chore: add formula evaluator

This commit is contained in:
srikanthccv 2025-05-31 21:02:17 +05:30
parent 049828a9bb
commit f730ab7035

View File

@ -1,5 +1,16 @@
package querybuildertypesv5
import (
"fmt"
"math"
"sort"
"time"
"github.com/SigNoz/govaluate"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
)
type QueryBuilderFormula struct {
// name of the formula
Name string `json:"name"`
@ -9,3 +20,350 @@ type QueryBuilderFormula struct {
// functions to apply to the formula result
Functions []Function `json:"functions,omitempty"`
}
// FormulaEvaluator handles formula evaluation for QBv5 types
type FormulaEvaluator struct {
expression *govaluate.EvaluableExpression
canDefaultZero map[string]bool
functions map[string]govaluate.ExpressionFunction
}
// NewFormulaEvaluator creates a new formula evaluator
func NewFormulaEvaluator(expressionStr string, canDefaultZero map[string]bool) (*FormulaEvaluator, error) {
functions := EvalFuncs()
expression, err := govaluate.NewEvaluableExpressionWithFunctions(expressionStr, functions)
if err != nil {
return nil, errors.NewInvalidInputf(errors.CodeInvalidInput, "failed to parse expression: %s, error: %s", expressionStr, err.Error())
}
return &FormulaEvaluator{
expression: expression,
canDefaultZero: canDefaultZero,
functions: functions,
}, nil
}
// EvaluateFormula processes multiple time series data and evaluates the formula
func (fe *FormulaEvaluator) EvaluateFormula(timeSeriesData map[string]*TimeSeriesData) (*TimeSeriesData, error) {
// Convert TimeSeriesData to a flattened series map for processing
allSeries := fe.flattenTimeSeriesData(timeSeriesData)
// Find unique label sets for formula evaluation
uniqueLabelSets := fe.findUniqueLabelSets(allSeries)
// Process each unique label set
var resultSeries []*TimeSeries
for _, labelSet := range uniqueLabelSets {
series, err := fe.joinAndCalculate(allSeries, labelSet)
if err != nil {
return nil, err
}
if series != nil && len(series.Values) > 0 {
resultSeries = append(resultSeries, series)
}
}
return &TimeSeriesData{
QueryName: "formula",
Aggregations: []*AggregationBucket{
{
Index: 0,
Alias: "formula_result",
Series: resultSeries,
},
},
}, nil
}
// flattenTimeSeriesData converts map of TimeSeriesData to a flat map of series by query name
func (fe *FormulaEvaluator) flattenTimeSeriesData(timeSeriesData map[string]*TimeSeriesData) map[string][]*TimeSeries {
result := make(map[string][]*TimeSeries)
for queryName, data := range timeSeriesData {
var allSeries []*TimeSeries
for _, bucket := range data.Aggregations {
allSeries = append(allSeries, bucket.Series...)
