mirror of
https://git.mirrors.martin98.com/https://github.com/SigNoz/signoz
synced 2025-10-13 14:41:27 +08:00

* feat: tooltip plugin to show series data in tooltip * feat: send anomaly function as last function * feat: default z_score_threshold to 3 * fix: anomaly function not applied on initial load * feat: maintain select alert type on reload * feat: maintain select alert type on reload * chore: update events to handle anomaly alert interactions
323 lines
8.3 KiB
TypeScript
323 lines
8.3 KiB
TypeScript
import { ThresholdProps } from 'container/NewWidget/RightContainer/Threshold/types';
|
|
import { convertValue } from 'lib/getConvertedValue';
|
|
import { isFinite } from 'lodash-es';
|
|
import { QueryDataV3 } from 'types/api/widgets/getQuery';
|
|
import uPlot from 'uplot';
|
|
|
|
function findMinMaxValues(data: QueryDataV3[]): [number, number] {
|
|
let min = Number.MAX_SAFE_INTEGER;
|
|
let max = Number.MIN_SAFE_INTEGER;
|
|
data?.forEach((entry) => {
|
|
entry.series?.forEach((series) => {
|
|
series.values.forEach((valueObj) => {
|
|
const value = parseFloat(valueObj.value);
|
|
if (isFinite(value)) {
|
|
min = Math.min(min, value);
|
|
max = Math.max(max, value);
|
|
}
|
|
});
|
|
});
|
|
});
|
|
|
|
return [min, max];
|
|
}
|
|
|
|
function findMinMaxThresholdValues(
|
|
thresholds: ThresholdProps[],
|
|
yAxisUnit?: string,
|
|
): [number, number] {
|
|
let minThresholdValue =
|
|
thresholds[0].thresholdValue || Number.MAX_SAFE_INTEGER;
|
|
let maxThresholdValue =
|
|
thresholds[0].thresholdValue || Number.MIN_SAFE_INTEGER;
|
|
|
|
thresholds.forEach((entry) => {
|
|
const { thresholdValue, thresholdUnit } = entry;
|
|
if (thresholdValue === undefined) return;
|
|
const compareValue = convertValue(thresholdValue, thresholdUnit, yAxisUnit);
|
|
if (compareValue === null) return;
|
|
minThresholdValue = Math.min(minThresholdValue, compareValue);
|
|
maxThresholdValue = Math.max(maxThresholdValue, compareValue);
|
|
});
|
|
|
|
return [minThresholdValue, maxThresholdValue];
|
|
}
|
|
|
|
function getRange(
|
|
thresholds: ThresholdProps[],
|
|
series: QueryDataV3[],
|
|
yAxisUnit?: string,
|
|
): [number, number] {
|
|
const [minThresholdValue, maxThresholdValue] = findMinMaxThresholdValues(
|
|
thresholds,
|
|
yAxisUnit,
|
|
);
|
|
const [minSeriesValue, maxSeriesValue] = findMinMaxValues(series);
|
|
|
|
const min = Math.min(minThresholdValue, minSeriesValue);
|
|
let max = Math.max(maxThresholdValue, maxSeriesValue);
|
|
|
|
// this is a temp change, we need to figure out a generic way to better handle ranges based on yAxisUnit
|
|
if (yAxisUnit === 'percentunit' && max < 1) {
|
|
max = 1;
|
|
}
|
|
|
|
return [min, max];
|
|
}
|
|
|
|
function areAllSeriesEmpty(series: QueryDataV3[]): boolean {
|
|
return series.every((entry) => {
|
|
if (!entry.series) return true;
|
|
return entry.series.every((series) => series.values.length === 0);
|
|
});
|
|
}
|
|
|
|
function configSoftMinMax(
|
|
softMin: number | null,
|
|
softMax: number | null,
|
|
): { range: uPlot.Scale.Range } {
|
|
return {
|
|
range: {
|
|
min: {
|
|
soft: softMin !== null ? softMin : undefined,
|
|
mode: 2,
|
|
},
|
|
max: {
|
|
soft: softMax !== null ? softMax : undefined,
|
|
mode: 2,
|
|
},
|
|
},
|
|
};
|
|
}
|
|
|
|
