signoz/pkg/query-service/rules/base_rule.go

713 lines
20 KiB
Go

package rules
import (
"context"
"fmt"
"math"
"net/url"
"sync"
"time"
"go.signoz.io/signoz/pkg/query-service/converter"
"go.signoz.io/signoz/pkg/query-service/interfaces"
"go.signoz.io/signoz/pkg/query-service/model"
v3 "go.signoz.io/signoz/pkg/query-service/model/v3"
qslabels "go.signoz.io/signoz/pkg/query-service/utils/labels"
"go.uber.org/zap"
)
// BaseRule contains common fields and methods for all rule types
type BaseRule struct {
id string
name string
source string
handledRestart bool
// Type of the rule
typ AlertType
ruleCondition *RuleCondition
// evalWindow is the time window used for evaluating the rule
// i.e each time we lookback from the current time, we look at data for the last
// evalWindow duration
evalWindow time.Duration
// holdDuration is the duration for which the alert waits before firing
holdDuration time.Duration
// evalDelay is the delay in evaluation of the rule
// this is useful in cases where the data is not available immediately
evalDelay time.Duration
// holds the static set of labels and annotations for the rule
// these are the same for all alerts created for this rule
labels qslabels.BaseLabels
annotations qslabels.BaseLabels
// preferredChannels is the list of channels to send the alert to
// if the rule is triggered
preferredChannels []string
mtx sync.Mutex
// the time it took to evaluate the rule (most recent evaluation)
evaluationDuration time.Duration
// the timestamp of the last evaluation
evaluationTimestamp time.Time
health RuleHealth
lastError error
Active map[uint64]*Alert
// lastTimestampWithDatapoints is the timestamp of the last datapoint we observed
// for this rule
// this is used for missing data alerts
lastTimestampWithDatapoints time.Time
reader interfaces.Reader
logger *zap.Logger
// sendUnmatched sends observed metric values
// even if they dont match the rule condition. this is
// useful in testing the rule
sendUnmatched bool
// sendAlways will send alert irresepective of resendDelay
// or other params
sendAlways bool
// TemporalityMap is a map of metric name to temporality
// to avoid fetching temporality for the same metric multiple times
// querying the v4 table on low cardinal temporality column
// should be fast but we can still avoid the query if we have the data in memory
TemporalityMap map[string]map[v3.Temporality]bool
}
type RuleOption func(*BaseRule)
func WithSendAlways() RuleOption {
return func(r *BaseRule) {
r.sendAlways = true
}
}
func WithSendUnmatched() RuleOption {
return func(r *BaseRule) {
r.sendUnmatched = true
}
}
func WithEvalDelay(dur time.Duration) RuleOption {
return func(r *BaseRule) {
r.evalDelay = dur
}
}
func WithLogger(logger *zap.Logger) RuleOption {
return func(r *BaseRule) {
r.logger = logger
}
}
func NewBaseRule(id string, p *PostableRule, reader interfaces.Reader, opts ...RuleOption) (*BaseRule, error) {
if p.RuleCondition == nil || !p.RuleCondition.IsValid() {
return nil, fmt.Errorf("invalid rule condition")
}
baseRule := &BaseRule{
id: id,
name: p.AlertName,
source: p.Source,
typ: p.AlertType,
ruleCondition: p.RuleCondition,
evalWindow: time.Duration(p.EvalWindow),
labels: qslabels.FromMap(p.Labels),
annotations: qslabels.FromMap(p.Annotations),
preferredChannels: p.PreferredChannels,
health: HealthUnknown,
Active: map[uint64]*Alert{},
reader: reader,
TemporalityMap: make(map[string]map[v3.Temporality]bool),
}
if baseRule.evalWindow == 0 {
baseRule.evalWindow = 5 * time.Minute
}
for _, opt := range opts {
opt(baseRule)
}
return baseRule, nil
}
func (r *BaseRule) targetVal() float64 {
if r.ruleCondition == nil || r.ruleCondition.Target == nil {
return 0
}
// get the converter for the target unit
unitConverter := converter.FromUnit(converter.Unit(r.ruleCondition.TargetUnit))
// convert the target value to the y-axis unit
value := unitConverter.Convert(converter.Value{
F: *r.ruleCondition.Target,
