mirror of
https://git.mirrors.martin98.com/https://github.com/SigNoz/signoz
synced 2025-08-12 02:29:03 +08:00
Add support for histogram quantiles (#1533)
This commit is contained in:
parent
b675c3cfec
commit
44360ecacf
@ -905,7 +905,8 @@
|
||||
<dictionaries_config>*_dictionary.xml</dictionaries_config>
|
||||
|
||||
<!-- Configuration of user defined executable functions -->
|
||||
<user_defined_executable_functions_config>*_function.xml</user_defined_executable_functions_config>
|
||||
<user_defined_executable_functions_config>*function.xml</user_defined_executable_functions_config>
|
||||
<user_scripts_path>/var/lib/clickhouse/user_scripts/</user_scripts_path>
|
||||
|
||||
<!-- Uncomment if you want data to be compressed 30-100% better.
|
||||
Don't do that if you just started using ClickHouse.
|
||||
|
21
deploy/docker/clickhouse-setup/custom-function.xml
Normal file
21
deploy/docker/clickhouse-setup/custom-function.xml
Normal file
@ -0,0 +1,21 @@
|
||||
<functions>
|
||||
<function>
|
||||
<type>executable</type>
|
||||
<name>histogramQuantile</name>
|
||||
<return_type>Float64</return_type>
|
||||
<argument>
|
||||
<type>Array(Float64)</type>
|
||||
<name>buckets</name>
|
||||
</argument>
|
||||
<argument>
|
||||
<type>Array(Float64)</type>
|
||||
<name>counts</name>
|
||||
</argument>
|
||||
<argument>
|
||||
<type>Float64</type>
|
||||
<name>quantile</name>
|
||||
</argument>
|
||||
<format>CSV</format>
|
||||
<command>./histogramQuantile</command>
|
||||
</function>
|
||||
</functions>
|
@ -97,9 +97,11 @@ services:
|
||||
volumes:
|
||||
- ./clickhouse-config.xml:/etc/clickhouse-server/config.xml
|
||||
- ./clickhouse-users.xml:/etc/clickhouse-server/users.xml
|
||||
- ./custom-function.xml:/etc/clickhouse-server/custom-function.xml
|
||||
- ./clickhouse-cluster.xml:/etc/clickhouse-server/config.d/cluster.xml
|
||||
# - ./clickhouse-storage.xml:/etc/clickhouse-server/config.d/storage.xml
|
||||
- ./data/clickhouse/:/var/lib/clickhouse/
|
||||
- ./user_scripts:/var/lib/clickhouse/user_scripts/
|
||||
|
||||
# clickhouse-2:
|
||||
# <<: *clickhouse-defaults
|
||||
@ -112,9 +114,12 @@ services:
|
||||
# volumes:
|
||||
# - ./clickhouse-config.xml:/etc/clickhouse-server/config.xml
|
||||
# - ./clickhouse-users.xml:/etc/clickhouse-server/users.xml
|
||||
# - ./custom-function.xml:/etc/clickhouse-server/custom-function.xml
|
||||
# - ./clickhouse-cluster.xml:/etc/clickhouse-server/config.d/cluster.xml
|
||||
# # - ./clickhouse-storage.xml:/etc/clickhouse-server/config.d/storage.xml
|
||||
# - ./data/clickhouse-2/:/var/lib/clickhouse/
|
||||
# - ./user_scripts:/var/lib/clickhouse/user_scripts/
|
||||
|
||||
|
||||
# clickhouse-3:
|
||||
# <<: *clickhouse-defaults
|
||||
@ -127,9 +132,11 @@ services:
|
||||
# volumes:
|
||||
# - ./clickhouse-config.xml:/etc/clickhouse-server/config.xml
|
||||
# - ./clickhouse-users.xml:/etc/clickhouse-server/users.xml
|
||||
# - ./custom-function.xml:/etc/clickhouse-server/custom-function.xml
|
||||
# - ./clickhouse-cluster.xml:/etc/clickhouse-server/config.d/cluster.xml
|
||||
# # - ./clickhouse-storage.xml:/etc/clickhouse-server/config.d/storage.xml
|
||||
# - ./data/clickhouse-3/:/var/lib/clickhouse/
|
||||
# - ./user_scripts:/var/lib/clickhouse/user_scripts/
|
||||
|
||||
alertmanager:
|
||||
image: signoz/alertmanager:${ALERTMANAGER_TAG:-0.23.0-0.2}
|
||||
|
BIN
deploy/docker/clickhouse-setup/user_scripts/histogramQuantile
Executable file
BIN
deploy/docker/clickhouse-setup/user_scripts/histogramQuantile
Executable file
Binary file not shown.
