mirror of
https://git.mirrors.martin98.com/https://github.com/SigNoz/signoz
synced 2025-08-12 07:19:00 +08:00
chore: update query builder to use 5min/30min aggregation tables (#5679)
This commit is contained in:
parent
c0e40614bf
commit
28818fbaac
@ -114,12 +114,14 @@ func prepareTimeAggregationSubQuery(start, end, step int64, mq *v3.BuilderQuery)
|
||||
|
||||
samplesTableFilter := fmt.Sprintf("metric_name = %s AND unix_milli >= %d AND unix_milli < %d", utils.ClickHouseFormattedValue(mq.AggregateAttribute.Key), start, end)
|
||||
|
||||
tableName := helpers.WhichSamplesTableToUse(start, end, mq)
|
||||
|
||||
// Select the aggregate value for interval
|
||||
queryTmpl :=
|
||||
"SELECT fingerprint, %s" +
|
||||
" toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL %d SECOND) as ts," +
|
||||
" %s as per_series_value" +
|
||||
" FROM " + constants.SIGNOZ_METRIC_DBNAME + "." + constants.SIGNOZ_SAMPLES_V4_TABLENAME +
|
||||
" FROM " + constants.SIGNOZ_METRIC_DBNAME + "." + tableName +
|
||||
" INNER JOIN" +
|
||||
" (%s) as filtered_time_series" +
|
||||
" USING fingerprint" +
|
||||
@ -130,37 +132,30 @@ func prepareTimeAggregationSubQuery(start, end, step int64, mq *v3.BuilderQuery)
|
||||
selectLabelsAny := helpers.SelectLabelsAny(mq.GroupBy)
|
||||
selectLabels := helpers.SelectLabels(mq.GroupBy)
|
||||
|
||||
op := helpers.AggregationColumnForSamplesTable(start, end, mq)
|
||||
|
||||
switch mq.TimeAggregation {
|
||||
case v3.TimeAggregationAvg:
|
||||
op := "avg(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationSum:
|
||||
op := "sum(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationMin:
|
||||
op := "min(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationMax:
|
||||
op := "max(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationCount:
|
||||
op := "count(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationCountDistinct:
|
||||
op := "count(distinct(value))"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationAnyLast:
|
||||
op := "anyLast(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationRate:
|
||||
op := "max(value)"
|
||||
innerSubQuery := fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
rateQueryTmpl :=
|
||||
"SELECT %s ts, " + rateWithoutNegative +
|
||||
" as per_series_value FROM (%s) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)"
|
||||
subQuery = fmt.Sprintf(rateQueryTmpl, selectLabels, innerSubQuery)
|
||||
case v3.TimeAggregationIncrease:
|
||||
op := "max(value)"
|
||||
innerSubQuery := fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
rateQueryTmpl :=
|
||||
"SELECT %s ts, " + increaseWithoutNegative +
|
||||
|
@ -26,12 +26,14 @@ func prepareTimeAggregationSubQuery(start, end, step int64, mq *v3.BuilderQuery)
|
||||
|
||||
samplesTableFilter := fmt.Sprintf("metric_name = %s AND unix_milli >= %d AND unix_milli < %d", utils.ClickHouseFormattedValue(mq.AggregateAttribute.Key), start, end)
|
||||
|
||||
tableName := helpers.WhichSamplesTableToUse(start, end, mq)
|
||||
|
||||
// Select the aggregate value for interval
|
||||
queryTmpl :=
|
||||
"SELECT fingerprint, %s" +
|
||||
" toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL %d SECOND) as ts," +
|
||||
" %s as per_series_value" +
|
||||
" FROM " + constants.SIGNOZ_METRIC_DBNAME + "." + constants.SIGNOZ_SAMPLES_V4_TABLENAME +
|
||||
" FROM " + constants.SIGNOZ_METRIC_DBNAME + "." + tableName +
|
||||
" INNER JOIN" +
|
||||
" (%s) as filtered_time_series" +
|
||||
" USING fingerprint" +
|
||||
@ -41,33 +43,27 @@ func prepareTimeAggregationSubQuery(start, end, step int64, mq *v3.BuilderQuery)
|
||||
|
||||
selectLabelsAny := helpers.SelectLabelsAny(mq.GroupBy)
|
||||
|
||||
op := helpers.AggregationColumnForSamplesTable(start, end, mq)
|
||||
|
||||
switch mq.TimeAggregation {
|
||||
case v3.TimeAggregationAvg:
|
||||
op := "avg(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationSum:
|
||||
op := "sum(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationMin:
|
||||
op := "min(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationMax:
|
||||
op := "max(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationCount:
|
||||
op := "count(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationCountDistinct:
|
||||
op := "count(distinct(value))"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationAnyLast:
|
||||
op := "anyLast(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationRate:
|
||||
op := fmt.Sprintf("sum(value)/%d", step)
|
||||
op := fmt.Sprintf("%s/%d", op, step)
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
case v3.TimeAggregationIncrease:
|
||||
op := "sum(value)"
|
||||
subQuery = fmt.Sprintf(queryTmpl, selectLabelsAny, step, op, timeSeriesSubQuery)
|
||||
}
|
||||
return subQuery, nil
|
||||
@ -89,10 +85,8 @@ func prepareQueryOptimized(start, end, step int64, mq *v3.BuilderQuery) (string,
|
||||
|
||||
samplesTableFilter := fmt.Sprintf("metric_name = %s AND unix_milli >= %d AND unix_milli < %d", utils.ClickHouseFormattedValue(mq.AggregateAttribute.Key), start, end)
|
||||
|
||||
var tableName string = constants.SIGNOZ_SAMPLES_V4_TABLENAME
|
||||
if mq.AggregateAttribute.Type == v3.AttributeKeyType(v3.MetricTypeExponentialHistogram) {
|
||||
tableName = "distributed_exp_hist"
|
||||
}
|
||||
tableName := helpers.WhichSamplesTableToUse(start, end, mq)
|
||||
|
||||
// Select the aggregate value for interval
|
||||
queryTmpl :=
|
||||
"SELECT %s" +
|
||||
@ -108,16 +102,16 @@ func prepareQueryOptimized(start, end, step int64, mq *v3.BuilderQuery) (string,
|
||||
|
||||
switch mq.SpaceAggregation {
|
||||
case v3.SpaceAggregationSum:
|
||||
op := "sum(value)"
|
||||
op := helpers.AggregationColumnForSamplesTable(start, end, mq)
|
||||
if mq.TimeAggregation == v3.TimeAggregationRate {
|
||||
op = "sum(value)/" + fmt.Sprintf("%d", step)
|
||||
op = fmt.Sprintf("%s/%d", op, step)
|
||||
}
|
||||
query = fmt.Sprintf(queryTmpl, selectLabels, step, op, timeSeriesSubQuery, groupBy, orderBy)
|
||||
case v3.SpaceAggregationMin:
|
||||
op := "min(value)"
|
||||
op := helpers.AggregationColumnForSamplesTable(start, end, mq)
|
||||
query = fmt.Sprintf(queryTmpl, selectLabels, step, op, timeSeriesSubQuery, groupBy, orderBy)
|
||||
case v3.SpaceAggregationMax:
|
||||
op := "max(value)"
|
||||
op := helpers.AggregationColumnForSamplesTable(start, end, mq)
|
||||
query = fmt.Sprintf(queryTmpl, selectLabels, step, op, timeSeriesSubQuery, groupBy, orderBy)
|
||||
case v3.SpaceAggregationPercentile50,
|
||||
v3.SpaceAggregationPercentile75,
|
||||
|
@ -13,31 +13,218 @@ import (
|
||||
var (
|
||||
sixHoursInMilliseconds = time.Hour.Milliseconds() * 6
|
||||
oneDayInMilliseconds = time.Hour.Milliseconds() * 24
|
||||
oneWeekInMilliseconds = oneDayInMilliseconds * 7
|
||||
)
|
||||
|
||||
// start and end are in milliseconds
|
||||
func which(start, end int64) (int64, int64, string) {
|
||||
func whichTSTableToUse(start, end int64) (int64, int64, string) {
|
||||
// If time range is less than 6 hours, we need to use the `time_series_v4` table
|
||||
// else if time range is less than 1 day and greater than 6 hours, we need to use the `time_series_v4_6hrs` table