U: converter.Unit(r.ruleCondition.TargetUnit),
}, converter.Unit(r.Unit()))
return value.F
}
func (r *BaseRule) matchType() MatchType {
if r.ruleCondition == nil {
return AtleastOnce
}
return r.ruleCondition.MatchType
}
func (r *BaseRule) compareOp() CompareOp {
if r.ruleCondition == nil {
return ValueIsEq
}
return r.ruleCondition.CompareOp
}
func (r *BaseRule) currentAlerts() []*Alert {
r.mtx.Lock()
defer r.mtx.Unlock()
alerts := make([]*Alert, 0, len(r.Active))
for _, a := range r.Active {
anew := *a
alerts = append(alerts, &anew)
}
return alerts
}
func (r *BaseRule) EvalDelay() time.Duration {
return r.evalDelay
}
func (r *BaseRule) EvalWindow() time.Duration {
return r.evalWindow
}
func (r *BaseRule) HoldDuration() time.Duration {
return r.holdDuration
}
func (r *BaseRule) TargetVal() float64 {
return r.targetVal()
}
func (r *ThresholdRule) hostFromSource() string {
parsedUrl, err := url.Parse(r.source)
if err != nil {
return ""
}
if parsedUrl.Port() != "" {
return fmt.Sprintf("%s://%s:%s", parsedUrl.Scheme, parsedUrl.Hostname(), parsedUrl.Port())
}
return fmt.Sprintf("%s://%s", parsedUrl.Scheme, parsedUrl.Hostname())
}
func (r *BaseRule) ID() string { return r.id }
func (r *BaseRule) Name() string { return r.name }
func (r *BaseRule) Condition() *RuleCondition { return r.ruleCondition }
func (r *BaseRule) Labels() qslabels.BaseLabels { return r.labels }
func (r *BaseRule) Annotations() qslabels.BaseLabels { return r.annotations }
func (r *BaseRule) PreferredChannels() []string { return r.preferredChannels }
func (r *BaseRule) GeneratorURL() string {
return prepareRuleGeneratorURL(r.ID(), r.source)
}
func (r *BaseRule) Unit() string {
if r.ruleCondition != nil && r.ruleCondition.CompositeQuery != nil {
return r.ruleCondition.CompositeQuery.Unit
}
return ""
}
func (r *BaseRule) Timestamps(ts time.Time) (time.Time, time.Time) {
start := ts.Add(-time.Duration(r.evalWindow)).UnixMilli()
end := ts.UnixMilli()
if r.evalDelay > 0 {
start = start - int64(r.evalDelay.Milliseconds())
end = end - int64(r.evalDelay.Milliseconds())
}
// round to minute otherwise we could potentially miss data
start = start - (start % (60 * 1000))
end = end - (end % (60 * 1000))
return time.UnixMilli(start), time.UnixMilli(end)
}
func (r *BaseRule) SetLastError(err error) {
r.mtx.Lock()
defer r.mtx.Unlock()
r.lastError = err
}
func (r *BaseRule) LastError() error {
r.mtx.Lock()
defer r.mtx.Unlock()
return r.lastError
}
func (r *BaseRule) SetHealth(health RuleHealth) {
r.mtx.Lock()
defer r.mtx.Unlock()
r.health = health
}
func (r *BaseRule) Health() RuleHealth {
r.mtx.Lock()
defer r.mtx.Unlock()
return r.health
}
func (r *BaseRule) SetEvaluationDuration(dur time.Duration) {
r.mtx.Lock()
defer r.mtx.Unlock()
r.evaluationDuration = dur
}
func (r *BaseRule) GetEvaluationDuration() time.Duration {
r.mtx.Lock()
defer r.mtx.Unlock()
return r.evaluationDuration
}
func (r *BaseRule) SetEvaluationTimestamp(ts time.Time) {
r.mtx.Lock()
defer r.mtx.Unlock()
r.evaluationTimestamp = ts
}
func (r *BaseRule) GetEvaluationTimestamp() time.Time {
r.mtx.Lock()
defer r.mtx.Unlock()
return r.evaluationTimestamp
}
func (r *BaseRule) State() model.AlertState {
maxState := model.StateInactive
for _, a := range r.Active {
if a.State > maxState {
maxState = a.State
}
}
return maxState
}
func (r *BaseRule) ActiveAlerts() []*Alert {
var res []*Alert
for _, a := range r.currentAlerts() {
if a.ResolvedAt.IsZero() {
res = append(res, a)
}
}
return res
}
func (r *BaseRule) SendAlerts(ctx context.Context, ts time.Time, resendDelay time.Duration, interval time.Duration, notifyFunc NotifyFunc) {
alerts := []*Alert{}
r.ForEachActiveAlert(func(alert *Alert) {
if alert.needsSending(ts, resendDelay) {
alert.LastSentAt = ts
delta := resendDelay
if interval > resendDelay {
delta = interval
}
alert.ValidUntil = ts.Add(4 * delta)
anew := *alert
alerts = append(alerts, &anew)
}
})
notifyFunc(ctx, "", alerts...)
