eigen/Eigen/src/Sparse/DynamicSparseMatrix.h
Gael Guennebaud fe0827495a * move dummy_precision and epsilon to NumTraits
* make NumTraits inherits std::numeric_limits
2010-02-10 10:52:28 +01:00

322 lines
10 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H
#define EIGEN_DYNAMIC_SPARSEMATRIX_H
/** \class DynamicSparseMatrix
*
* \brief A sparse matrix class designed for matrix assembly purpose
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
*
* Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows
* random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is
* nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows
* otherwise.
*
* Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might
* decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance
* till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors.
*
* \see SparseMatrix
*/
template<typename _Scalar, int _Flags>
struct ei_traits<DynamicSparseMatrix<_Scalar, _Flags> >
{
typedef _Scalar Scalar;
typedef Sparse StorageType;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = _Flags | NestByRefBit,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = OuterRandomAccessPattern
};
};
template<typename _Scalar, int _Flags>
class DynamicSparseMatrix
: public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Flags> >
{
public:
EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(DynamicSparseMatrix)
// FIXME: why are these operator already alvailable ???
// EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, +=)
// EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=)
typedef MappedSparseMatrix<Scalar,Flags> Map;
using Base::IsRowMajor;
protected:
typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
int m_innerSize;
std::vector<CompressedStorage<Scalar> > m_data;
public:
inline int rows() const { return IsRowMajor ? outerSize() : m_innerSize; }
inline int cols() const { return IsRowMajor ? m_innerSize : outerSize(); }
inline int innerSize() const { return m_innerSize; }
inline int outerSize() const { return static_cast<int>(m_data.size()); }
inline int innerNonZeros(int j) const { return m_data[j].size(); }
std::vector<CompressedStorage<Scalar> >& _data() { return m_data; }
const std::vector<CompressedStorage<Scalar> >& _data() const { return m_data; }
/** \returns the coefficient value at given position \a row, \a col
* This operation involes a log(rho*outer_size) binary search.
*/
inline Scalar coeff(int row, int col) const
{
const int outer = IsRowMajor ? row : col;
const int inner = IsRowMajor ? col : row;
return m_data[outer].at(inner);
}
/** \returns a reference to the coefficient value at given position \a row, \a col
* This operation involes a log(rho*outer_size) binary search. If the coefficient does not
* exist yet, then a sorted insertion into a sequential buffer is performed.
*/
inline Scalar& coeffRef(int row, int col)
{
const int outer = IsRowMajor ? row : col;
const int inner = IsRowMajor ? col : row;
return m_data[outer].atWithInsertion(inner);
}
class InnerIterator;
void setZero()
{
for (int j=0; j<outerSize(); ++j)
m_data[j].clear();
}
/** \returns the number of non zero coefficients */
int nonZeros() const
{
int res = 0;
for (int j=0; j<outerSize(); ++j)
res += static_cast<int>(m_data[j].size());
return res;
}
/** \deprecated
* Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */
EIGEN_DEPRECATED void startFill(int reserveSize = 1000)
{
setZero();
reserve(reserveSize);
}
void reserve(int reserveSize = 1000)
{
if (outerSize()>0)
{
int reserveSizePerVector = std::max(reserveSize/outerSize(),4);
for (int j=0; j<outerSize(); ++j)
{
m_data[j].reserve(reserveSizePerVector);
}
}
}
inline void startVec(int /*outer*/) {}
inline Scalar& insertBack(int outer, int inner)
{
ei_assert(outer<int(m_data.size()) && inner<m_innerSize && "out of range");
ei_assert(((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner))
&& "wrong sorted insertion");
m_data[outer].append(0, inner);
return m_data[outer].value(m_data[outer].size()-1);
}
/** \deprecated use insert()
* inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that:
* 1 - the coefficient does not exist yet
* 2 - this the coefficient with greater inner coordinate for the given outer coordinate.
* In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates
* \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid.
