diff --git a/examples/skinning/HandmadeMath.h b/examples/skinning/HandmadeMath.h new file mode 100644 index 0000000..b0c6f5c --- /dev/null +++ b/examples/skinning/HandmadeMath.h @@ -0,0 +1,2507 @@ +/* + HandmadeMath.h v1.7.0 + + This is a single header file with a bunch of useful functions for game and + graphics math operations. + + ============================================================================= + + You MUST + + #define HANDMADE_MATH_IMPLEMENTATION + + in EXACTLY one C or C++ file that includes this header, BEFORE the + include, like this: + + #define HANDMADE_MATH_IMPLEMENTATION + #include "HandmadeMath.h" + + All other files should just #include "HandmadeMath.h" without the #define. + + ============================================================================= + + To disable SSE intrinsics, you MUST + + #define HANDMADE_MATH_NO_SSE + + in EXACTLY one C or C++ file that includes this header, BEFORE the + include, like this: + + #define HANDMADE_MATH_IMPLEMENTATION + #define HANDMADE_MATH_NO_SSE + #include "HandmadeMath.h" + + ============================================================================= + + To use HandmadeMath without the CRT, you MUST + + #define HMM_SINF MySinF + #define HMM_COSF MyCosF + #define HMM_TANF MyTanF + #define HMM_SQRTF MySqrtF + #define HMM_EXPF MyExpF + #define HMM_LOGF MyLogF + #define HMM_ACOSF MyACosF + #define HMM_ATANF MyATanF + #define HMM_ATAN2F MYATan2F + + Provide your own implementations of SinF, CosF, TanF, ACosF, ATanF, ATan2F, + ExpF, and LogF in EXACTLY one C or C++ file that includes this header, + BEFORE the include, like this: + + #define HMM_SINF MySinF + #define HMM_COSF MyCosF + #define HMM_TANF MyTanF + #define HMM_SQRTF MySqrtF + #define HMM_EXPF MyExpF + #define HMM_LOGF MyLogF + #define HMM_ACOSF MyACosF + #define HMM_ATANF MyATanF + #define HMM_ATAN2F MyATan2F + #define HANDMADE_MATH_IMPLEMENTATION + #include "HandmadeMath.h" + + If you do not define all of these, HandmadeMath.h will use the + versions of these functions that are provided by the CRT. + + ============================================================================= + + Version History: + 0.2 (*) Updated documentation + (*) Better C compliance + (*) Prefix all handmade math functions + (*) Better operator overloading + 0.2a + (*) Prefixed Macros + 0.2b + (*) Disabled warning 4201 on MSVC as it is legal is C11 + (*) Removed the f at the end of HMM_PI to get 64bit precision + 0.3 + (*) Added +=, -=, *=, /= for hmm_vec2, hmm_vec3, hmm_vec4 + 0.4 + (*) SSE Optimized HMM_SqrtF + (*) SSE Optimized HMM_RSqrtF + (*) Removed CRT + 0.5 + (*) Added scalar multiplication and division for vectors + and matrices + (*) Added matrix subtraction and += for hmm_mat4 + (*) Reconciled all headers and implementations + (*) Tidied up, and filled in a few missing operators + 0.5.1 + (*) Ensured column-major order for matrices throughout + (*) Fixed HMM_Translate producing row-major matrices + 0.5.2 + (*) Fixed SSE code in HMM_SqrtF + (*) Fixed SSE code in HMM_RSqrtF + 0.6 + (*) Added Unit testing + (*) Made HMM_Power faster + (*) Fixed possible efficiency problem with HMM_Normalize + (*) RENAMED HMM_LengthSquareRoot to HMM_LengthSquared + (*) RENAMED HMM_RSqrtF to HMM_RSquareRootF + (*) RENAMED HMM_SqrtF to HMM_SquareRootF + (*) REMOVED Inner function (user should use Dot now) + (*) REMOVED HMM_FastInverseSquareRoot function declaration + 0.7 + (*) REMOVED HMM_LengthSquared in HANDMADE_MATH_IMPLEMENTATION (should + use HMM_LengthSquaredVec3, or HANDMADE_MATH_CPP_MODE for function + overloaded version) + (*) REMOVED