - \b StdMapTraits: corresponds to std::map. (does not perform very well)
|
|
* - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
|
|
* - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
|
|
* - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
|
|
*
|
|
* The default map implementation depends on the availability, and the preferred order is:
|
|
* GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
|
|
*
|
|
* For performance and memory consumption reasons it is highly recommended to use one of
|
|
* the Google's hash_map implementation. To enable the support for them, you have two options:
|
|
* - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
|
|
* - define EIGEN_GOOGLEHASH_SUPPORT
|
|
* In the later case the inclusion of <google/dense_hash_map> is made for you.
|
|
*
|
|
* \see http://code.google.com/p/google-sparsehash/
|
|
*/
|
|
template<typename SparseMatrixType,
|
|
template <typename T> class MapTraits =
|
|
#if defined _DENSE_HASH_MAP_H_
|
|
GoogleDenseHashMapTraits
|
|
#elif defined _HASH_MAP
|
|
GnuHashMapTraits
|
|
#else
|
|
StdMapTraits
|
|
#endif
|
|
,int OuterPacketBits = 6>
|
|
class RandomSetter
|
|
{
|
|
typedef typename SparseMatrixType::Scalar Scalar;
|
|
typedef typename SparseMatrixType::StorageIndex StorageIndex;
|
|
|
|
struct ScalarWrapper
|
|
{
|
|
ScalarWrapper() : value(0) {}
|
|
Scalar value;
|
|
};
|
|
typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
|
|
typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
|
|
static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
|
|
enum {
|
|
SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
|
|
TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
|
|
SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
|
|
};
|
|
|
|
public:
|
|
|
|
/** Constructs a random setter object from the sparse matrix \a target
|
|
*
|
|
* Note that the initial value of \a target are imported. If you want to re-set
|
|
* a sparse matrix from scratch, then you must set it to zero first using the
|
|
* setZero() function.
|
|
*/
|
|
inline RandomSetter(SparseMatrixType& target)
|
|
: mp_target(&target)
|
|
{
|
|
const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize();
|
|
const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize();
|
|
m_outerPackets = outerSize >> OuterPacketBits;
|
|
if (outerSize&OuterPacketMask)
|
|
m_outerPackets += 1;
|
|
m_hashmaps = new HashMapType[m_outerPackets];
|
|
// compute number of bits needed to store inner indices
|
|
Index aux = innerSize - 1;
|
|
m_keyBitsOffset = 0;
|
|
while (aux)
|
|
{
|
|
++m_keyBitsOffset;
|
|
aux = aux >> 1;
|
|
}
|
|
KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
|
|
for (Index k=0; k<m_outerPackets; ++k)
|
|
MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);
|
|
|
|
// insert current coeffs
|
|
for (Index j=0; j<mp_target->outerSize(); ++j)
|
|
for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
|
|
(*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
|
|
}
|
|
|
|
/** Destructor updating back the sparse matrix target */
|
|
~RandomSetter()
|
|
{
|
|
KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
|
|
if (!SwapStorage) // also means the map is sorted
|
|
{
|
|
mp_target->setZero();
|
|
mp_target->makeCompressed();
|
|
mp_target->reserve(nonZeros());
|
|
Index prevOuter = -1;
|
|
for (Index k=0; k<m_outerPackets; ++k)
|
|
{
|
|
const Index outerOffset = (1<<OuterPacketBits) * k;
|
|
typename HashMapType::iterator end = m_hashmaps[k].end();
|
|
for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
|
|
{
|
|
const Index outer = (it->first >> m_keyBitsOffset) + outerOffset;
|
|
const Index inner = it->first & keyBitsMask;
|
|
if (prevOuter!=outer)
|
|
{
|
|
for (Index j=prevOuter+1;j<=outer;++j)
|
|
mp_target->startVec(j);
|
|
prevOuter = outer;
|
|
}
|
|
mp_target->insertBackByOuterInner(outer, inner) = it->second.value;
|
|
}
|
|
}
|
|
mp_target->finalize();
|
|
}
|
|
else
|
|
{
|
|
VectorXi positions(mp_target->outerSize());
|
|
positions.setZero();
|
|
// pass 1
|
|
for (Index k=0; k<m_outerPackets; ++k)
|
|
{
|
|
typename HashMapType::iterator end = m_hashmaps[k].end();
|
|
for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
|
|
{
|
|
const Index outer = it->first & keyBitsMask;
|
|
++positions[outer];
|
|
}
|
|
}
|
|
// prefix sum
|
|
Index count = 0;
|
|
for (Index j=0; j<mp_target->outerSize(); ++j)
|
|
{
|
|
Index tmp = positions[j];
|
|
mp_target->outerIndexPtr()[j] = count;
|
|
positions[j] = count;
|
|
count += tmp;
|
|
}
|
|
mp_target->makeCompressed();
|
|
mp_target->outerIndexPtr()[mp_target->outerSize()] = count;
|
|
mp_target->resizeNonZeros(count);
|
|
// pass 2
|
|
for (Index k=0; k<m_outerPackets; ++k)
|
|
{
|
|
const Index outerOffset = (1<<OuterPacketBits) * k;
|
|
typename HashMapType::iterator end = m_hashmaps[k].end();
|
|
for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
|
|
{
|
|
const Index inner = (it->first >> m_keyBitsOffset) + outerOffset;
|
|
const Index outer = it->first & keyBitsMask;
|
|
// sorted insertion
|
|
// Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
|
|
// moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
|
|
// small fraction of them have to be sorted, whence the following simple procedure:
|
|
Index posStart = mp_target->outerIndexPtr()[outer];
|
|
Index i = (positions[outer]++) - 1;
|
|
while ( (i >= posStart) && (mp_target->innerIndexPtr()[i] > inner) )
|
|
{
|
|
mp_target->valuePtr()[i+1] = mp_target->valuePtr()[i];
|
|
mp_target->innerIndexPtr()[i+1] = mp_target->innerIndexPtr()[i];
|
|
--i;
|
|
}
|
|
mp_target->innerIndexPtr()[i+1] = inner;
|
|
mp_target->valuePtr()[i+1] = it->second.value;
|
|
}
|
|
}
|
|
}
|
|
delete[] m_hashmaps;
|
|
}
|
|
|
|
/** \returns a reference to the coefficient at given coordinates \a row, \a col */
|
|
Scalar& operator() (Index row, Index col)
|
|
{
|
|
const Index outer = SetterRowMajor ? row : col;
|
|
const Index inner = SetterRowMajor ? col : row;
|
|
const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
|
|
const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet
|
|
const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner;
|
|
return m_hashmaps[outerMajor][key].value;
|
|
}
|
|
|
|
/** \returns the number of non zero coefficients
|
|
*
|
|
* \note According to the underlying map/hash_map implementation,
|
|
* this function might be quite expensive.
|
|
*/
|
|
Index nonZeros() const
|
|
{
|
|
Index nz = 0;
|
|
for (Index k=0; k<m_outerPackets; ++k)
|
|
nz += static_cast<Index>(m_hashmaps[k].size());
|
|
return nz;
|
|
}
|
|
|
|
|
|
protected:
|
|
|
|
HashMapType* m_hashmaps;
|
|
SparseMatrixType* mp_target;
|
|
Index m_outerPackets;
|
|
unsigned char m_keyBitsOffset;
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_RANDOMSETTER_H
|