|
||||
// else we need to use the `time_series_v4_1day` table
|
||||
// else if time range is less than 1 week and greater than 1 day, we need to use the `time_series_v4_1day` table
|
||||
// else we need to use the `time_series_v4_1week` table
|
||||
var tableName string
|
||||
if end-start <= sixHoursInMilliseconds {
|
||||
if end-start < sixHoursInMilliseconds {
|
||||
// adjust the start time to nearest 1 hour
|
||||
start = start - (start % (time.Hour.Milliseconds() * 1))
|
||||
tableName = constants.SIGNOZ_TIMESERIES_v4_LOCAL_TABLENAME
|
||||
} else if end-start <= oneDayInMilliseconds {
|
||||
} else if end-start < oneDayInMilliseconds {
|
||||
// adjust the start time to nearest 6 hours
|
||||
start = start - (start % (time.Hour.Milliseconds() * 6))
|
||||
tableName = constants.SIGNOZ_TIMESERIES_v4_6HRS_LOCAL_TABLENAME
|
||||
} else {
|
||||
} else if end-start < oneWeekInMilliseconds {
|
||||
// adjust the start time to nearest 1 day
|
||||
start = start - (start % (time.Hour.Milliseconds() * 24))
|
||||
tableName = constants.SIGNOZ_TIMESERIES_v4_1DAY_LOCAL_TABLENAME
|
||||
} else {
|
||||
if constants.UseMetricsPreAggregation() {
|
||||
// adjust the start time to nearest 1 week
|
||||
start = start - (start % (time.Hour.Milliseconds() * 24 * 7))
|
||||
tableName = constants.SIGNOZ_TIMESERIES_v4_1WEEK_LOCAL_TABLENAME
|
||||
} else {
|
||||
// continue to use the 1 day table
|
||||
start = start - (start % (time.Hour.Milliseconds() * 24))
|
||||
tableName = constants.SIGNOZ_TIMESERIES_v4_1DAY_LOCAL_TABLENAME
|
||||
}
|
||||
}
|
||||
|
||||
return start, end, tableName
|
||||
}
|
||||
|
||||
// start and end are in milliseconds
|
||||
// we have three tables for samples
|
||||
// 1. distributed_samples_v4
|
||||
// 2. distributed_samples_v4_agg_5m - for queries with time range above or equal to 1 day and less than 1 week
|
||||
// 3. distributed_samples_v4_agg_30m - for queries with time range above or equal to 1 week
|
||||
// if the `timeAggregation` is `count_distinct` we can't use the aggregated tables because they don't support it
|
||||
func WhichSamplesTableToUse(start, end int64, mq *v3.BuilderQuery) string {
|
||||
|
||||
// we don't have any aggregated table for sketches (yet)
|
||||
if mq.AggregateAttribute.Type == v3.AttributeKeyType(v3.MetricTypeExponentialHistogram) {
|
||||
return constants.SIGNOZ_EXP_HISTOGRAM_TABLENAME
|
||||
}
|
||||
|
||||
// continue to use the old table if pre-aggregation is disabled
|
||||
if !constants.UseMetricsPreAggregation() {
|
||||
return constants.SIGNOZ_SAMPLES_V4_TABLENAME
|
||||
}
|
||||
|
||||
// if the time aggregation is count_distinct, we need to use the distributed_samples_v4 table
|
||||
// because the aggregated tables don't support count_distinct
|
||||
if mq.TimeAggregation == v3.TimeAggregationCountDistinct {
|
||||
return constants.SIGNOZ_SAMPLES_V4_TABLENAME
|
||||
}
|
||||
|
||||
if end-start < oneDayInMilliseconds {
|
||||
// if we are dealing with delta metrics and interval is greater than 5 minutes, we can use the 5m aggregated table
|
||||
// why would interval be greater than 5 minutes?
|
||||
// we allow people to configure the step interval so we can make use of this
|
||||
if mq.Temporality == v3.Delta && mq.TimeAggregation == v3.TimeAggregationIncrease && mq.StepInterval >= 300 && mq.StepInterval < 1800 {
|
||||
return constants.SIGNOZ_SAMPLES_V4_AGG_5M_TABLENAME
|
||||
} else if mq.Temporality == v3.Delta && mq.TimeAggregation == v3.TimeAggregationIncrease && mq.StepInterval >= 1800 {
|
||||
// if we are dealing with delta metrics and interval is greater than 30 minutes, we can use the 30m aggregated table
|
||||
return constants.SIGNOZ_SAMPLES_V4_AGG_30M_TABLENAME
|
||||
}
|
||||
return constants.SIGNOZ_SAMPLES_V4_TABLENAME
|
||||
} else if end-start < oneWeekInMilliseconds {
|
||||
return constants.SIGNOZ_SAMPLES_V4_AGG_5M_TABLENAME
|
||||
} else {
|
||||
return constants.SIGNOZ_SAMPLES_V4_AGG_30M_TABLENAME
|
||||
}
|
||||
}
|
||||
|
||||
func AggregationColumnForSamplesTable(start, end int64, mq *v3.BuilderQuery) string {
|
||||
tableName := WhichSamplesTableToUse(start, end, mq)
|
||||
var aggregationColumn string
|
||||
switch mq.Temporality {
|
||||
case v3.Delta:
|
||||
// for delta metrics, we only support `RATE`/`INCREASE` both of which are sum
|
||||
// although it doesn't make sense to use anyLast, avg, min, max, count on delta metrics,
|
||||
// we are keeping it here to make sure that query will not be invalid
|
||||
switch tableName {
|
||||
case constants.SIGNOZ_SAMPLES_V4_TABLENAME:
|
||||
switch mq.TimeAggregation {
|
||||
case v3.TimeAggregationAnyLast:
|
||||
aggregationColumn = "anyLast(value)"
|
||||
case v3.TimeAggregationSum:
|
||||
aggregationColumn = "sum(value)"
|
||||
case v3.TimeAggregationAvg:
|
||||
aggregationColumn = "avg(value)"
|
||||
case v3.TimeAggregationMin:
|
||||
aggregationColumn = "min(value)"
|
||||
case v3.TimeAggregationMax:
|
||||
aggregationColumn = "max(value)"
|
||||
case v3.TimeAggregationCount:
|
||||
aggregationColumn = "count(value)"
|
||||
case v3.TimeAggregationCountDistinct:
|
||||
aggregationColumn = "countDistinct(value)"
|
||||
case v3.TimeAggregationRate, v3.TimeAggregationIncrease: // only these two options give meaningful results
|
||||
aggregationColumn = "sum(value)"
|
||||
}
|
||||
case constants.SIGNOZ_SAMPLES_V4_AGG_5M_TABLENAME, constants.SIGNOZ_SAMPLES_V4_AGG_30M_TABLENAME:
|
||||
switch mq.TimeAggregation {
|
||||
case v3.TimeAggregationAnyLast:
|
||||
aggregationColumn = "anyLast(last)"
|
||||
case v3.TimeAggregationSum:
|
||||
aggregationColumn = "sum(sum)"
|
||||
case v3.TimeAggregationAvg:
|
||||
aggregationColumn = "sum(sum) / sum(count)"
|
||||
case v3.TimeAggregationMin:
|
||||
aggregationColumn = "min(min)"
|
||||
case v3.TimeAggregationMax:
|
||||
aggregationColumn = "max(max)"
|
||||
case v3.TimeAggregationCount:
|
||||
aggregationColumn = "sum(count)"
|
||||
// count_distinct is not supported in aggregated tables
|
||||
case v3.TimeAggregationRate, v3.TimeAggregationIncrease: // only these two options give meaningful results
|
||||
aggregationColumn = "sum(sum)"
|
||||
}
|
||||
}
|
||||
case v3.Cumulative:
|
||||
// for cumulative metrics, we only support `RATE`/`INCREASE`. The max value in window is
|
||||
// used to calculate the sum which is then divided by the window size to get the rate
|
||||
switch tableName {
|
||||
case constants.SIGNOZ_SAMPLES_V4_TABLENAME:
|
||||
switch mq.TimeAggregation {
|
||||
case v3.TimeAggregationAnyLast:
|
||||
aggregationColumn = "anyLast(value)"
|
||||
case v3.TimeAggregationSum:
|
||||
aggregationColumn = "sum(value)"
|
||||
case v3.TimeAggregationAvg:
|
||||
aggregationColumn = "avg(value)"
|
||||
case v3.TimeAggregationMin:
|
||||
aggregationColumn = "min(value)"
|
||||
case v3.TimeAggregationMax:
|
||||
aggregationColumn = "max(value)"
|
||||
case v3.TimeAggregationCount:
|
||||
aggregationColumn = "count(value)"
|
||||
case v3.TimeAggregationCountDistinct:
|
||||
aggregationColumn = "countDistinct(value)"
|
||||