HMM_Length in HANDMADE_MATH_IMPLEMENTATION (should use + HMM_LengthVec3, HANDMADE_MATH_CPP_MODE for function + overloaded version) + (*) REMOVED HMM_Normalize in HANDMADE_MATH_IMPLEMENTATION (should use + HMM_NormalizeVec3, or HANDMADE_MATH_CPP_MODE for function + overloaded version) + (*) Added HMM_LengthSquaredVec2 + (*) Added HMM_LengthSquaredVec4 + (*) Addd HMM_LengthVec2 + (*) Added HMM_LengthVec4 + (*) Added HMM_NormalizeVec2 + (*) Added HMM_NormalizeVec4 + 1.0 + (*) Lots of testing! + 1.1 + (*) Quaternion support + (*) Added type hmm_quaternion + (*) Added HMM_Quaternion + (*) Added HMM_QuaternionV4 + (*) Added HMM_AddQuaternion + (*) Added HMM_SubtractQuaternion + (*) Added HMM_MultiplyQuaternion + (*) Added HMM_MultiplyQuaternionF + (*) Added HMM_DivideQuaternionF + (*) Added HMM_InverseQuaternion + (*) Added HMM_DotQuaternion + (*) Added HMM_NormalizeQuaternion + (*) Added HMM_Slerp + (*) Added HMM_QuaternionToMat4 + (*) Added HMM_QuaternionFromAxisAngle + 1.1.1 + (*) Resolved compiler warnings on gcc and g++ + 1.1.2 + (*) Fixed invalid HMMDEF's in the function definitions + 1.1.3 + (*) Fixed compile error in C mode + 1.1.4 + (*) Fixed SSE being included on platforms that don't support it + (*) Fixed divide-by-zero errors when normalizing zero vectors. + 1.1.5 + (*) Add Width and Height to HMM_Vec2 + (*) Made it so you can supply your own SqrtF + 1.2.0 + (*) Added equality functions for HMM_Vec2, HMM_Vec3, and HMM_Vec4. + (*) Added HMM_EqualsVec2, HMM_EqualsVec3, and HMM_EqualsVec4 + (*) Added C++ overloaded HMM_Equals for all three + (*) Added C++ == and != operators for all three + (*) SSE'd HMM_MultiplyMat4 (this is _WAY_ faster) + (*) SSE'd HMM_Transpose + 1.3.0 + (*) Remove need to #define HANDMADE_MATH_CPP_MODE + 1.4.0 + (*) Fixed bug when using HandmadeMath in C mode + (*) SSEd all vec4 operations + (*) Removed all zero-ing + 1.5.0 + (*) Changed internal structure for better performance and inlining. + (*) As a result, HANDMADE_MATH_NO_INLINE has been removed and no + longer has any effect. + 1.5.1 + (*) Fixed a bug with uninitialized elements in HMM_LookAt. + 1.6.0 + (*) Added array subscript operators for vector and matrix types in + C++. This is provided as a convenience, but be aware that it may + incur an extra function call in unoptimized builds. + 1.7.0 + (*) Renamed the 'Rows' member of hmm_mat4 to 'Columns'. Since our + matrices are column-major, this should have been named 'Columns' + from the start. 'Rows' is still present, but has been deprecated. + + + LICENSE + + This software is in the public domain. Where that dedication is not + recognized, you are granted a perpetual, irrevocable license to copy, + distribute, and modify this file as you see fit. + + CREDITS + + Written by Zakary Strange (zak@strangedev.net && @strangezak) + + Functionality: + Matt Mascarenhas (@miblo_) + Aleph + FieryDrake (@fierydrake) + Gingerbill (@TheGingerBill) + Ben Visness (@bvisness) + Trinton Bullard (@Peliex_Dev) + + Fixes: + Jeroen van Rijn (@J_vanRijn) + Kiljacken (@Kiljacken) + Insofaras (@insofaras) + Daniel Gibson (@DanielGibson) +*/ + + +/* let's figure out if SSE is really available (unless disabled anyway) + (it isn't on non-x86/x86_64 platforms or even x86 without explicit SSE support) + => only use "#ifdef HANDMADE_MATH__USE_SSE" to check for SSE support below this block! */ +#ifndef HANDMADE_MATH_NO_SSE + +# ifdef _MSC_VER + /* MSVC supports SSE in amd64 mode or _M_IX86_FP >= 1 (2 means SSE2) */ +# if defined(_M_AMD64) || ( defined(_M_IX86_FP) && _M_IX86_FP >= 1 ) +# define HANDMADE_MATH__USE_SSE 1 +# endif +# else /* not MSVC, probably GCC, clang, icc or something that doesn't support SSE anyway */ +# ifdef __SSE__ /* they #define __SSE__ if it's supported */ +# define HANDMADE_MATH__USE_SSE 1 +# endif /* __SSE__ */ +# endif /* not _MSC_VER */ + +#endif /* #ifndef HANDMADE_MATH_NO_SSE */ + +#include // This is for types + +#ifdef HANDMADE_MATH__USE_SSE +#include +#endif + +#ifndef HANDMADE_MATH_H +#define HANDMADE_MATH_H + +#ifdef _MSC_VER +#pragma warning(disable:4201) +#endif + +#ifdef __clang__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wgnu-anonymous-struct" +#endif + +#ifdef __cplusplus +extern "C" +{ +#endif + +#define HMM_INLINE static inline +#define HMM_EXTERN extern + +#if !defined(HMM_SINF) || !defined(HMM_COSF) || !defined(HMM_TANF) || \ + !defined(HMM_SQRTF) || !defined(HMM_EXPF) || !defined(HMM_LOGF) || \ + !defined(HMM_ACOSF) || !defined(HMM_ATANF)|| !defined(HMM_ATAN2F) +#include +#endif + +#ifndef HMM_SINF +#define HMM_SINF sinf +#endif + +#ifndef HMM_COSF +#define HMM_COSF cosf +#endif + +#ifndef HMM_TANF +#define HMM_TANF tanf +#endif + +#ifndef HMM_SQRTF +#define HMM_SQRTF sqrtf +#endif + +#ifndef HMM_EXPF +#define HMM_EXPF expf +#endif + +#ifndef HMM_LOGF +#define HMM_LOGF logf +#endif + +#ifndef HMM_ACOSF +#define HMM_ACOSF acosf +#endif + +#ifndef HMM_ATANF +#define HMM_ATANF atanf +#endif + +#ifndef HMM_ATAN2F +#define HMM_ATAN2F atan2f +#endif + +#define HMM_PI32 3.14159265359f +#define HMM_PI 3.14159265358979323846 + +#define HMM_MIN(a, b) (a) > (b) ? (b) : (a) +#define HMM_MAX(a, b) (a) < (b) ? (b) : (a) +#define HMM_ABS(a) ((a) > 0 ? (a) : -(a)) +#define HMM_MOD(a, m) ((a) % (m)) >= 0 ? ((a) % (m)) : (((a) % (m)) + (m)) +#define HMM_SQUARE(x) ((x) * (x)) + +typedef union hmm_vec2 +{ + struct + { + float X, Y; + }; + + struct + { + float U, V; + }; + + struct + { + float Left, Right; + }; + + struct + { + float Width, Height; + }; + + float Elements[2]; + +#ifdef __cplusplus + inline float &operator[](int Index) + { + return Elements[Index]; + } +#endif +} hmm_vec2; + +typedef union hmm_vec3 +{ + struct + { + float X, Y, Z; + }; + + struct + { + float U, V, W; + }; + + struct + { + float R, G, B; + }; + + struct + { + hmm_vec2 XY; + float Ignored0_; + }; + + struct + { + float Ignored1_; + hmm_vec2 YZ; + }; + + struct + { + hmm_vec2 UV; + float Ignored2_; + }; + + struct + { + float Ignored3_; + hmm_vec2 VW; + }; + + float Elements[3]; + +#ifdef __cplusplus + inline float &operator[](int Index) + { + return Elements[Index]; + } +#endif +} hmm_vec3; + +typedef union hmm_vec4 +{ + struct + { + union + { + hmm_vec3 XYZ; + struct + { + float X, Y, Z; + }; + }; + + float W; + }; + struct + { + union + { + hmm_vec3 RGB; + struct + { + float R, G, B; + }; + }; + + float A; + }; + + struct + { + hmm_vec2 XY; + float Ignored0_; + float Ignored1_; + }; + + struct + { + float Ignored2_; + hmm_vec2 YZ; + float Ignored3_; + }; + + struct + { + float Ignored4_; + float Ignored5_; + hmm_vec2 ZW; + }; + + float Elements[4]; + +#ifdef HANDMADE_MATH__USE_SSE + __m128 InternalElementsSSE; +#endif + +#ifdef __cplusplus + inline float &operator[](int Index) + { + return Elements[Index]; + } +#endif +} hmm_vec4; + +typedef union hmm_mat4 +{ + float Elements[4][4]; + +#ifdef HANDMADE_MATH__USE_SSE + __m128 Columns[4]; + + // DEPRECATED. Our matrices are column-major, so this was named + // incorrectly. Use Columns instead. + __m128 Rows[4]; +#endif + +#ifdef __cplusplus + inline hmm_vec4 operator[](const int Index) + { + float* col = Elements[Index]; + + hmm_vec4 