237
deploy/docker/clickhouse-setup/user_scripts/histogramQuantile.go
Normal file
237
deploy/docker/clickhouse-setup/user_scripts/histogramQuantile.go
Normal file
@ -0,0 +1,237 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"fmt"
|
||||
"math"
|
||||
"os"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// NOTE: executable must be built with target OS and architecture set to linux/amd64
|
||||
// env GOOS=linux GOARCH=arm64 go build -o histogramQuantile histogramQuantile.go
|
||||
|
||||
// The following code is adapted from the following source:
|
||||
// https://github.com/prometheus/prometheus/blob/main/promql/quantile.go
|
||||
|
||||
type bucket struct {
|
||||
upperBound float64
|
||||
count float64
|
||||
}
|
||||
|
||||
// buckets implements sort.Interface.
|
||||
type buckets []bucket
|
||||
|
||||
func (b buckets) Len() int { return len(b) }
|
||||
func (b buckets) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
|
||||
func (b buckets) Less(i, j int) bool { return b[i].upperBound < b[j].upperBound }
|
||||
|
||||
// bucketQuantile calculates the quantile 'q' based on the given buckets. The
|
||||
// buckets will be sorted by upperBound by this function (i.e. no sorting
|
||||
// needed before calling this function). The quantile value is interpolated
|
||||
// assuming a linear distribution within a bucket. However, if the quantile
|
||||
// falls into the highest bucket, the upper bound of the 2nd highest bucket is
|
||||
// returned. A natural lower bound of 0 is assumed if the upper bound of the
|
||||
// lowest bucket is greater 0. In that case, interpolation in the lowest bucket
|
||||
// happens linearly between 0 and the upper bound of the lowest bucket.
|
||||
// However, if the lowest bucket has an upper bound less or equal 0, this upper
|
||||
// bound is returned if the quantile falls into the lowest bucket.
|
||||
//
|
||||
// There are a number of special cases (once we have a way to report errors
|
||||
// happening during evaluations of AST functions, we should report those
|
||||
// explicitly):
|
||||
//
|
||||
// If 'buckets' has 0 observations, NaN is returned.
|
||||
//
|
||||
// If 'buckets' has fewer than 2 elements, NaN is returned.
|
||||
//
|
||||
// If the highest bucket is not +Inf, NaN is returned.
|
||||
//
|
||||
// If q==NaN, NaN is returned.
|
||||
//
|
||||
// If q<0, -Inf is returned.
|
||||
//
|
||||
// If q>1, +Inf is returned.