export const getYAxisScale = ({
|
|
thresholds,
|
|
series,
|
|
yAxisUnit,
|
|
softMin,
|
|
softMax,
|
|
}: // eslint-disable-next-line sonarjs/cognitive-complexity
|
|
GetYAxisScale): { auto?: boolean; range?: uPlot.Scale.Range } => {
|
|
// Situation: thresholds and series data is absent
|
|
if (
|
|
(!thresholds || thresholds.length === 0) &&
|
|
(!series || areAllSeriesEmpty(series))
|
|
) {
|
|
// Situation: softMin is not null or softMax is null
|
|
if (softMin !== null && softMax === null) {
|
|
return configSoftMinMax(softMin, softMin + 100);
|
|
}
|
|
|
|
// Situation: softMin is null softMax is not null
|
|
if (softMin === null && softMax !== null) {
|
|
return configSoftMinMax(softMax - 100, softMax);
|
|
}
|
|
|
|
// Situation: softMin is not null and softMax is not null
|
|
if (softMin !== null && softMax !== null) {
|
|
return configSoftMinMax(softMin, softMax);
|
|
}
|
|
|
|
// Situation: softMin and softMax are null and no threshold and no series data
|
|
return { auto: true };
|
|
}
|
|
|
|
// Situation: thresholds are absent
|
|
if (!thresholds || thresholds.length === 0) {
|
|
if (softMax === softMin) {
|
|
return { auto: true };
|
|
}
|
|
|
|
// Situation: No thresholds data but series data is present
|
|
if (series && !areAllSeriesEmpty(series)) {
|
|
// Situation: softMin and softMax are null
|
|
if (softMin === null && softMax === null) {
|
|
return { auto: true };
|
|
}
|
|
|
|
// Situation: either softMin or softMax is not null
|
|
let [min, max] = findMinMaxValues(series);
|
|
|
|
if (softMin !== null) {
|
|
// Compare with softMin if it is not null
|
|
min = Math.min(min, softMin);
|
|
}
|
|
|
|
if (softMax !== null) {
|
|
// Compare with softMax if it is not null
|
|
max = Math.max(max, softMax);
|
|
}
|
|
|
|
if (min === max) {
|
|
// Min and Max value can be same if the value is same for all the series
|
|
return { auto: true };
|
|
}
|
|
|
|
return { auto: false, range: [min, max] };
|
|
}
|
|
|
|
// Situation: No thresholds data and series data is absent but either soft min and soft max is present
|
|
if (softMin !== null && softMax === null) {
|
|
return configSoftMinMax(softMin, softMin + 100);
|
|
}
|
|
|
|
if (softMin === null && softMax !== null) {
|
|
return configSoftMinMax(softMax - 100, softMax);
|
|
}
|
|
|
|
if (softMin !== null && softMax !== null) {
|
|
return configSoftMinMax(softMin, softMax);
|
|
}
|
|
|
|
return { auto: true };
|
|
}
|
|
|
|
if (!series || areAllSeriesEmpty(series)) {
|
|
// series data is absent but threshold is present
|
|
if (thresholds.length > 0) {
|
|
// Situation: thresholds are present and series data is absent
|
|
let [min, max] = findMinMaxThresholdValues(thresholds, yAxisUnit);
|
|
|
|
if (softMin !== null) {
|
|
// Compare with softMin if it is not null
|
|
min = Math.min(min, softMin);
|
|
}
|
|
|
|
if (softMax !== null) {
|
|
// Compare with softMax if it is not null
|
|
max = Math.max(max, softMax);
|
|
}
|
|
|
|
if (min === max) {
|
|
// Min and Max value can be same if the value is same for all the series
|
|
return { auto: true };
|
|
}
|
|
|
|
return { auto: false, range: [min, max] };
|
|
}
|
|
|
|
// Situation: softMin or softMax is not null
|
|
if (softMin !== null && softMax === null) {
|
|
return configSoftMinMax(softMin, softMin + 100);