case v3.TimeAggregationRate, v3.TimeAggregationIncrease: // only these two options give meaningful results
|
||||
aggregationColumn = "max(value)"
|
||||
}
|
||||
case constants.SIGNOZ_SAMPLES_V4_AGG_5M_TABLENAME, constants.SIGNOZ_SAMPLES_V4_AGG_30M_TABLENAME:
|
||||
switch mq.TimeAggregation {
|
||||
case v3.TimeAggregationAnyLast:
|
||||
aggregationColumn = "anyLast(last)"
|
||||
case v3.TimeAggregationSum:
|
||||
aggregationColumn = "sum(sum)"
|
||||
case v3.TimeAggregationAvg:
|
||||
aggregationColumn = "sum(sum) / sum(count)"
|
||||
case v3.TimeAggregationMin:
|
||||
aggregationColumn = "min(min)"
|
||||
case v3.TimeAggregationMax:
|
||||
aggregationColumn = "max(max)"
|
||||
case v3.TimeAggregationCount:
|
||||
aggregationColumn = "sum(count)"
|
||||
// count_distinct is not supported in aggregated tables
|
||||
case v3.TimeAggregationRate, v3.TimeAggregationIncrease: // only these two options give meaningful results
|
||||
aggregationColumn = "max(max)"
|
||||
}
|
||||
}
|
||||
case v3.Unspecified:
|
||||
switch tableName {
|
||||
case constants.SIGNOZ_SAMPLES_V4_TABLENAME:
|
||||
switch mq.TimeAggregation {
|
||||
case v3.TimeAggregationAnyLast:
|
||||
aggregationColumn = "anyLast(value)"
|
||||
case v3.TimeAggregationSum:
|
||||
aggregationColumn = "sum(value)"
|
||||
case v3.TimeAggregationAvg:
|
||||
aggregationColumn = "avg(value)"
|
||||
case v3.TimeAggregationMin:
|
||||
aggregationColumn = "min(value)"
|
||||
case v3.TimeAggregationMax:
|
||||
aggregationColumn = "max(value)"
|
||||
case v3.TimeAggregationCount:
|
||||
aggregationColumn = "count(value)"
|
||||
case v3.TimeAggregationCountDistinct:
|
||||
aggregationColumn = "countDistinct(value)"
|
||||
case v3.TimeAggregationRate, v3.TimeAggregationIncrease: // ideally, this should never happen
|
||||
aggregationColumn = "sum(value)"
|
||||
}
|
||||
case constants.SIGNOZ_SAMPLES_V4_AGG_5M_TABLENAME, constants.SIGNOZ_SAMPLES_V4_AGG_30M_TABLENAME:
|
||||
switch mq.TimeAggregation {
|
||||
case v3.TimeAggregationAnyLast:
|
||||
aggregationColumn = "anyLast(last)"
|
||||
case v3.TimeAggregationSum:
|
||||
aggregationColumn = "sum(sum)"
|
||||
case v3.TimeAggregationAvg:
|
||||
aggregationColumn = "sum(sum) / sum(count)"
|
||||
case v3.TimeAggregationMin:
|
||||
aggregationColumn = "min(min)"
|
||||
case v3.TimeAggregationMax:
|
||||
aggregationColumn = "max(max)"
|
||||
case v3.TimeAggregationCount:
|
||||
aggregationColumn = "sum(count)"
|
||||
// count_distinct is not supported in aggregated tables
|
||||
case v3.TimeAggregationRate, v3.TimeAggregationIncrease: // ideally, this should never happen
|
||||
aggregationColumn = "sum(sum)"
|
||||
}
|
||||
}
|
||||
}
|
||||
return aggregationColumn
|
||||
}
|
||||
|
||||
// PrepareTimeseriesFilterQuery builds the sub-query to be used for filtering timeseries based on the search criteria
|
||||
func PrepareTimeseriesFilterQuery(start, end int64, mq *v3.BuilderQuery) (string, error) {
|
||||
var conditions []string
|
||||
@ -47,7 +234,7 @@ func PrepareTimeseriesFilterQuery(start, end int64, mq *v3.BuilderQuery) (string
|
||||
conditions = append(conditions, fmt.Sprintf("metric_name = %s", utils.ClickHouseFormattedValue(mq.AggregateAttribute.Key)))
|
||||
conditions = append(conditions, fmt.Sprintf("temporality = '%s'", mq.Temporality))
|
||||
|
||||
start, end, tableName := which(start, end)
|
||||
start, end, tableName := whichTSTableToUse(start, end)
|
||||
|
||||
conditions = append(conditions, fmt.Sprintf("unix_milli >= %d AND unix_milli < %d", start, end))
|
||||
|
||||
@ -127,7 +314,7 @@ func PrepareTimeseriesFilterQueryV3(start, end int64, mq *v3.BuilderQuery) (stri
|
||||
conditions = append(conditions, fmt.Sprintf("metric_name = %s", utils.ClickHouseFormattedValue(mq.AggregateAttribute.Key)))
|
||||
conditions = append(conditions, fmt.Sprintf("temporality = '%s'", mq.Temporality))
|
||||
|
||||
start, end, tableName := which(start, end)
|
||||
start, end, tableName := whichTSTableToUse(start, end)
|
||||
|
||||
conditions = append(conditions, fmt.Sprintf("unix_milli >= %d AND unix_milli < %d", start, end))
|
||||
|
||||
|
402
pkg/query-service/app/metrics/v4/query_builder_pre_agg_test.go
Normal file
402
pkg/query-service/app/metrics/v4/query_builder_pre_agg_test.go
Normal file
@ -0,0 +1,402 @@
|
||||
package v4
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
metricsV3 "go.signoz.io/signoz/pkg/query-service/app/metrics/v3"
|
||||
v3 "go.signoz.io/signoz/pkg/query-service/model/v3"
|
||||
)
|
||||
|
||||
func TestPrepareMetricQueryCumulativeRatePreAgg(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "true")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
expectedQueryContains string
|
||||
}{
|
||||
{
|
||||
name: "test time aggregation = rate, space aggregation = sum, temporality = cumulative",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "signoz_calls_total",
|
||||
},
|
||||
Temporality: v3.Cumulative,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{
|
||||
{
|
||||
Key: v3.AttributeKey{
|
||||
Key: "service_name",
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
},
|
||||
Operator: v3.FilterOperatorContains,
|
||||
Value: "frontend",
|
||||
},
|
||||
},
|
||||
},
|
||||
GroupBy: []v3.AttributeKey{{
|
||||
Key: "service_name",
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
}},
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
TimeAggregation: v3.TimeAggregationRate,
|
||||
SpaceAggregation: v3.SpaceAggregationSum,
|
||||
},
|
||||
expectedQueryContains: "SELECT service_name, ts, sum(per_series_value) as value FROM (SELECT service_name, ts, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window))) as per_series_value FROM (SELECT fingerprint, any(service_name) as service_name, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, max(max) as per_series_value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_calls_total' AND temporality = 'Cumulative' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_calls_total' AND unix_milli >= 1650991920000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)) WHERE isNaN(per_series_value) = 0 GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
},
|
||||
{
|
||||
name: "test time aggregation = rate, space aggregation = sum, temporality = cumulative, multiple group by",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "signoz_calls_total",
|
||||
},
|
||||
Temporality: v3.Cumulative,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{},
|
||||
},
|
||||
GroupBy: []v3.AttributeKey{
|
||||
{
|
||||
Key: "service_name",
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
},
|
||||
{
|
||||
Key: "endpoint",
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
},
|
||||
},
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
TimeAggregation: v3.TimeAggregationRate,
|
||||
SpaceAggregation: v3.SpaceAggregationSum,
|
||||
},
|
||||