|
||||
func bucketQuantile(q float64, buckets buckets) float64 {
|
||||
if math.IsNaN(q) {
|
||||
return math.NaN()
|
||||
}
|
||||
if q < 0 {
|
||||
return math.Inf(-1)
|
||||
}
|
||||
if q > 1 {
|
||||
return math.Inf(+1)
|
||||
}
|
||||
sort.Sort(buckets)
|
||||
if !math.IsInf(buckets[len(buckets)-1].upperBound, +1) {
|
||||
return math.NaN()
|
||||
}
|
||||
|
||||
buckets = coalesceBuckets(buckets)
|
||||
ensureMonotonic(buckets)
|
||||
|
||||
if len(buckets) < 2 {
|
||||
return math.NaN()
|
||||
}
|
||||
observations := buckets[len(buckets)-1].count
|
||||
if observations == 0 {
|
||||
return math.NaN()
|
||||
}
|
||||
rank := q * observations
|
||||
b := sort.Search(len(buckets)-1, func(i int) bool { return buckets[i].count >= rank })
|
||||
|
||||
if b == len(buckets)-1 {
|
||||
return buckets[len(buckets)-2].upperBound
|
||||
}
|
||||
if b == 0 && buckets[0].upperBound <= 0 {
|
||||
return buckets[0].upperBound
|
||||
}
|
||||
var (
|
||||
bucketStart float64
|
||||
bucketEnd = buckets[b].upperBound
|
||||
count = buckets[b].count
|
||||
)
|
||||
if b > 0 {
|
||||
bucketStart = buckets[b-1].upperBound
|
||||
count -= buckets[b-1].count
|
||||
rank -= buckets[b-1].count
|
||||
}
|
||||
return bucketStart + (bucketEnd-bucketStart)*(rank/count)
|
||||
}
|
||||
|
||||
// coalesceBuckets merges buckets with the same upper bound.
|
||||
//
|
||||
// The input buckets must be sorted.
|
||||
func coalesceBuckets(buckets buckets) buckets {
|
||||
last := buckets[0]
|
||||
i := 0
|
||||
for _, b := range buckets[1:] {
|
||||
if b.upperBound == last.upperBound {
|
||||
last.count += b.count
|
||||
} else {
|
||||
buckets[i] = last
|
||||
last = b
|
||||
i++
|
||||
}
|
||||
}
|
||||
buckets[i] = last
|
||||
return buckets[:i+1]
|
||||
}
|
||||
|
||||
// The assumption that bucket counts increase monotonically with increasing
|
||||
// upperBound may be violated during:
|
||||
//
|
||||
// * Recording rule evaluation of histogram_quantile, especially when rate()
|
||||
// has been applied to the underlying bucket timeseries.
|
||||
// * Evaluation of histogram_quantile computed over federated bucket
|
||||
// timeseries, especially when rate() has been applied.
|
||||
//
|
||||
// This is because scraped data is not made available to rule evaluation or
|
||||
// federation atomically, so some buckets are computed with data from the
|
||||
// most recent scrapes, but the other buckets are missing data from the most
|
||||
// recent scrape.
|
||||
//
|
||||
// Monotonicity is usually guaranteed because if a bucket with upper bound
|
||||
// u1 has count c1, then any bucket with a higher upper bound u > u1 must
|
||||
// have counted all c1 observations and perhaps more, so that c >= c1.
|
||||
//
|
||||
// Randomly interspersed partial sampling breaks that guarantee, and rate()
|
||||
// exacerbates it. Specifically, suppose bucket le=1000 has a count of 10 from
|
||||
// 4 samples but the bucket with le=2000 has a count of 7 from 3 samples. The
|
||||
// monotonicity is broken. It is exacerbated by rate() because under normal
|
||||
// operation, cumulative counting of buckets will cause the bucket counts to
|
||||
// diverge such that small differences from missing samples are not a problem.
|
||||
// rate() removes this divergence.)
|
||||
//
|
||||
// bucketQuantile depends on that monotonicity to do a binary search for the
|
||||
// bucket with the φ-quantile count, so breaking the monotonicity
|
||||
// guarantee causes bucketQuantile() to return undefined (nonsense) results.
|
||||
//
|
||||
// As a somewhat hacky solution until ingestion is atomic per scrape, we
|
||||
// calculate the "envelope" of the histogram buckets, essentially removing
|
||||
// any decreases in the count between successive buckets.
|
||||
|
||||
func ensureMonotonic(buckets buckets) {
|
||||
max := buckets[0].count
|
||||
for i := 1; i < len(buckets); i++ {
|
||||
switch {
|
||||
case buckets[i].count > max:
|
||||
max = buckets[i].count
|
||||
case buckets[i].count < max:
|
||||
buckets[i].count = max
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// End of copied code.