|
|
}
|
|
|
|
if (softMin === null && softMax !== null) {
|
|
return configSoftMinMax(softMax - 100, softMax);
|
|
}
|
|
|
|
if (softMin !== null && softMax !== null) {
|
|
return configSoftMinMax(softMin, softMax);
|
|
}
|
|
|
|
return { auto: true };
|
|
}
|
|
|
|
// Situation: thresholds and series data are present
|
|
let [min, max] = getRange(thresholds, series, yAxisUnit);
|
|
|
|
if (softMin !== null) {
|
|
// Compare with softMin if it is not null
|
|
min = Math.min(min, softMin);
|
|
}
|
|
|
|
if (softMax !== null) {
|
|
// Compare with softMax if it is not null
|
|
max = Math.max(max, softMax);
|
|
}
|
|
|
|
if (min === max) {
|
|
// Min and Max value can be same if the value is same for all the series
|
|
return { auto: true };
|
|
}
|
|
|
|
return { auto: false, range: [min, max] };
|
|
};
|
|
|
|
function adjustMinMax(
|
|
min: number,
|
|
max: number,
|
|
): {
|
|
adjustedMin: number;
|
|
adjustedMax: number;
|
|
} {
|
|
// Ensure min and max are valid
|
|
if (min === -Infinity && max === Infinity) {
|
|
return { adjustedMin: -Infinity, adjustedMax: Infinity };
|
|
}
|
|
|
|
const range = max - min;
|
|
const adjustment = range * 0.1;
|
|
|
|
let adjustedMin: number;
|
|
let adjustedMax: number;
|
|
|
|
// Handle the case for -Infinity
|
|
if (min === -Infinity) {
|
|
adjustedMin = -Infinity;
|
|
} else if (min === 0) {
|
|
adjustedMin = min - adjustment; // Special case for when min is 0
|
|
} else if (min < 0) {
|
|
// For negative min, add 10% of the range to bring closer to zero
|
|
adjustedMin = min - range * 0.1;
|
|
} else {
|
|
// For positive min, subtract 10% from min itself
|
|
adjustedMin = min - min * 0.1;
|
|
}
|
|
|
|
// Handle the case for Infinity
|
|
if (max === Infinity) {
|
|
adjustedMax = Infinity;
|
|
} else {
|
|
adjustedMax = max * 1.1; // Regular case for finite max
|
|
}
|
|
|
|
return { adjustedMin, adjustedMax };
|
|
}
|
|
|
|
function getMinMax(data: any): { minValue: number; maxValue: number } {
|
|
// Exclude the first array
|
|
const arrays = data.slice(1);
|
|
|
|
// Flatten the array and convert all elements to float
|
|
const flattened = arrays.flat().map(Number);
|
|
|
|
// Get min and max, with fallback of 0 for min
|
|
const minValue = flattened.length ? Math.min(...flattened) : 0;
|
|
const maxValue = Math.max(...flattened);
|
|
|
|
const { adjustedMin, adjustedMax } = adjustMinMax(minValue, maxValue);
|
|
|
|
return { minValue: adjustedMin, maxValue: adjustedMax };
|
|
}
|
|
|
|
export const getYAxisScaleForAnomalyDetection = ({
|
|
seriesData,
|
|
selectedSeries,
|
|
initialData,
|
|
}: {
|
|
seriesData: any;
|
|
selectedSeries: string | null;
|
|
initialData: any;
|
|
yAxisUnit?: string;
|
|
}): { auto?: boolean; range?: uPlot.Scale.Range } => {
|
|
if (!selectedSeries && !initialData) {
|
|
return { auto: true };
|
|
}
|
|
|
|
const selectedSeriesData = selectedSeries
|
|
? seriesData[selectedSeries]?.data
|
|
: initialData;
|
|
|
|
const { minValue, maxValue } = getMinMax(selectedSeriesData);
|
|
|
|
return { auto: false, range: [minValue, maxValue] };
|
|
};
|
|
|
|
export type GetYAxisScale = {
|
|
thresholds?: ThresholdProps[];
|
|
series?: QueryDataV3[];
|
|
yAxisUnit?: string;
|
|
softMin: number | null;
|
|
softMax: number | null;
|
|
};
|