}
func (r *BaseRule) ForEachActiveAlert(f func(*Alert)) {
r.mtx.Lock()
defer r.mtx.Unlock()
for _, a := range r.Active {
f(a)
}
}
func (r *BaseRule) ShouldAlert(series v3.Series) (Sample, bool) {
var alertSmpl Sample
var shouldAlert bool
var lbls qslabels.Labels
for name, value := range series.Labels {
lbls = append(lbls, qslabels.Label{Name: name, Value: value})
}
series.Points = removeGroupinSetPoints(series)
// nothing to evaluate
if len(series.Points) == 0 {
return alertSmpl, false
}
if r.ruleCondition.RequireMinPoints {
if len(series.Points) < r.ruleCondition.RequiredNumPoints {
zap.L().Info("not enough data points to evaluate series, skipping", zap.String("ruleid", r.ID()), zap.Int("numPoints", len(series.Points)), zap.Int("requiredPoints", r.ruleCondition.RequiredNumPoints))
return alertSmpl, false
}
}
switch r.matchType() {
case AtleastOnce:
// If any sample matches the condition, the rule is firing.
if r.compareOp() == ValueIsAbove {
for _, smpl := range series.Points {
if smpl.Value > r.targetVal() {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
break
}
}
} else if r.compareOp() == ValueIsBelow {
for _, smpl := range series.Points {
if smpl.Value < r.targetVal() {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
break
}
}
} else if r.compareOp() == ValueIsEq {
for _, smpl := range series.Points {
if smpl.Value == r.targetVal() {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
break
}
}
} else if r.compareOp() == ValueIsNotEq {
for _, smpl := range series.Points {
if smpl.Value != r.targetVal() {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
break
}
}
} else if r.compareOp() == ValueOutsideBounds {
for _, smpl := range series.Points {
if math.Abs(smpl.Value) >= r.targetVal() {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = true
break
}
}
}
case AllTheTimes:
// If all samples match the condition, the rule is firing.
shouldAlert = true
alertSmpl = Sample{Point: Point{V: r.targetVal()}, Metric: lbls}
if r.compareOp() == ValueIsAbove {
for _, smpl := range series.Points {
if smpl.Value <= r.targetVal() {
shouldAlert = false
break
}
}
// use min value from the series
if shouldAlert {
var minValue float64 = math.Inf(1)
for _, smpl := range series.Points {
if smpl.Value < minValue {
minValue = smpl.Value
}
}
alertSmpl = Sample{Point: Point{V: minValue}, Metric: lbls}
}
} else if r.compareOp() == ValueIsBelow {
for _, smpl := range series.Points {
if smpl.Value >= r.targetVal() {
shouldAlert = false
break
}
}
if shouldAlert {
var maxValue float64 = math.Inf(-1)
for _, smpl := range series.Points {
if smpl.Value > maxValue {
maxValue = smpl.Value
}
}
alertSmpl = Sample{Point: Point{V: maxValue}, Metric: lbls}
}
} else if r.compareOp() == ValueIsEq {
for _, smpl := range series.Points {
if smpl.Value != r.targetVal() {
shouldAlert = false
break
}
}
} else if r.compareOp() == ValueIsNotEq {
for _, smpl := range series.Points {
if smpl.Value == r.targetVal() {
shouldAlert = false
break
}
}
// use any non-inf or nan value from the series
if shouldAlert {
for _, smpl := range series.Points {
if !math.IsInf(smpl.Value, 0) && !math.IsNaN(smpl.Value) {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
break
}
}
}
} else if r.compareOp() == ValueOutsideBounds {
for _, smpl := range series.Points {
if math.Abs(smpl.Value) < r.targetVal() {
alertSmpl = Sample{Point: Point{V: smpl.Value}, Metric: lbls}
shouldAlert = false
break
}
}
}
case OnAverage:
// If the average of all samples matches the condition, the rule is firing.