|
||||
|
||||
func readLines() []string {
|
||||
r := bufio.NewReader(os.Stdin)
|
||||
bytes := []byte{}
|
||||
lines := []string{}
|
||||
for {
|
||||
line, isPrefix, err := r.ReadLine()
|
||||
if err != nil {
|
||||
break
|
||||
}
|
||||
bytes = append(bytes, line...)
|
||||
if !isPrefix {
|
||||
str := strings.TrimSpace(string(bytes))
|
||||
if len(str) > 0 {
|
||||
lines = append(lines, str)
|
||||
bytes = []byte{}
|
||||
}
|
||||
}
|
||||
}
|
||||
if len(bytes) > 0 {
|
||||
lines = append(lines, string(bytes))
|
||||
}
|
||||
return lines
|
||||
}
|
||||
|
||||
func main() {
|
||||
lines := readLines()
|
||||
for _, text := range lines {
|
||||
// Example input
|
||||
// "[1, 2, 4, 8, 16]", "[1, 5, 8, 10, 14]", 0.9"
|
||||
// bounds - counts - quantile
|
||||
parts := strings.Split(text, "\",")
|
||||
|
||||
var bucketNumbers []float64
|
||||
// Strip the ends with square brackets
|
||||
text = parts[0][2 : len(parts[0])-1]
|
||||
// Parse the bucket bounds
|
||||
for _, num := range strings.Split(text, ",") {
|
||||
num = strings.TrimSpace(num)
|
||||
number, err := strconv.ParseFloat(num, 64)
|
||||
if err == nil {
|
||||
bucketNumbers = append(bucketNumbers, number)
|
||||
}
|
||||
}
|
||||
|
||||
var bucketCounts []float64
|
||||
// Strip the ends with square brackets
|
||||
text = parts[1][2 : len(parts[1])-1]
|
||||
// Parse the bucket counts
|
||||
for _, num := range strings.Split(text, ",") {
|
||||
num = strings.TrimSpace(num)
|
||||
number, err := strconv.ParseFloat(num, 64)
|
||||
if err == nil {
|
||||
bucketCounts = append(bucketCounts, number)
|
||||
}
|
||||
}
|
||||
|
||||
// Parse the quantile
|
||||
q, err := strconv.ParseFloat(parts[2], 64)
|
||||
var b buckets
|
||||
|
||||
if err == nil {
|
||||
for i := 0; i < len(bucketNumbers); i++ {
|
||||
b = append(b, bucket{upperBound: bucketNumbers[i], count: bucketCounts[i]})
|
||||
}
|
||||
}
|
||||
fmt.Println(bucketQuantile(q, b))
|
||||
}
|
||||
}
|
@ -34,6 +34,11 @@ export enum EAggregateOperator {
|
||||
RATE_AVG = 23,
|
||||
RATE_MAX = 24,
|
||||
RATE_MIN = 25,
|
||||
HIST_QUANTILE_50 = 26,
|
||||
HIST_QUANTILE_75 = 27,
|
||||
HIST_QUANTILE_90 = 28,
|
||||
HIST_QUANTILE_95 = 29,
|
||||
HIST_QUANTILE_99 = 30,
|
||||
}
|
||||
|
||||
export enum EPanelType {
|
||||
|
@ -17,15 +17,20 @@ type RunQueries struct {
|
||||
}
|
||||
|
||||
var AggregateOperatorToPercentile = map[model.AggregateOperator]float64{
|
||||
model.P05: 0.5,
|
||||
model.P10: 0.10,
|
||||
model.P20: 0.20,
|
||||
model.P25: 0.25,
|
||||
model.P50: 0.50,
|
||||
model.P75: 0.75,
|
||||
model.P90: 0.90,
|
||||
model.P95: 0.95,
|
||||
model.P99: 0.99,
|
||||
model.P05: 0.5,
|
||||
model.P10: 0.10,
|
||||
model.P20: 0.20,
|
||||
model.P25: 0.25,
|
||||
model.P50: 0.50,
|
||||
model.P75: 0.75,
|
||||
model.P90: 0.90,
|
||||
model.P95: 0.95,
|
||||
model.P99: 0.99,
|
||||
model.HIST_QUANTILE_50: 0.50,
|
||||
model.HIST_QUANTILE_75: 0.75,
|
||||
model.HIST_QUANTILE_90: 0.90,
|
||||
model.HIST_QUANTILE_95: 0.95,
|
||||
model.HIST_QUANTILE_99: 0.99,
|
||||
}
|
||||
|
||||
var AggregateOperatorToSQLFunc = map[model.AggregateOperator]string{
|
||||
@ -173,6 +178,16 @@ func BuildMetricQuery(qp *model.QueryRangeParamsV2, mq *model.MetricQuery, table
|
||||
" GROUP BY %s" +
|
||||
" ORDER BY %s ts"
|
||||
|
||||
tagsWithoutLe := []string{}
|
||||
for _, tag := range mq.GroupingTags {
|
||||
if tag != "le" {
|
||||
tagsWithoutLe = append(tagsWithoutLe, tag)
|
||||
}
|
||||
}
|
||||
|
||||
groupByWithoutLe := groupBy(tagsWithoutLe...)