}
result[queryName] = allSeries
}
return result
}
// findUniqueLabelSets finds all unique label combinations across series that are referenced in the expression
func (fe *FormulaEvaluator) findUniqueLabelSets(allSeries map[string][]*TimeSeries) []map[string]string {
queriesInExpression := make(map[string]struct{})
for _, v := range fe.expression.Vars() {
queriesInExpression[v] = struct{}{}
}
var allLabelSets []map[string]string
// Collect all label sets from series that are referenced in the expression
for queryName, series := range allSeries {
if _, ok := queriesInExpression[queryName]; !ok {
continue
}
for _, s := range series {
labelMap := fe.labelsToMap(s.Labels)
allLabelSets = append(allLabelSets, labelMap)
}
}
// Sort by number of labels (descending) for subset detection optimization
sort.Slice(allLabelSets, func(i, j int) bool {
return len(allLabelSets[i]) > len(allLabelSets[j])
})
// Find unique label sets (remove subsets)
var uniqueSets []map[string]string
for _, labelSet := range allLabelSets {
isUnique := true
for _, uniqueLabelSet := range uniqueSets {
if fe.isSubset(uniqueLabelSet, labelSet) {
isUnique = false
break
}
}
if isUnique {
uniqueSets = append(uniqueSets, labelSet)
}
}
return uniqueSets
}
// joinAndCalculate joins series with matching labels and evaluates the formula at each timestamp
func (fe *FormulaEvaluator) joinAndCalculate(allSeries map[string][]*TimeSeries, uniqueLabelSet map[string]string) (*TimeSeries, error) {
// Map to store values: queryName -> timestamp -> value
seriesMap := make(map[string]map[int64]float64)
uniqueTimestamps := make(map[int64]struct{})
// Find matching series for each query and build lookup maps
for queryName, seriesList := range allSeries {
var matchingSeries *TimeSeries
// Find a series that matches the current label set
for _, series := range seriesList {
seriesLabelMap := fe.labelsToMap(series.Labels)
if fe.isSubset(uniqueLabelSet, seriesLabelMap) {
matchingSeries = series
break
}
}
// Build timestamp -> value mapping for quick lookup
if matchingSeries != nil {
if _, ok := seriesMap[queryName]; !ok {
seriesMap[queryName] = make(map[int64]float64)
}
for _, point := range matchingSeries.Values {
seriesMap[queryName][point.Timestamp] = point.Value
uniqueTimestamps[point.Timestamp] = struct{}{}
}
}
}
// Convert unique timestamps to sorted slice
timestamps := make([]int64, 0, len(uniqueTimestamps))
for timestamp := range uniqueTimestamps {
timestamps = append(timestamps, timestamp)
}
sort.Slice(timestamps, func(i, j int) bool {
return timestamps[i] < timestamps[j]
})
// Evaluate formula at each timestamp
var resultValues []*TimeSeriesValue
for _, timestamp := range timestamps {
values := make(map[string]interface{})
// Collect values for this timestamp
for queryName, series := range seriesMap {
if value, ok := series[timestamp]; ok {
values[queryName] = value
}
}
// Set default zeros where allowed
for _, variable := range fe.expression.Vars() {
if _, ok := values[variable]; !ok && fe.canDefaultZero[variable] {
values[variable] = 0.0
}
}
// Check if we have all required variables
canEvaluate := true
for _, variable := range fe.expression.Vars() {
if _, ok := values[variable]; !ok {
canEvaluate = false
break
}
}
if !canEvaluate {
continue
}
// Evaluate the expression
result, err := fe.expression.Evaluate(values)
if err != nil {
return nil, fmt.Errorf("expression evaluation failed at timestamp %d: %w", timestamp, err)
}
value, ok := result.(float64)
if !ok {
return nil, fmt.Errorf("expression result is not float64: %T", result)
}
// Skip invalid values
if math.IsNaN(value) || math.IsInf(value, 0) {
continue
}
resultValues = append(resultValues, &TimeSeriesValue{
Timestamp: timestamp,
Value: value,
})
}
// Convert label map back to Label slice
resultLabels := fe.mapToLabels(uniqueLabelSet)
return &TimeSeries{
Labels: resultLabels,
Values: resultValues,
}, nil
}
// Helper functions