var sum, count float64
for _, smpl := range series.Points {
if math.IsNaN(smpl.Value) || math.IsInf(smpl.Value, 0) {
continue
}
sum += smpl.Value
count++
}
avg := sum / count
alertSmpl = Sample{Point: Point{V: avg}, Metric: lbls}
if r.compareOp() == ValueIsAbove {
if avg > r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueIsBelow {
if avg < r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueIsEq {
if avg == r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueIsNotEq {
if avg != r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueOutsideBounds {
if math.Abs(avg) >= r.targetVal() {
shouldAlert = true
}
}
case InTotal:
// If the sum of all samples matches the condition, the rule is firing.
var sum float64
for _, smpl := range series.Points {
if math.IsNaN(smpl.Value) || math.IsInf(smpl.Value, 0) {
continue
}
sum += smpl.Value
}
alertSmpl = Sample{Point: Point{V: sum}, Metric: lbls}
if r.compareOp() == ValueIsAbove {
if sum > r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueIsBelow {
if sum < r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueIsEq {
if sum == r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueIsNotEq {
if sum != r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueOutsideBounds {
if math.Abs(sum) >= r.targetVal() {
shouldAlert = true
}
}
case Last:
// If the last sample matches the condition, the rule is firing.
shouldAlert = false
alertSmpl = Sample{Point: Point{V: series.Points[len(series.Points)-1].Value}, Metric: lbls}
if r.compareOp() == ValueIsAbove {
if series.Points[len(series.Points)-1].Value > r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueIsBelow {
if series.Points[len(series.Points)-1].Value < r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueIsEq {
if series.Points[len(series.Points)-1].Value == r.targetVal() {
shouldAlert = true
}
} else if r.compareOp() == ValueIsNotEq {
if series.Points[len(series.Points)-1].Value != r.targetVal() {
shouldAlert = true
}
}
}
return alertSmpl, shouldAlert
}
func (r *BaseRule) RecordRuleStateHistory(ctx context.Context, prevState, currentState model.AlertState, itemsToAdd []model.RuleStateHistory) error {
zap.L().Debug("recording rule state history", zap.String("ruleid", r.ID()), zap.Any("prevState", prevState), zap.Any("currentState", currentState), zap.Any("itemsToAdd", itemsToAdd))
revisedItemsToAdd := map[uint64]model.RuleStateHistory{}
lastSavedState, err := r.reader.GetLastSavedRuleStateHistory(ctx, r.ID())
if err != nil {
return err
}
// if the query-service has been restarted, or the rule has been modified (which re-initializes the rule),
// the state would reset so we need to add the corresponding state changes to previously saved states
if !r.handledRestart && len(lastSavedState) > 0 {
zap.L().Debug("handling restart", zap.String("ruleid", r.ID()), zap.Any("lastSavedState", lastSavedState))
l := map[uint64]model.RuleStateHistory{}
for _, item := range itemsToAdd {
l[item.Fingerprint] = item
}
shouldSkip := map[uint64]bool{}
for _, item := range lastSavedState {
// for the last saved item with fingerprint, check if there is a corresponding entry in the current state
currentState, ok := l[item.Fingerprint]
if !ok {
// there was a state change in the past, but not in the current state
// if the state was firing, then we should add a resolved state change
if item.State == model.StateFiring || item.State == model.StateNoData {
item.State = model.StateInactive
item.StateChanged = true
item.UnixMilli = time.Now().UnixMilli()
revisedItemsToAdd[item.Fingerprint] = item
}
// there is nothing to do if the prev state was normal
} else {
if item.State != currentState.State {
item.State = currentState.State
item.StateChanged = true
item.UnixMilli = time.Now().UnixMilli()
revisedItemsToAdd[item.Fingerprint] = item
}
}
// do not add this item to revisedItemsToAdd as it is already processed