*
* \see fillrand(), coeffRef()
*/
EIGEN_DEPRECATED Scalar& fill(int row, int col)
{
const int outer = IsRowMajor ? row : col;
const int inner = IsRowMajor ? col : row;
return insertBack(outer,inner);
}
/** \deprecated use insert()
* Like fill() but with random inner coordinates.
* Compared to the generic coeffRef(), the unique limitation is that we assume
* the coefficient does not exist yet.
*/
EIGEN_DEPRECATED Scalar& fillrand(int row, int col)
{
return insert(row,col);
}
inline Scalar& insert(int row, int col)
{
const int outer = IsRowMajor ? row : col;
const int inner = IsRowMajor ? col : row;
int startId = 0;
int id = static_cast<int>(m_data[outer].size()) - 1;
m_data[outer].resize(id+2,1);
while ( (id >= startId) && (m_data[outer].index(id) > inner) )
{
m_data[outer].index(id+1) = m_data[outer].index(id);
m_data[outer].value(id+1) = m_data[outer].value(id);
--id;
}
m_data[outer].index(id+1) = inner;
m_data[outer].value(id+1) = 0;
return m_data[outer].value(id+1);
}
/** \deprecated use finalize()
* Does nothing. Provided for compatibility with SparseMatrix. */
EIGEN_DEPRECATED void endFill() {}
inline void finalize() {}
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
{
for (int j=0; j<outerSize(); ++j)
m_data[j].prune(reference,epsilon);
}
/** Resize the matrix without preserving the data (the matrix is set to zero)
*/
void resize(int rows, int cols)
{
const int outerSize = IsRowMajor ? rows : cols;
m_innerSize = IsRowMajor ? cols : rows;
setZero();
if (int(m_data.size()) != outerSize)
{
m_data.resize(outerSize);
}
}
void resizeAndKeepData(int rows, int cols)
{
const int outerSize = IsRowMajor ? rows : cols;
const int innerSize = IsRowMajor ? cols : rows;
if (m_innerSize>innerSize)
{
// remove all coefficients with innerCoord>=innerSize
// TODO
std::cerr << "not implemented yet\n";
exit(2);
}
if (m_data.size() != outerSize)
{
m_data.resize(outerSize);
}
}
inline DynamicSparseMatrix()
: m_innerSize(0), m_data(0)
{
ei_assert(innerSize()==0 && outerSize()==0);
}
inline DynamicSparseMatrix(int rows, int cols)
: m_innerSize(0)
{
resize(rows, cols);
}
template<typename OtherDerived>
inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other)
: m_innerSize(0)
{
*this = other.derived();
}
inline DynamicSparseMatrix(const DynamicSparseMatrix& other)
: Base(), m_innerSize(0)
{
*this = other.derived();
}
inline void swap(DynamicSparseMatrix& other)
{
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
std::swap(m_innerSize, other.m_innerSize);
//std::swap(m_outerSize, other.m_outerSize);
m_data.swap(other.m_data);
}
inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other)
{
if (other.isRValue())
{
swap(other.const_cast_derived());
}
else
{
resize(other.rows(), other.cols());
m_data = other.m_data;
}
return *this;
}
template<typename OtherDerived>
inline DynamicSparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
{
return SparseMatrixBase<DynamicSparseMatrix>::operator=(other.derived());
}
/** Destructor */
inline ~DynamicSparseMatrix() {}
};
template<typename Scalar, int _Flags>
class DynamicSparseMatrix<Scalar,_Flags>::InnerIterator : public SparseVector<Scalar,_Flags>::InnerIterator
{
typedef typename SparseVector<Scalar,_Flags>::InnerIterator Base;
public:
InnerIterator(const DynamicSparseMatrix& mat, int outer)
: Base(mat.m_data[outer]), m_outer(outer)
{}
inline int row() const { return IsRowMajor ? m_outer : Base::index(); }
inline int col() const { return IsRowMajor ? Base::index() : m_outer; }
protected:
const int m_outer;
};
#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H