expectedQueryContains: "SELECT service_name, endpoint, ts, sum(per_series_value) as value FROM (SELECT service_name, endpoint, ts, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window))) as per_series_value FROM (SELECT fingerprint, any(service_name) as service_name, any(endpoint) as endpoint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, max(max) as per_series_value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, JSONExtractString(labels, 'endpoint') as endpoint, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_calls_total' AND temporality = 'Cumulative' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_calls_total' AND unix_milli >= 1650991920000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)) WHERE isNaN(per_series_value) = 0 GROUP BY service_name, endpoint, ts ORDER BY service_name ASC, endpoint ASC, ts ASC",
|
||||
},
|
||||
}
|
||||
|
||||
for _, testCase := range testCases {
|
||||
t.Run(testCase.name, func(t *testing.T) {
|
||||
// 1650991982000 - April 26, 2022 10:23:02 PM
|
||||
// 1651078382000 - April 27, 2022 10:23:02 PM
|
||||
query, err := PrepareMetricQuery(1650991982000, 1651078382000, v3.QueryTypeBuilder, v3.PanelTypeGraph, testCase.builderQuery, metricsV3.Options{})
|
||||
assert.Nil(t, err)
|
||||
assert.Contains(t, query, testCase.expectedQueryContains)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPrepareMetricQueryDeltaRatePreAgg(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "true")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
expectedQueryContains string
|
||||
}{
|
||||
{
|
||||
name: "test time aggregation = rate, space aggregation = sum, temporality = delta, no group by",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "signoz_calls_total",
|
||||
},
|
||||
Temporality: v3.Delta,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{},
|
||||
},
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
TimeAggregation: v3.TimeAggregationRate,
|
||||
SpaceAggregation: v3.SpaceAggregationSum,
|
||||
},
|
||||
expectedQueryContains: "SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(sum)/60 as value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_calls_total' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_calls_total' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY ts ORDER BY ts ASC",
|
||||
},
|
||||
{
|
||||
name: "test time aggregation = rate, space aggregation = sum, temporality = delta, group by service_name",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "signoz_calls_total",
|
||||
},
|
||||
Temporality: v3.Delta,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{},
|
||||
},
|
||||
GroupBy: []v3.AttributeKey{{
|
||||
Key: "service_name",
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
}},
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
TimeAggregation: v3.TimeAggregationRate,
|
||||
SpaceAggregation: v3.SpaceAggregationSum,
|
||||
},
|
||||
expectedQueryContains: "SELECT service_name, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(sum)/60 as value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_calls_total' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_calls_total' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
},
|
||||
}
|
||||
|
||||
for _, testCase := range testCases {
|
||||
t.Run(testCase.name, func(t *testing.T) {
|
||||
// 1650991982000 - April 26, 2022 10:23:02 PM
|
||||
// 1651078382000 - April 27, 2022 10:23:02 PM
|
||||
query, err := PrepareMetricQuery(1650991982000, 1651078382000, v3.QueryTypeBuilder, v3.PanelTypeGraph, testCase.builderQuery, metricsV3.Options{})
|
||||
assert.Nil(t, err)
|
||||
assert.Contains(t, query, testCase.expectedQueryContains)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPrepreMetricQueryCumulativeQuantilePreAgg(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "true")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
expectedQueryContains string
|
||||
}{
|
||||
{
|
||||
name: "test temporality = cumulative, quantile = 0.99",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "signoz_latency_bucket",
|
||||
},
|
||||
Temporality: v3.Cumulative,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{
|
||||
{
|
||||
Key: v3.AttributeKey{
|
||||
Key: "service_name",
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
},
|
||||
Operator: v3.FilterOperatorContains,
|
||||
Value: "frontend",
|
||||
},
|
||||
},
|
||||
},
|
||||
GroupBy: []v3.AttributeKey{{
|
||||
Key: "service_name",
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
}},
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
SpaceAggregation: v3.SpaceAggregationPercentile99,
|
||||
},
|
||||
expectedQueryContains: "SELECT service_name, ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT service_name, le, ts, sum(per_series_value) as value FROM (SELECT service_name, le, ts, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window))) as per_series_value FROM (SELECT fingerprint, any(service_name) as service_name, any(le) as le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, max(max) as per_series_value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Cumulative' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)) WHERE isNaN(per_series_value) = 0 GROUP BY service_name, le, ts ORDER BY service_name ASC, le ASC, ts ASC) GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
},
|
||||
{
|
||||
name: "test temporality = cumulative, quantile = 0.99 without group by",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "signoz_latency_bucket",
|
||||
},
|
||||
Temporality: v3.Cumulative,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{
|
||||
{
|
||||
Key: v3.AttributeKey{
|
||||
Key: "service_name",
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
},
|
||||
Operator: v3.FilterOperatorContains,
|
||||
Value: "frontend",
|
||||
},
|
||||
},
|
||||
},
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
SpaceAggregation: v3.SpaceAggregationPercentile99,
|
||||
},
|
||||
expectedQueryContains: "SELECT ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT le, ts, sum(per_series_value) as value FROM (SELECT le, ts, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window))) as per_series_value FROM (SELECT fingerprint, any(le) as le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, max(max) as per_series_value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Cumulative' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)) WHERE isNaN(per_series_value) = 0 GROUP BY le, ts ORDER BY le ASC, ts ASC) GROUP BY ts ORDER BY ts ASC",
|
||||
},
|
||||
}
|
||||
|
||||
for _, testCase := range testCases {
|
||||
t.Run(testCase.name, func(t *testing.T) {
|
||||
// 1650991982000 - April 26, 2022 10:23:02 PM
|
||||
// 1651078382000 - April 27, 2022 10:23:02 PM
|
||||
query, err := PrepareMetricQuery(1650991982000, 1651078382000, v3.QueryTypeBuilder, v3.PanelTypeGraph, testCase.builderQuery, metricsV3.Options{})
|
||||
assert.Nil(t, err)
|
||||
assert.Contains(t, query, testCase.expectedQueryContains)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPrepreMetricQueryDeltaQuantilePreAgg(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "true")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
expectedQueryContains string
|
||||
}{
|
||||
{
|
||||
name: "test temporality = delta, quantile = 0.99 group by service_name",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "signoz_latency_bucket",
|
||||
},
|
||||