shouldSkip[item.Fingerprint] = true
}
zap.L().Debug("after lastSavedState loop", zap.String("ruleid", r.ID()), zap.Any("revisedItemsToAdd", revisedItemsToAdd))
// if there are any new state changes that were not saved, add them to the revised items
for _, item := range itemsToAdd {
if _, ok := revisedItemsToAdd[item.Fingerprint]; !ok && !shouldSkip[item.Fingerprint] {
revisedItemsToAdd[item.Fingerprint] = item
}
}
zap.L().Debug("after itemsToAdd loop", zap.String("ruleid", r.ID()), zap.Any("revisedItemsToAdd", revisedItemsToAdd))
newState := model.StateInactive
for _, item := range revisedItemsToAdd {
if item.State == model.StateFiring || item.State == model.StateNoData {
newState = model.StateFiring
break
}
}
zap.L().Debug("newState", zap.String("ruleid", r.ID()), zap.Any("newState", newState))
// if there is a change in the overall state, update the overall state
if lastSavedState[0].OverallState != newState {
for fingerprint, item := range revisedItemsToAdd {
item.OverallState = newState
item.OverallStateChanged = true
revisedItemsToAdd[fingerprint] = item
}
}
zap.L().Debug("revisedItemsToAdd after newState", zap.String("ruleid", r.ID()), zap.Any("revisedItemsToAdd", revisedItemsToAdd))
} else {
for _, item := range itemsToAdd {
revisedItemsToAdd[item.Fingerprint] = item
}
}
if len(revisedItemsToAdd) > 0 && r.reader != nil {
zap.L().Debug("writing rule state history", zap.String("ruleid", r.ID()), zap.Any("revisedItemsToAdd", revisedItemsToAdd))
entries := make([]model.RuleStateHistory, 0, len(revisedItemsToAdd))
for _, item := range revisedItemsToAdd {
entries = append(entries, item)
}
err := r.reader.AddRuleStateHistory(ctx, entries)
if err != nil {
zap.L().Error("error while inserting rule state history", zap.Error(err), zap.Any("itemsToAdd", itemsToAdd))
}
}
r.handledRestart = true
return nil
}
func (r *BaseRule) PopulateTemporality(ctx context.Context, qp *v3.QueryRangeParamsV3) error {
missingTemporality := make([]string, 0)
metricNameToTemporality := make(map[string]map[v3.Temporality]bool)
if qp.CompositeQuery != nil && len(qp.CompositeQuery.BuilderQueries) > 0 {
for _, query := range qp.CompositeQuery.BuilderQueries {
// if there is no temporality specified in the query but we have it in the map
// then use the value from the map
if query.Temporality == "" && r.TemporalityMap[query.AggregateAttribute.Key] != nil {
// We prefer delta if it is available
if r.TemporalityMap[query.AggregateAttribute.Key][v3.Delta] {
query.Temporality = v3.Delta
} else if r.TemporalityMap[query.AggregateAttribute.Key][v3.Cumulative] {
query.Temporality = v3.Cumulative
} else {
query.Temporality = v3.Unspecified
}
}
// we don't have temporality for this metric
if query.DataSource == v3.DataSourceMetrics && query.Temporality == "" {
missingTemporality = append(missingTemporality, query.AggregateAttribute.Key)
}
if _, ok := metricNameToTemporality[query.AggregateAttribute.Key]; !ok {
metricNameToTemporality[query.AggregateAttribute.Key] = make(map[v3.Temporality]bool)
}
}
}
var nameToTemporality map[string]map[v3.Temporality]bool
var err error
if len(missingTemporality) > 0 {
nameToTemporality, err = r.reader.FetchTemporality(ctx, missingTemporality)
if err != nil {
return err
}
}
if qp.CompositeQuery != nil && len(qp.CompositeQuery.BuilderQueries) > 0 {
for name := range qp.CompositeQuery.BuilderQueries {
query := qp.CompositeQuery.BuilderQueries[name]
if query.DataSource == v3.DataSourceMetrics && query.Temporality == "" {
if nameToTemporality[query.AggregateAttribute.Key][v3.Delta] {
query.Temporality = v3.Delta
} else if nameToTemporality[query.AggregateAttribute.Key][v3.Cumulative] {
query.Temporality = v3.Cumulative
} else {
query.Temporality = v3.Unspecified
}
r.TemporalityMap[query.AggregateAttribute.Key] = nameToTemporality[query.AggregateAttribute.Key]
}
}
}
return nil
}