|
||||
groupTagsWithoutLe := groupSelect(tagsWithoutLe...)
|
||||
|
||||
groupBy := groupBy(mq.GroupingTags...)
|
||||
groupTags := groupSelect(mq.GroupingTags...)
|
||||
|
||||
@ -210,6 +225,20 @@ func BuildMetricQuery(qp *model.QueryRangeParamsV2, mq *model.MetricQuery, table
|
||||
op := fmt.Sprintf("quantile(%v)(value)", AggregateOperatorToPercentile[mq.AggregateOperator])
|
||||
query := fmt.Sprintf(queryTmpl, groupTags, qp.Step, op, filterSubQuery, groupBy, groupTags)
|
||||
return query, nil
|
||||
case model.HIST_QUANTILE_50, model.HIST_QUANTILE_75, model.HIST_QUANTILE_90, model.HIST_QUANTILE_95, model.HIST_QUANTILE_99:
|
||||
rateGroupBy := "fingerprint, " + groupBy
|
||||
rateGroupTags := "fingerprint, " + groupTags
|
||||
op := "max(value)"
|
||||
subQuery := fmt.Sprintf(
|
||||
queryTmpl, rateGroupTags, qp.Step, op, filterSubQuery, rateGroupBy, rateGroupTags,
|
||||
) // labels will be same so any should be fine
|
||||
query := `SELECT %s ts, runningDifference(value)/runningDifference(ts) as value FROM(%s) OFFSET 1`
|
||||
query = fmt.Sprintf(query, groupTags, subQuery)
|
||||
query = fmt.Sprintf(`SELECT %s ts, sum(value) as value FROM (%s) GROUP BY %s ORDER BY %s ts`, groupTags, query, groupBy, groupTags)
|
||||
value := AggregateOperatorToPercentile[mq.AggregateOperator]
|
||||
|
||||
query = fmt.Sprintf(`SELECT %s ts, histogramQuantile(arrayMap(x -> toFloat64(x), groupArray(le)), groupArray(value), %.3f) as value FROM (%s) GROUP BY %s ORDER BY %s ts`, groupTagsWithoutLe, value, query, groupByWithoutLe, groupTagsWithoutLe)
|
||||
return query, nil
|
||||
case model.AVG, model.SUM, model.MIN, model.MAX:
|
||||
op := fmt.Sprintf("%s(value)", AggregateOperatorToSQLFunc[mq.AggregateOperator])
|
||||
query := fmt.Sprintf(queryTmpl, groupTags, qp.Step, op, filterSubQuery, groupBy, groupTags)
|
||||
|
@ -106,6 +106,11 @@ const (
|
||||
RATE_AVG
|
||||
RATE_MAX
|
||||
RATE_MIN
|
||||
HIST_QUANTILE_50
|
||||
HIST_QUANTILE_75
|
||||
HIST_QUANTILE_90
|
||||
HIST_QUANTILE_95
|
||||
HIST_QUANTILE_99
|
||||
)
|
||||
|
||||
type DataSource int
|
||||
|
Loading…
x
Reference in New Issue
Block a user