Temporality: v3.Delta,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{
|
||||
{
|
||||
Key: v3.AttributeKey{
|
||||
Key: "service_name",
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
},
|
||||
Operator: v3.FilterOperatorContains,
|
||||
Value: "frontend",
|
||||
},
|
||||
},
|
||||
},
|
||||
GroupBy: []v3.AttributeKey{{
|
||||
Key: "service_name",
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
}},
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
SpaceAggregation: v3.SpaceAggregationPercentile99,
|
||||
},
|
||||
expectedQueryContains: "SELECT service_name, ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT service_name, le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(sum)/60 as value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY service_name, le, ts ORDER BY service_name ASC, le ASC, ts ASC) GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
},
|
||||
{
|
||||
name: "test temporality = delta, quantile = 0.99 no group by",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "signoz_latency_bucket",
|
||||
},
|
||||
Temporality: v3.Delta,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{
|
||||
{
|
||||
Key: v3.AttributeKey{
|
||||
Key: "service_name",
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
},
|
||||
Operator: v3.FilterOperatorContains,
|
||||
Value: "frontend",
|
||||
},
|
||||
},
|
||||
},
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
SpaceAggregation: v3.SpaceAggregationPercentile99,
|
||||
},
|
||||
expectedQueryContains: "SELECT ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(sum)/60 as value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY le, ts ORDER BY le ASC, ts ASC) GROUP BY ts ORDER BY ts ASC",
|
||||
},
|
||||
}
|
||||
|
||||
for _, testCase := range testCases {
|
||||
t.Run(testCase.name, func(t *testing.T) {
|
||||
// 1650991982000 - April 26, 2022 10:23:02 PM
|
||||
// 1651078382000 - April 27, 2022 10:23:02 PM
|
||||
query, err := PrepareMetricQuery(1650991982000, 1651078382000, v3.QueryTypeBuilder, v3.PanelTypeGraph, testCase.builderQuery, metricsV3.Options{})
|
||||
assert.Nil(t, err)
|
||||
assert.Contains(t, query, testCase.expectedQueryContains)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPrepareMetricQueryGaugePreAgg(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "true")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
expectedQueryContains string
|
||||
}{
|
||||
{
|
||||
name: "test gauge query with no group by",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "system_cpu_usage",
|
||||
},
|
||||
Temporality: v3.Unspecified,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{},
|
||||
},
|
||||
Expression: "A",
|
||||
TimeAggregation: v3.TimeAggregationAvg,
|
||||
SpaceAggregation: v3.SpaceAggregationSum,
|
||||
Disabled: false,
|
||||
},
|
||||
expectedQueryContains: "SELECT ts, sum(per_series_value) as value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(sum) / sum(count) as per_series_value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'system_cpu_usage' AND temporality = 'Unspecified' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'system_cpu_usage' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WHERE isNaN(per_series_value) = 0 GROUP BY ts ORDER BY ts ASC",
|
||||
},
|
||||
{
|
||||
name: "test gauge query with group by host_name",
|
||||
builderQuery: &v3.BuilderQuery{
|
||||
QueryName: "A",
|
||||
StepInterval: 60,
|
||||
DataSource: v3.DataSourceMetrics,
|
||||
AggregateAttribute: v3.AttributeKey{
|
||||
Key: "system_cpu_usage",
|
||||
},
|
||||
Temporality: v3.Unspecified,
|
||||
Filters: &v3.FilterSet{
|
||||
Operator: "AND",
|
||||
Items: []v3.FilterItem{},
|
||||
},
|
||||
GroupBy: []v3.AttributeKey{{
|
||||
Key: "host_name",
|
||||
DataType: v3.AttributeKeyDataTypeString,
|
||||
Type: v3.AttributeKeyTypeTag,
|
||||
}},
|
||||
TimeAggregation: v3.TimeAggregationAvg,
|
||||
SpaceAggregation: v3.SpaceAggregationSum,
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
},
|
||||
expectedQueryContains: "SELECT host_name, ts, sum(per_series_value) as value FROM (SELECT fingerprint, any(host_name) as host_name, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(sum) / sum(count) as per_series_value FROM signoz_metrics.distributed_samples_v4_agg_5m INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'host_name') as host_name, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'system_cpu_usage' AND temporality = 'Unspecified' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'system_cpu_usage' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WHERE isNaN(per_series_value) = 0 GROUP BY host_name, ts ORDER BY host_name ASC, ts ASC",
|
||||
},
|
||||
}
|
||||
|
||||
for _, testCase := range testCases {
|
||||
t.Run(testCase.name, func(t *testing.T) {
|
||||
// 1650991982000 - April 26, 2022 10:23:02 PM
|
||||
// 1651078382000 - April 27, 2022 10:23:02 PM
|
||||
query, err := PrepareMetricQuery(1650991982000, 1651078382000, v3.QueryTypeBuilder, v3.PanelTypeGraph, testCase.builderQuery, metricsV3.Options{})
|
||||
assert.Nil(t, err)
|
||||
assert.Contains(t, query, testCase.expectedQueryContains)
|
||||
})
|
||||
}
|
||||
}
|
@ -154,6 +154,7 @@ func TestPrepareTimeseriesFilterQuery(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestPrepareMetricQueryCumulativeRate(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "false")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
@ -242,6 +243,7 @@ func TestPrepareMetricQueryCumulativeRate(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestPrepareMetricQueryDeltaRate(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "false")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
@ -266,7 +268,7 @@ func TestPrepareMetricQueryDeltaRate(t *testing.T) {
|
||||
TimeAggregation: v3.TimeAggregationRate,
|
||||
SpaceAggregation: v3.SpaceAggregationSum,
|
||||
},
|
||||
expectedQueryContains: "SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_calls_total' AND temporality = 'Delta' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_calls_total' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY ts ORDER BY ts ASC",
|
||||
expectedQueryContains: "SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_calls_total' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_calls_total' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY ts ORDER BY ts ASC",
|
||||
},
|
||||
{
|
||||
name: "test time aggregation = rate, space aggregation = sum, temporality = delta, group by service_name",
|
||||
@ -292,12 +294,14 @@ func TestPrepareMetricQueryDeltaRate(t *testing.T) {
|
||||
TimeAggregation: v3.TimeAggregationRate,
|
||||
SpaceAggregation: v3.SpaceAggregationSum,
|
||||
},
|
||||
expectedQueryContains: "SELECT service_name, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_calls_total' AND temporality = 'Delta' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_calls_total' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
expectedQueryContains: "SELECT service_name, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_calls_total' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_calls_total' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
