mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-25 14:24:31 +08:00
267 lines
9.2 KiB
C++
267 lines
9.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_CONJUGATE_GRADIENT_H
|
|
#define EIGEN_CONJUGATE_GRADIENT_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
/** \internal Low-level conjugate gradient algorithm
|
|
* \param mat The matrix A
|
|
* \param rhs The right hand side vector b
|
|
* \param x On input and initial solution, on output the computed solution.
|
|
* \param precond A preconditioner being able to efficiently solve for an
|
|
* approximation of Ax=b (regardless of b)
|
|
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
|
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
|
*/
|
|
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
|
EIGEN_DONT_INLINE
|
|
void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|
const Preconditioner& precond, int& iters,
|
|
typename Dest::RealScalar& tol_error)
|
|
{
|
|
using std::sqrt;
|
|
using std::abs;
|
|
typedef typename Dest::RealScalar RealScalar;
|
|
typedef typename Dest::Scalar Scalar;
|
|
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
|
|
|
RealScalar tol = tol_error;
|
|
int maxIters = iters;
|
|
|
|
int n = mat.cols();
|
|
|
|
VectorType residual = rhs - mat * x; //initial residual
|
|
VectorType p(n);
|
|
|
|
p = precond.solve(residual); //initial search direction
|
|
|
|
VectorType z(n), tmp(n);
|
|
RealScalar absNew = internal::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
|
|
RealScalar rhsNorm2 = rhs.squaredNorm();
|
|
RealScalar residualNorm2 = 0;
|
|
RealScalar threshold = tol*tol*rhsNorm2;
|
|
int i = 0;
|
|
while(i < maxIters)
|
|
{
|
|
tmp.noalias() = mat * p; // the bottleneck of the algorithm
|
|
|
|
Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
|
|
x += alpha * p; // update solution
|
|
residual -= alpha * tmp; // update residue
|
|
|
|
residualNorm2 = residual.squaredNorm();
|
|
if(residualNorm2 < threshold)
|
|
break;
|
|
|
|
z = precond.solve(residual); // approximately solve for "A z = residual"
|
|
|
|
RealScalar absOld = absNew;
|
|
absNew = internal::real(residual.dot(z)); // update the absolute value of r
|
|
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
|
p = z + beta * p; // update search direction
|
|
i++;
|
|
}
|
|
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
|
iters = i;
|
|
}
|
|
|
|
}
|
|
|
|
template< typename _MatrixType, int _UpLo=Lower,
|
|
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
|
class ConjugateGradient;
|
|
|
|
namespace internal {
|
|
|
|
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
|
struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
|
{
|
|
typedef _MatrixType MatrixType;
|
|
typedef _Preconditioner Preconditioner;
|
|
};
|
|
|
|
}
|
|
|
|
/** \ingroup IterativeLinearSolvers_Module
|
|
* \brief A conjugate gradient solver for sparse self-adjoint problems
|
|
*
|
|
* This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
|
|
* The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
|
|
*
|
|
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
|
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
|
* or Upper. Default is Lower.
|
|
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
|
*
|
|
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
|
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
|
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
|
*
|
|
* This class can be used as the direct solver classes. Here is a typical usage example:
|
|
* \code
|
|
* int n = 10000;
|
|
* VectorXd x(n), b(n);
|
|
* SparseMatrix<double> A(n,n);
|
|
* // fill A and b
|
|
* ConjugateGradient<SparseMatrix<double> > cg;
|
|
* cg.compute(A);
|
|
* x = cg.solve(b);
|
|
* std::cout << "#iterations: " << cg.iterations() << std::endl;
|
|
* std::cout << "estimated error: " << cg.error() << std::endl;
|
|
* // update b, and solve again
|
|
* x = cg.solve(b);
|
|
* \endcode
|
|
*
|
|
* By default the iterations start with x=0 as an initial guess of the solution.
|
|
* One can control the start using the solveWithGuess() method. Here is a step by
|
|
* step execution example starting with a random guess and printing the evolution
|
|
* of the estimated error:
|
|
* * \code
|
|
* x = VectorXd::Random(n);
|
|
* cg.setMaxIterations(1);
|
|
* int i = 0;
|
|
* do {
|
|
* x = cg.solveWithGuess(b,x);
|
|
* std::cout << i << " : " << cg.error() << std::endl;
|
|
* ++i;
|
|
* } while (cg.info()!=Success && i<100);
|
|
* \endcode
|
|
* Note that such a step by step excution is slightly slower.
|
|
*
|
|
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
|
*/
|
|
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
|
class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
|
|
{
|
|
typedef IterativeSolverBase<ConjugateGradient> Base;
|
|
using Base::mp_matrix;
|
|
using Base::m_error;
|
|
using Base::m_iterations;
|
|
using Base::m_info;
|
|
using Base::m_isInitialized;
|
|
public:
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef _Preconditioner Preconditioner;
|
|
|
|
enum {
|
|
UpLo = _UpLo
|
|
};
|
|
|
|
public:
|
|
|
|
/** Default constructor. */
|
|
ConjugateGradient() : Base() {}
|
|
|
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
|
*
|
|
* This constructor is a shortcut for the default constructor followed
|
|
* by a call to compute().
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
ConjugateGradient(const MatrixType& A) : Base(A) {}
|
|
|
|
~ConjugateGradient() {}
|
|
|
|
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
|
* \a x0 as an initial solution.
|
|
*
|
|
* \sa compute()
|
|
*/
|
|
template<typename Rhs,typename Guess>
|
|
inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
|
|
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
|
{
|
|
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
|
eigen_assert(Base::rows()==b.rows()
|
|
&& "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
|
|
return internal::solve_retval_with_guess
|
|
<ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
|
|
}
|
|
|
|
/** \internal */
|
|
template<typename Rhs,typename Dest>
|
|
void _solveWithGuess(const Rhs& b, Dest& x) const
|
|
{
|
|
m_iterations = Base::maxIterations();
|
|
m_error = Base::m_tolerance;
|
|
|
|
for(int j=0; j<b.cols(); ++j)
|
|
{
|
|
m_iterations = Base::maxIterations();
|
|
m_error = Base::m_tolerance;
|
|
|
|
typename Dest::ColXpr xj(x,j);
|
|
internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
|
|
Base::m_preconditioner, m_iterations, m_error);
|
|
}
|
|
|
|
m_isInitialized = true;
|
|
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
|
}
|
|
|
|
/** \internal */
|
|
template<typename Rhs,typename Dest>
|
|
void _solve(const Rhs& b, Dest& x) const
|
|
{
|
|
x.setOnes();
|
|
_solveWithGuess(b,x);
|
|
}
|
|
|
|
protected:
|
|
|
|
};
|
|
|
|
|
|
namespace internal {
|
|
|
|
template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
|
|
struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
|
|
: solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
|
|
{
|
|
typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
|
|
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const
|
|
{
|
|
dec()._solve(rhs(),dst);
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CONJUGATE_GRADIENT_H
|