// isSubset checks if 'sub' is a subset of 'super'
func (fe *FormulaEvaluator) isSubset(super, sub map[string]string) bool {
for k, v := range sub {
if val, ok := super[k]; !ok || val != v {
return false
}
}
return true
}
// labelsToMap converts Label slice to map for easier comparison
func (fe *FormulaEvaluator) labelsToMap(labels []*Label) map[string]string {
result := make(map[string]string)
for _, label := range labels {
if strVal, ok := label.Value.(string); ok {
result[label.Key.Name] = strVal
} else {
result[label.Key.Name] = convertValueToString(label.Value)
}
}
return result
}
// mapToLabels converts map back to Label slice
func (fe *FormulaEvaluator) mapToLabels(labelMap map[string]string) []*Label {
var labels []*Label
for key, value := range labelMap {
labels = append(labels, &Label{
Key: telemetrytypes.TelemetryFieldKey{
Name: key,
FieldDataType: telemetrytypes.FieldDataTypeString,
},
Value: value,
})
}
return labels
}
// EvalFuncs returns the supported mathematical functions for formula evaluation
func EvalFuncs() map[string]govaluate.ExpressionFunction {
funcs := make(map[string]govaluate.ExpressionFunction)
// Mathematical functions
funcs["exp"] = func(args ...interface{}) (interface{}, error) {
return math.Exp(args[0].(float64)), nil
}
funcs["log"] = func(args ...interface{}) (interface{}, error) {
return math.Log(args[0].(float64)), nil
}
funcs["ln"] = func(args ...interface{}) (interface{}, error) {
return math.Log(args[0].(float64)), nil
}
funcs["exp2"] = func(args ...interface{}) (interface{}, error) {
return math.Exp2(args[0].(float64)), nil
}
funcs["log2"] = func(args ...interface{}) (interface{}, error) {
return math.Log2(args[0].(float64)), nil
}
funcs["exp10"] = func(args ...interface{}) (interface{}, error) {
return math.Pow10(int(args[0].(float64))), nil
}
funcs["log10"] = func(args ...interface{}) (interface{}, error) {
return math.Log10(args[0].(float64)), nil
}
funcs["sqrt"] = func(args ...interface{}) (interface{}, error) {
return math.Sqrt(args[0].(float64)), nil
}
funcs["cbrt"] = func(args ...interface{}) (interface{}, error) {
return math.Cbrt(args[0].(float64)), nil
}
funcs["erf"] = func(args ...interface{}) (interface{}, error) {
return math.Erf(args[0].(float64)), nil
}
funcs["erfc"] = func(args ...interface{}) (interface{}, error) {
return math.Erfc(args[0].(float64)), nil
}
funcs["lgamma"] = func(args ...interface{}) (interface{}, error) {
v, _ := math.Lgamma(args[0].(float64))
return v, nil
}
funcs["tgamma"] = func(args ...interface{}) (interface{}, error) {
return math.Gamma(args[0].(float64)), nil
}
// Trigonometric functions
funcs["sin"] = func(args ...interface{}) (interface{}, error) {
return math.Sin(args[0].(float64)), nil
}
funcs["cos"] = func(args ...interface{}) (interface{}, error) {
return math.Cos(args[0].(float64)), nil
}
funcs["tan"] = func(args ...interface{}) (interface{}, error) {
return math.Tan(args[0].(float64)), nil
}
funcs["asin"] = func(args ...interface{}) (interface{}, error) {
return math.Asin(args[0].(float64)), nil
}
funcs["acos"] = func(args ...interface{}) (interface{}, error) {
return math.Acos(args[0].(float64)), nil
}
funcs["atan"] = func(args ...interface{}) (interface{}, error) {
return math.Atan(args[0].(float64)), nil
}
// Utility functions
funcs["degrees"] = func(args ...interface{}) (interface{}, error) {
return args[0].(float64) * 180 / math.Pi, nil
}
funcs["radians"] = func(args ...interface{}) (interface{}, error) {
return args[0].(float64) * math.Pi / 180, nil
}
funcs["now"] = func(args ...interface{}) (interface{}, error) {
return float64(time.Now().Unix()), nil
}
return funcs
}
// GetSupportedFunctions returns the list of supported function names
func GetSupportedFunctions() []string {
return []string{
"exp", "log", "ln", "exp2", "log2", "exp10", "log10",
"sqrt", "cbrt", "erf", "erfc", "lgamma", "tgamma",
"sin", "cos", "tan", "asin", "acos", "atan",
"degrees", "radians", "now",
}
}