},
|
||||
}
|
||||
|
||||
for _, testCase := range testCases {
|
||||
t.Run(testCase.name, func(t *testing.T) {
|
||||
// 1650991982000 - April 26, 2022 10:23:02 PM
|
||||
// 1651078382000 - April 27, 2022 10:23:02 PM
|
||||
query, err := PrepareMetricQuery(1650991982000, 1651078382000, v3.QueryTypeBuilder, v3.PanelTypeGraph, testCase.builderQuery, metricsV3.Options{})
|
||||
assert.Nil(t, err)
|
||||
assert.Contains(t, query, testCase.expectedQueryContains)
|
||||
@ -306,6 +310,7 @@ func TestPrepareMetricQueryDeltaRate(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestPrepreMetricQueryCumulativeQuantile(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "false")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
@ -344,7 +349,7 @@ func TestPrepreMetricQueryCumulativeQuantile(t *testing.T) {
|
||||
Disabled: false,
|
||||
SpaceAggregation: v3.SpaceAggregationPercentile99,
|
||||
},
|
||||
expectedQueryContains: "SELECT service_name, ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT service_name, le, ts, sum(per_series_value) as value FROM (SELECT service_name, le, ts, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window))) as per_series_value FROM (SELECT fingerprint, any(service_name) as service_name, any(le) as le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, max(value) as per_series_value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Cumulative' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)) WHERE isNaN(per_series_value) = 0 GROUP BY service_name, le, ts ORDER BY service_name ASC, le ASC, ts ASC) GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
expectedQueryContains: "SELECT service_name, ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT service_name, le, ts, sum(per_series_value) as value FROM (SELECT service_name, le, ts, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window))) as per_series_value FROM (SELECT fingerprint, any(service_name) as service_name, any(le) as le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, max(value) as per_series_value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Cumulative' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)) WHERE isNaN(per_series_value) = 0 GROUP BY service_name, le, ts ORDER BY service_name ASC, le ASC, ts ASC) GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
},
|
||||
{
|
||||
name: "test temporality = cumulative, quantile = 0.99 without group by",
|
||||
@ -374,12 +379,14 @@ func TestPrepreMetricQueryCumulativeQuantile(t *testing.T) {
|
||||
Disabled: false,
|
||||
SpaceAggregation: v3.SpaceAggregationPercentile99,
|
||||
},
|
||||
expectedQueryContains: "SELECT ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT le, ts, sum(per_series_value) as value FROM (SELECT le, ts, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window))) as per_series_value FROM (SELECT fingerprint, any(le) as le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, max(value) as per_series_value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Cumulative' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)) WHERE isNaN(per_series_value) = 0 GROUP BY le, ts ORDER BY le ASC, ts ASC) GROUP BY ts ORDER BY ts ASC",
|
||||
expectedQueryContains: "SELECT ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT le, ts, sum(per_series_value) as value FROM (SELECT le, ts, If((per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) < 0, nan, If((ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window) >= 86400, nan, (per_series_value - lagInFrame(per_series_value, 1, 0) OVER rate_window) / (ts - lagInFrame(ts, 1, toDate('1970-01-01')) OVER rate_window))) as per_series_value FROM (SELECT fingerprint, any(le) as le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, max(value) as per_series_value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Cumulative' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WINDOW rate_window as (PARTITION BY fingerprint ORDER BY fingerprint, ts)) WHERE isNaN(per_series_value) = 0 GROUP BY le, ts ORDER BY le ASC, ts ASC) GROUP BY ts ORDER BY ts ASC",
|
||||
},
|
||||
}
|
||||
|
||||
for _, testCase := range testCases {
|
||||
t.Run(testCase.name, func(t *testing.T) {
|
||||
// 1650991982000 - April 26, 2022 10:23:02 PM
|
||||
// 1651078382000 - April 27, 2022 10:23:02 PM
|
||||
query, err := PrepareMetricQuery(1650991982000, 1651078382000, v3.QueryTypeBuilder, v3.PanelTypeGraph, testCase.builderQuery, metricsV3.Options{})
|
||||
assert.Nil(t, err)
|
||||
assert.Contains(t, query, testCase.expectedQueryContains)
|
||||
@ -388,6 +395,7 @@ func TestPrepreMetricQueryCumulativeQuantile(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestPrepreMetricQueryDeltaQuantile(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "false")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
@ -426,7 +434,7 @@ func TestPrepreMetricQueryDeltaQuantile(t *testing.T) {
|
||||
Disabled: false,
|
||||
SpaceAggregation: v3.SpaceAggregationPercentile99,
|
||||
},
|
||||
expectedQueryContains: "SELECT service_name, ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT service_name, le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Delta' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY service_name, le, ts ORDER BY service_name ASC, le ASC, ts ASC) GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
expectedQueryContains: "SELECT service_name, ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT service_name, le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY service_name, le, ts ORDER BY service_name ASC, le ASC, ts ASC) GROUP BY service_name, ts ORDER BY service_name ASC, ts ASC",
|
||||
},
|
||||
{
|
||||
name: "test temporality = delta, quantile = 0.99 no group by",
|
||||
@ -456,12 +464,14 @@ func TestPrepreMetricQueryDeltaQuantile(t *testing.T) {
|
||||
Disabled: false,
|
||||
SpaceAggregation: v3.SpaceAggregationPercentile99,
|
||||
},
|
||||
expectedQueryContains: "SELECT ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Delta' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY le, ts ORDER BY le ASC, ts ASC) GROUP BY ts ORDER BY ts ASC",
|
||||
expectedQueryContains: "SELECT ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.990) as value FROM (SELECT le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND like(JSONExtractString(labels, 'service_name'), '%frontend%')) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY le, ts ORDER BY le ASC, ts ASC) GROUP BY ts ORDER BY ts ASC",
|
||||
},
|
||||
}
|
||||
|
||||
for _, testCase := range testCases {
|
||||
t.Run(testCase.name, func(t *testing.T) {
|
||||
// 1650991982000 - April 26, 2022 10:23:02 PM
|
||||
// 1651078382000 - April 27, 2022 10:23:02 PM
|
||||
query, err := PrepareMetricQuery(1650991982000, 1651078382000, v3.QueryTypeBuilder, v3.PanelTypeGraph, testCase.builderQuery, metricsV3.Options{})
|
||||
assert.Nil(t, err)
|
||||
assert.Contains(t, query, testCase.expectedQueryContains)
|
||||
@ -470,6 +480,7 @@ func TestPrepreMetricQueryDeltaQuantile(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestPrepareMetricQueryGauge(t *testing.T) {
|
||||
t.Setenv("USE_METRICS_PRE_AGGREGATION", "false")
|
||||
testCases := []struct {
|
||||
name string
|
||||
builderQuery *v3.BuilderQuery
|
||||
@ -494,7 +505,7 @@ func TestPrepareMetricQueryGauge(t *testing.T) {
|
||||
SpaceAggregation: v3.SpaceAggregationSum,
|
||||
Disabled: false,
|
||||
},
|
||||
expectedQueryContains: "SELECT ts, sum(per_series_value) as value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, avg(value) as per_series_value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'system_cpu_usage' AND temporality = 'Unspecified' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'system_cpu_usage' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WHERE isNaN(per_series_value) = 0 GROUP BY ts ORDER BY ts ASC",
|
||||
expectedQueryContains: "SELECT ts, sum(per_series_value) as value FROM (SELECT fingerprint, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, avg(value) as per_series_value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'system_cpu_usage' AND temporality = 'Unspecified' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'system_cpu_usage' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WHERE isNaN(per_series_value) = 0 GROUP BY ts ORDER BY ts ASC",
|
||||
},
|
||||
{
|
||||
name: "test gauge query with group by host_name",
|
||||
@ -520,12 +531,14 @@ func TestPrepareMetricQueryGauge(t *testing.T) {
|
||||
Expression: "A",
|
||||
Disabled: false,
|
||||
},
|
||||
expectedQueryContains: "SELECT host_name, ts, sum(per_series_value) as value FROM (SELECT fingerprint, any(host_name) as host_name, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, avg(value) as per_series_value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'host_name') as host_name, fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'system_cpu_usage' AND temporality = 'Unspecified' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'system_cpu_usage' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WHERE isNaN(per_series_value) = 0 GROUP BY host_name, ts ORDER BY host_name ASC, ts ASC",
|
||||
expectedQueryContains: "SELECT host_name, ts, sum(per_series_value) as value FROM (SELECT fingerprint, any(host_name) as host_name, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, avg(value) as per_series_value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'host_name') as host_name, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'system_cpu_usage' AND temporality = 'Unspecified' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'system_cpu_usage' AND unix_milli >= 1650991980000 AND unix_milli < 1651078380000 GROUP BY fingerprint, ts ORDER BY fingerprint, ts) WHERE isNaN(per_series_value) = 0 GROUP BY host_name, ts ORDER BY host_name ASC, ts ASC",
|
||||
},
|
||||
}
|
||||
|
||||
for _, testCase := range testCases {
|
||||
t.Run(testCase.name, func(t *testing.T) {
|
||||
// 1650991982000 - April 26, 2022 10:23:02 PM
|
||||
// 1651078382000 - April 27, 2022 10:23:02 PM
|
||||
query, err := PrepareMetricQuery(1650991982000, 1651078382000, v3.QueryTypeBuilder, v3.PanelTypeGraph, testCase.builderQuery, metricsV3.Options{})
|
||||
assert.Nil(t, err)
|
||||
assert.Contains(t, query, testCase.expectedQueryContains)
|
||||
|
@ -1134,6 +1134,17 @@ func ParseQueryRangeParams(r *http.Request) (*v3.QueryRangeParamsV3, *model.ApiE
|
||||
query.StepInterval = minStep
|
||||
}
|
||||
|
||||
if query.DataSource == v3.DataSourceMetrics && baseconstants.UseMetricsPreAggregation() {
|
||||
// if the time range is greater than 1 day, and less than 1 week set the step interval to be multiple of 5 minutes
|
||||
// if the time range is greater than 1 week, set the step interval to be multiple of 30 mins
|
||||
start, end := queryRangeParams.Start, queryRangeParams.End
|
||||
if end-start >= 24*time.Hour.Milliseconds() && end-start < 7*24*time.Hour.Milliseconds() {
|
||||
query.StepInterval = int64(math.Round(float64(query.StepInterval)/300)) * 300
|
||||
} else if end-start >= 7*24*time.Hour.Milliseconds() {
|
||||
query.StepInterval = int64(math.Round(float64(query.StepInterval)/1800)) * 1800
|
||||
}
|
||||
}
|
||||
|
||||
// Remove the time shift function from the list of functions and set the shift by value
|
||||
var timeShiftBy int64
|
||||
if len(query.Functions) > 0 {
|
||||
|
@ -1416,12 +1416,6 @@ func TestParseQueryRangeParamsStepIntervalAdjustment(t *testing.T) {
|
||||
end: time.Now().UnixMilli(),
|
||||
step: 1, // gets updated
|
||||
},
|
||||
{
|
||||
desc: "1 week and 1 minute step",
|
||||
start: time.Now().Add(-7 * 24 * time.Hour).UnixMilli(),
|
||||
end: time.Now().UnixMilli(),
|
||||
step: 60, // gets updated
|
||||
},
|
||||
{
|
||||
desc: "1 day and 1 hour step",
|
||||
start: time.Now().Add(-24 * time.Hour).UnixMilli(),
|
||||
@ -1446,12 +1440,6 @@ func TestParseQueryRangeParamsStepIntervalAdjustment(t *testing.T) {
|
||||
end: time.Now().UnixMilli(),
|
||||
step: 300, // no update
|
||||
},
|
||||
{
|
||||
desc: "1 week and 10 minutes step",
|
||||
start: time.Now().Add(-7 * 24 * time.Hour).UnixMilli(),
|
||||
end: time.Now().UnixMilli(),
|
||||
step: 600, // get updated
|
||||
},
|
||||
{
|
||||
desc: "1 week and 45 minutes step",
|
||||
start: time.Now().Add(-7 * 24 * time.Hour).UnixMilli(),
|
||||
|
@ -228,8 +228,8 @@ func TestDeltaQueryBuilder(t *testing.T) {
|
||||
{
|
||||
name: "TestQueryWithName - Request rate",
|
||||
query: &v3.QueryRangeParamsV3{
|
||||
Start: 1650991982000,
|
||||
End: 1651078382000,
|
||||
Start: 1650991982000, // 2022-04-25 10:53:02
|
||||
End: 1651078382000, // 2022-04-26 10:53:02
|
||||
CompositeQuery: &v3.CompositeQuery{
|
||||
QueryType: v3.QueryTypeBuilder,
|
||||
PanelType: v3.PanelTypeGraph,
|
||||
@ -261,13 +261,13 @@ func TestDeltaQueryBuilder(t *testing.T) {
|
||||
},
|
||||
},
|
||||
queryToTest: "A",
|
||||
expected: "SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_latency_count' AND temporality = 'Delta' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000 AND JSONExtractString(labels, 'service_name') IN ['frontend'] AND JSONExtractString(labels, 'operation') IN ['HTTP GET /dispatch'] AND JSONExtractString(labels, '__temporality__') = 'Delta') as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_count' AND unix_milli >= 1650991980000 AND unix_milli <= 1651078380000 GROUP BY ts ORDER BY ts",
|
||||
expected: "SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_count' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND JSONExtractString(labels, 'service_name') IN ['frontend'] AND JSONExtractString(labels, 'operation') IN ['HTTP GET /dispatch'] AND JSONExtractString(labels, '__temporality__') = 'Delta') as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_count' AND unix_milli >= 1650991980000 AND unix_milli <= 1651078380000 GROUP BY ts ORDER BY ts",
|
||||
},
|
||||
{
|
||||
name: "TestQueryWithExpression - Error rate",
|
||||
query: &v3.QueryRangeParamsV3{
|
||||
Start: 1650991982000,
|
||||
End: 1651078382000,
|
||||
Start: 1650991982000, // 2022-04-25 10:53:02
|
||||
End: 1651078382000, // 2022-04-26 10:53:02
|
||||
CompositeQuery: &v3.CompositeQuery{
|
||||
QueryType: v3.QueryTypeBuilder,
|
||||
PanelType: v3.PanelTypeGraph,
|
||||
@ -331,7 +331,7 @@ func TestDeltaQueryBuilder(t *testing.T) {
|
||||
},
|
||||
},
|
||||
queryToTest: "C",
|
||||
expected: "SELECT A.`ts` as `ts`, A.value * 100 / B.value as value FROM (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_latency_count' AND temporality = 'Delta' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000 AND JSONExtractString(labels, 'service_name') IN ['frontend'] AND JSONExtractString(labels, 'operation') IN ['HTTP GET /dispatch'] AND JSONExtractString(labels, 'status_code') IN ['STATUS_CODE_ERROR'] AND JSONExtractString(labels, '__temporality__') = 'Delta') as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_count' AND unix_milli >= 1650991980000 AND unix_milli <= 1651078380000 GROUP BY ts ORDER BY ts) as A INNER JOIN (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_latency_count' AND temporality = 'Delta' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000 AND JSONExtractString(labels, 'service_name') IN ['frontend'] AND JSONExtractString(labels, 'operation') IN ['HTTP GET /dispatch'] AND JSONExtractString(labels, '__temporality__') = 'Delta') as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_count' AND unix_milli >= 1650991980000 AND unix_milli <= 1651078380000 GROUP BY ts ORDER BY ts) as B ON A.`ts` = B.`ts`",
|
||||
expected: "SELECT A.`ts` as `ts`, A.value * 100 / B.value as value FROM (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_count' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND JSONExtractString(labels, 'service_name') IN ['frontend'] AND JSONExtractString(labels, 'operation') IN ['HTTP GET /dispatch'] AND JSONExtractString(labels, 'status_code') IN ['STATUS_CODE_ERROR'] AND JSONExtractString(labels, '__temporality__') = 'Delta') as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_count' AND unix_milli >= 1650991980000 AND unix_milli <= 1651078380000 GROUP BY ts ORDER BY ts) as A INNER JOIN (SELECT toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_count' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000 AND JSONExtractString(labels, 'service_name') IN ['frontend'] AND JSONExtractString(labels, 'operation') IN ['HTTP GET /dispatch'] AND JSONExtractString(labels, '__temporality__') = 'Delta') as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_count' AND unix_milli >= 1650991980000 AND unix_milli <= 1651078380000 GROUP BY ts ORDER BY ts) as B ON A.`ts` = B.`ts`",
|
||||
},
|
||||
{
|
||||
name: "TestQuery - Quantile",
|
||||
@ -359,7 +359,7 @@ func TestDeltaQueryBuilder(t *testing.T) {
|
||||
},
|
||||
},
|
||||
queryToTest: "A",
|
||||
expected: "SELECT service_name, ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.950) as value FROM (SELECT service_name,le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_6hrs WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Delta' AND unix_milli >= 1650974400000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli <= 1651078380000 GROUP BY service_name,le,ts ORDER BY service_name ASC,le ASC, ts) GROUP BY service_name,ts ORDER BY service_name ASC, ts",
|
||||
expected: "SELECT service_name, ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), 0.950) as value FROM (SELECT service_name,le, toStartOfInterval(toDateTime(intDiv(unix_milli, 1000)), INTERVAL 60 SECOND) as ts, sum(value)/60 as value FROM signoz_metrics.distributed_samples_v4 INNER JOIN (SELECT DISTINCT JSONExtractString(labels, 'service_name') as service_name, JSONExtractString(labels, 'le') as le, fingerprint FROM signoz_metrics.time_series_v4_1day WHERE metric_name = 'signoz_latency_bucket' AND temporality = 'Delta' AND unix_milli >= 1650931200000 AND unix_milli < 1651078380000) as filtered_time_series USING fingerprint WHERE metric_name = 'signoz_latency_bucket' AND unix_milli >= 1650991980000 AND unix_milli <= 1651078380000 GROUP BY service_name,le,ts ORDER BY service_name ASC,le ASC, ts) GROUP BY service_name,ts ORDER BY service_name ASC, ts",
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -80,6 +80,11 @@ var TimestampSortFeature = GetOrDefaultEnv("TIMESTAMP_SORT_FEATURE", "true")
|
||||
|
||||
var PreferRPMFeature = GetOrDefaultEnv("PREFER_RPM_FEATURE", "false")
|
||||
|
||||
// TODO(srikanthccv): remove after backfilling is done
|
||||
func UseMetricsPreAggregation() bool {
|
||||
return GetOrDefaultEnv("USE_METRICS_PRE_AGGREGATION", "true") == "true"
|
||||
}
|
||||
|
||||
var KafkaSpanEval = GetOrDefaultEnv("KAFKA_SPAN_EVAL", "false")
|
||||
|
||||
func IsDurationSortFeatureEnabled() bool {
|
||||
@ -222,15 +227,19 @@ var GroupByColMap = map[string]struct{}{
|
||||
}
|
||||
|
||||
const (
|
||||
SIGNOZ_METRIC_DBNAME = "signoz_metrics"
|
||||
SIGNOZ_SAMPLES_V4_TABLENAME = "distributed_samples_v4"
|
||||
SIGNOZ_TRACE_DBNAME = "signoz_traces"
|
||||
SIGNOZ_SPAN_INDEX_TABLENAME = "distributed_signoz_index_v2"
|
||||
SIGNOZ_SPAN_INDEX_LOCAL_TABLENAME = "signoz_index_v2"
|
||||
SIGNOZ_TIMESERIES_v4_LOCAL_TABLENAME = "time_series_v4"
|
||||
SIGNOZ_TIMESERIES_v4_6HRS_LOCAL_TABLENAME = "time_series_v4_6hrs"
|
||||
SIGNOZ_TIMESERIES_v4_1DAY_LOCAL_TABLENAME = "time_series_v4_1day"
|
||||
SIGNOZ_TIMESERIES_v4_1DAY_TABLENAME = "distributed_time_series_v4_1day"
|
||||
SIGNOZ_METRIC_DBNAME = "signoz_metrics"
|
||||
SIGNOZ_SAMPLES_V4_TABLENAME = "distributed_samples_v4"
|
||||
SIGNOZ_SAMPLES_V4_AGG_5M_TABLENAME = "distributed_samples_v4_agg_5m"
|
||||
SIGNOZ_SAMPLES_V4_AGG_30M_TABLENAME = "distributed_samples_v4_agg_30m"
|
||||
SIGNOZ_EXP_HISTOGRAM_TABLENAME = "distributed_exp_hist"
|
||||
SIGNOZ_TRACE_DBNAME = "signoz_traces"
|
||||
SIGNOZ_SPAN_INDEX_TABLENAME = "distributed_signoz_index_v2"
|
||||
SIGNOZ_SPAN_INDEX_LOCAL_TABLENAME = "signoz_index_v2"
|
||||
SIGNOZ_TIMESERIES_v4_LOCAL_TABLENAME = "time_series_v4"
|
||||
SIGNOZ_TIMESERIES_v4_6HRS_LOCAL_TABLENAME = "time_series_v4_6hrs"
|
||||
SIGNOZ_TIMESERIES_v4_1DAY_LOCAL_TABLENAME = "time_series_v4_1day"
|
||||
SIGNOZ_TIMESERIES_v4_1WEEK_LOCAL_TABLENAME = "time_series_v4_1week"
|
||||
SIGNOZ_TIMESERIES_v4_1DAY_TABLENAME = "distributed_time_series_v4_1day"
|
||||
)
|
||||
|
||||
var TimeoutExcludedRoutes = map[string]bool{
|
||||
|
@ -152,6 +152,15 @@ func (r *ThresholdRule) prepareQueryRange(ts time.Time) (*v3.QueryRangeParamsV3,
|
||||
if minStep := common.MinAllowedStepInterval(start, end); q.StepInterval < minStep {
|
||||
q.StepInterval = minStep
|
||||
}
|
||||
if q.DataSource == v3.DataSourceMetrics && constants.UseMetricsPreAggregation() {
|
||||
// if the time range is greater than 1 day, and less than 1 week set the step interval to be multiple of 5 minutes
|
||||
// if the time range is greater than 1 week, set the step interval to be multiple of 30 mins
|
||||
if end-start >= 24*time.Hour.Milliseconds() && end-start < 7*24*time.Hour.Milliseconds() {
|
||||
q.StepInterval = int64(math.Round(float64(q.StepInterval)/300)) * 300
|
||||
} else if end-start >= 7*24*time.Hour.Milliseconds() {
|
||||
q.StepInterval = int64(math.Round(float64(q.StepInterval)/1800)) * 1800
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user