result; + result.Elements[0] = col[0]; + result.Elements[1] = col[1]; + result.Elements[2] = col[2]; + result.Elements[3] = col[3]; + + return result; + } +#endif +} hmm_mat4; + +typedef union hmm_quaternion +{ + struct + { + union + { + hmm_vec3 XYZ; + struct + { + float X, Y, Z; + }; + }; + + float W; + }; + + float Elements[4]; +} hmm_quaternion; + +typedef int32_t hmm_bool; + +typedef hmm_vec2 hmm_v2; +typedef hmm_vec3 hmm_v3; +typedef hmm_vec4 hmm_v4; +typedef hmm_mat4 hmm_m4; + + +/* + * Floating-point math functions + */ + +HMM_INLINE float HMM_SinF(float Radians) +{ + float Result = HMM_SINF(Radians); + + return (Result); +} + +HMM_INLINE float HMM_CosF(float Radians) +{ + float Result = HMM_COSF(Radians); + + return (Result); +} + +HMM_INLINE float HMM_TanF(float Radians) +{ + float Result = HMM_TANF(Radians); + + return (Result); +} + +HMM_INLINE float HMM_ACosF(float Radians) +{ + float Result = HMM_ACOSF(Radians); + + return (Result); +} + +HMM_INLINE float HMM_ATanF(float Radians) +{ + float Result = HMM_ATANF(Radians); + + return (Result); +} + +HMM_INLINE float HMM_ATan2F(float Left, float Right) +{ + float Result = HMM_ATAN2F(Left, Right); + + return (Result); +} + +HMM_INLINE float HMM_ExpF(float Float) +{ + float Result = HMM_EXPF(Float); + + return (Result); +} + +HMM_INLINE float HMM_LogF(float Float) +{ + float Result = HMM_LOGF(Float); + + return (Result); +} + +HMM_INLINE float HMM_SquareRootF(float Float) +{ + float Result; + +#ifdef HANDMADE_MATH__USE_SSE + __m128 In = _mm_set_ss(Float); + __m128 Out = _mm_sqrt_ss(In); + Result = _mm_cvtss_f32(Out); +#else + Result = HMM_SQRTF(Float); +#endif + + return(Result); +} + +HMM_INLINE float HMM_RSquareRootF(float Float) +{ + float Result; + +#ifdef HANDMADE_MATH__USE_SSE + __m128 In = _mm_set_ss(Float); + __m128 Out = _mm_rsqrt_ss(In); + Result = _mm_cvtss_f32(Out); +#else + Result = 1.0f/HMM_SquareRootF(Float); +#endif + + return(Result); +} + +HMM_EXTERN float HMM_Power(float Base, int Exponent); + +HMM_INLINE float HMM_PowerF(float Base, float Exponent) +{ + float Result = HMM_EXPF(Exponent * HMM_LOGF(Base)); + + return (Result); +} + + +/* + * Utility functions + */ +HMM_INLINE float HMM_ToRadians(float Degrees) +{ + float Result = Degrees * (HMM_PI32 / 180.0f); + + return (Result); +} + +HMM_INLINE float HMM_Lerp(float A, float Time, float B) +{ + float Result = (1.0f - Time) * A + Time * B; + + return (Result); +} + +HMM_INLINE float HMM_Clamp(float Min, float Value, float Max) +{ + float Result = Value; + + if(Result < Min) + { + Result = Min; + } + else if(Result > Max) + { + Result = Max; + } + + return (Result); +} + + +/* + * Vector initialization + */ + +HMM_INLINE hmm_vec2 HMM_Vec2(float X, float Y) +{ + hmm_vec2 Result; + + Result.X = X; + Result.Y = Y; + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_Vec2i(int X, int Y) +{ + hmm_vec2 Result; + + Result.X = (float)X; + Result.Y = (float)Y; + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Vec3(float X, float Y, float Z) +{ + hmm_vec3 Result; + + Result.X = X; + Result.Y = Y; + Result.Z = Z; + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Vec3i(int X, int Y, int Z) +{ + hmm_vec3 Result; + + Result.X = (float)X; + Result.Y = (float)Y; + Result.Z = (float)Z; + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Vec4(float X, float Y, float Z, float W) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + Result.InternalElementsSSE = _mm_setr_ps(X, Y, Z, W); +#else + Result.X = X; + Result.Y = Y; + Result.Z = Z; + Result.W = W; +#endif + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Vec4i(int X, int Y, int Z, int W) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + Result.InternalElementsSSE = _mm_setr_ps((float)X, (float)Y, (float)Z, (float)W); +#else + Result.X = (float)X; + Result.Y = (float)Y; + Result.Z = (float)Z; + Result.W = (float)W; +#endif + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Vec4v(hmm_vec3 Vector, float W) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + Result.InternalElementsSSE = _mm_setr_ps(Vector.X, Vector.Y, Vector.Z, W); +#else + Result.XYZ = Vector; + Result.W = W; +#endif + + return (Result); +} + + +/* + * Binary vector operations + */ + +HMM_INLINE hmm_vec2 HMM_AddVec2(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result; + + Result.X = Left.X + Right.X; + Result.Y = Left.Y + Right.Y; + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_AddVec3(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result; + + Result.X = Left.X + Right.X; + Result.Y = Left.Y + Right.Y; + Result.Z = Left.Z + Right.Z; + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_AddVec4(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + Result.InternalElementsSSE = _mm_add_ps(Left.InternalElementsSSE, Right.InternalElementsSSE); +#else + Result.X = Left.X + Right.X; + Result.Y = Left.Y + Right.Y; + Result.Z = Left.Z + Right.Z; + Result.W = Left.W + Right.W; +#endif + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_SubtractVec2(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result; + + Result.X = Left.X - Right.X; + Result.Y = Left.Y - Right.Y; + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_SubtractVec3(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result; + + Result.X = Left.X - Right.X; + Result.Y = Left.Y - Right.Y; + Result.Z = Left.Z - Right.Z; + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_SubtractVec4(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + Result.InternalElementsSSE = _mm_sub_ps(Left.InternalElementsSSE, Right.InternalElementsSSE); +#else + Result.X = Left.X - Right.X; + Result.Y = Left.Y - Right.Y; + Result.Z = Left.Z - Right.Z; + Result.W = Left.W - Right.W; +#endif + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_MultiplyVec2(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result; + + Result.X = Left.X * Right.X; + Result.Y = Left.Y * Right.Y; + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_MultiplyVec2f(hmm_vec2 Left, float Right) +{ + hmm_vec2 Result; + + Result.X = Left.X * Right; + Result.Y = Left.Y * Right; + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_MultiplyVec3(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result; + + Result.X = Left.X * Right.X; + Result.Y = Left.Y * Right.Y; + Result.Z = Left.Z * Right.Z; + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_MultiplyVec3f(hmm_vec3 Left, float Right) +{ + hmm_vec3 Result; + + Result.X = Left.X * Right; + Result.Y = Left.Y * Right; + Result.Z = Left.Z * Right; + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_MultiplyVec4(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + Result.InternalElementsSSE = _mm_mul_ps(Left.InternalElementsSSE, Right.InternalElementsSSE); +#else + Result.X = Left.X * Right.X; + Result.Y = Left.Y * Right.Y; + Result.Z = Left.Z * Right.Z; + Result.W = Left.W * Right.W; +#endif + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_MultiplyVec4f(hmm_vec4 Left, float Right) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + __m128 Scalar = _mm_set1_ps(Right); + Result.InternalElementsSSE = _mm_mul_ps(Left.InternalElementsSSE, Scalar); +#else + Result.X = Left.X * Right; + Result.Y = Left.Y * Right; + Result.Z = Left.Z * Right; + Result.W = Left.W * Right; +#endif + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_DivideVec2(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result; + + Result.X = Left.X / Right.X; + Result.Y = Left.Y / Right.Y; + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_DivideVec2f(hmm_vec2 Left, float Right) +{ + hmm_vec2 Result; + + Result.X = Left.X / Right; + Result.Y = Left.Y / Right; + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_DivideVec3(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result; + + Result.X = Left.X / Right.X; + Result.Y = Left.Y / Right.Y; + Result.Z = Left.Z / Right.Z; + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_DivideVec3f(hmm_vec3 Left, float Right) +{ + hmm_vec3 Result; + + Result.X = Left.X / Right; + Result.Y = Left.Y / Right; + Result.Z = Left.Z / Right; + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_DivideVec4(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + Result.InternalElementsSSE = _mm_div_ps(Left.InternalElementsSSE, Right.InternalElementsSSE); +#else + Result.X = Left.X / Right.X; + Result.Y = Left.Y / Right.Y; + Result.Z = Left.Z / Right.Z; + Result.W = Left.W / Right.W; +#endif + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_DivideVec4f(hmm_vec4 Left, float Right) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + __m128 Scalar = _mm_set1_ps(Right); + Result.InternalElementsSSE = _mm_div_ps(Left.InternalElementsSSE, Scalar); +#else + Result.X = Left.X / Right; + Result.Y = Left.Y / Right; + Result.Z = Left.Z / Right; + Result.W = Left.W / Right; +#endif + + return (Result); +} + +HMM_INLINE hmm_bool HMM_EqualsVec2(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_bool Result = (Left.X == Right.X && Left.Y == Right.Y); + + return (Result); +} + +HMM_INLINE hmm_bool HMM_EqualsVec3(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_bool Result = (Left.X == Right.X && Left.Y == Right.Y && Left.Z == Right.Z); + + return (Result); +} + +HMM_INLINE hmm_bool HMM_EqualsVec4(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_bool Result = (Left.X == Right.X && Left.Y == Right.Y && Left.Z == Right.Z && Left.W == Right.W); + + return (Result); +} + +HMM_INLINE float HMM_DotVec2(hmm_vec2 VecOne, hmm_vec2 VecTwo) +{ + float Result = (VecOne.X * VecTwo.X) + (VecOne.Y * VecTwo.Y); + + return (Result); +} + +HMM_INLINE float HMM_DotVec3(hmm_vec3 VecOne, hmm_vec3 VecTwo) +{ + float Result = (VecOne.X * VecTwo.X) + (VecOne.Y * VecTwo.Y) + (VecOne.Z * VecTwo.Z); + + return (Result); +} + +HMM_INLINE float HMM_DotVec4(hmm_vec4 VecOne, hmm_vec4 VecTwo) +{ + float Result; + + // NOTE(zak): IN the future if we wanna check what version SSE is support + // we can use _mm_dp_ps (4.3) but for now we will use the old way. + // Or a r = _mm_mul_ps(v1, v2), r = _mm_hadd_ps(r, r), r = _mm_hadd_ps(r, r) for SSE3 +#ifdef HANDMADE_MATH__USE_SSE + __m128 SSEResultOne = _mm_mul_ps(VecOne.InternalElementsSSE, VecTwo.InternalElementsSSE); + __m128 SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(2, 3, 0, 1)); + SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo); + SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(0, 1, 2, 3)); + SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo); + _mm_store_ss(&Result, SSEResultOne); +#else + Result = (VecOne.X * VecTwo.X) + (VecOne.Y * VecTwo.Y) + (VecOne.Z * VecTwo.Z) + (VecOne.W * VecTwo.W); +#endif + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Cross(hmm_vec3 VecOne, hmm_vec3 VecTwo) +{ + hmm_vec3 Result; + + Result.X = (VecOne.Y * VecTwo.Z) - (VecOne.Z * VecTwo.Y); + Result.Y = (VecOne.Z * VecTwo.X) - (VecOne.X * VecTwo.Z); + Result.Z = (VecOne.X * VecTwo.Y) - (VecOne.Y * VecTwo.X); + + return (Result); +} + + +/* + * Unary vector operations + */ + +HMM_INLINE float HMM_LengthSquaredVec2(hmm_vec2 A) +{ + float Result = HMM_DotVec2(A, A); + + return(Result); +} + +HMM_INLINE float HMM_LengthSquaredVec3(hmm_vec3 A) +{ + float Result = HMM_DotVec3(A, A); + + return (Result); +} + +HMM_INLINE float HMM_LengthSquaredVec4(hmm_vec4 A) +{ + float Result = HMM_DotVec4(A, A); + + return (Result); +} + +HMM_INLINE float HMM_LengthVec2(hmm_vec2 A) +{ + float Result = HMM_SquareRootF(HMM_LengthSquaredVec2(A)); + + return (Result); +} + +HMM_INLINE float HMM_LengthVec3(hmm_vec3 A) +{ + float Result = HMM_SquareRootF(HMM_LengthSquaredVec3(A)); + + return (Result); +} + +HMM_INLINE float HMM_LengthVec4(hmm_vec4 A) +{ + float Result = HMM_SquareRootF(HMM_LengthSquaredVec4(A)); + + return(Result); +} + +HMM_INLINE hmm_vec2 HMM_NormalizeVec2(hmm_vec2 A) +{ + hmm_vec2 Result = {0}; + + float VectorLength = HMM_LengthVec2(A); + + /* NOTE(kiljacken): We need a zero check to not divide-by-zero */ + if (VectorLength != 0.0f) + { + Result.X = A.X * (1.0f / VectorLength); + Result.Y = A.Y * (1.0f / VectorLength); + } + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_NormalizeVec3(hmm_vec3 A) +{ + hmm_vec3 Result = {0}; + + float VectorLength = HMM_LengthVec3(A); + + /* NOTE(kiljacken): We need a zero check to not divide-by-zero */ + if (VectorLength != 0.0f) + { + Result.X = A.X * (1.0f / VectorLength); + Result.Y = A.Y * (1.0f / VectorLength); + Result.Z = A.Z * (1.0f / VectorLength); + } + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_NormalizeVec4(hmm_vec4 A) +{ + hmm_vec4 Result = {0}; + + float VectorLength = HMM_LengthVec4(A); + + /* NOTE(kiljacken): We need a zero check to not divide-by-zero */ + if (VectorLength != 0.0f) + { + float Multiplier = 1.0f / VectorLength; + +#ifdef HANDMADE_MATH__USE_SSE + __m128 SSEMultiplier = _mm_set1_ps(Multiplier); + Result.InternalElementsSSE = _mm_mul_ps(A.InternalElementsSSE, SSEMultiplier); +#else + Result.X = A.X * Multiplier; + Result.Y = A.Y * Multiplier; + Result.Z = A.Z * Multiplier; + Result.W = A.W * Multiplier; +#endif + } + + return (Result); +} + + +/* + * SSE stuff + */ + +#ifdef HANDMADE_MATH__USE_SSE +HMM_INLINE __m128 HMM_LinearCombineSSE(__m128 Left, hmm_mat4 Right) +{ + __m128 Result; + Result = _mm_mul_ps(_mm_shuffle_ps(Left, Left, 0x00), Right.Columns[0]); + Result = _mm_add_ps(Result, _mm_mul_ps(_mm_shuffle_ps(Left, Left, 0x55), Right.Columns[1])); + Result = _mm_add_ps(Result, _mm_mul_ps(_mm_shuffle_ps(Left, Left, 0xaa), Right.Columns[2])); + Result = _mm_add_ps(Result, _mm_mul_ps(_mm_shuffle_ps(Left, Left, 0xff), Right.Columns[3])); + + return (Result); +} +#endif + + +/* + * Matrix functions + */ + +HMM_INLINE hmm_mat4 HMM_Mat4(void) +{ + hmm_mat4 Result = {0}; + + return (Result); +} + +HMM_INLINE hmm_mat4 HMM_Mat4d(float Diagonal) +{ + hmm_mat4 Result = HMM_Mat4(); + + Result.Elements[0][0] = Diagonal; + Result.Elements[1][1] = Diagonal; + Result.Elements[2][2] = Diagonal; + Result.Elements[3][3] = Diagonal; + + return (Result); +} + +#ifdef HANDMADE_MATH__USE_SSE +HMM_INLINE hmm_mat4 HMM_Transpose(hmm_mat4 Matrix) +{ + hmm_mat4 Result = Matrix; + + _MM_TRANSPOSE4_PS(Result.Columns[0], Result.Columns[1], Result.Columns[2], Result.Columns[3]); + + return (Result); +} +#else +HMM_EXTERN hmm_mat4 HMM_Transpose(hmm_mat4 Matrix); +#endif + +#ifdef HANDMADE_MATH__USE_SSE +HMM_INLINE hmm_mat4 HMM_AddMat4(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result; + + Result.Columns[0] = _mm_add_ps(Left.Columns[0], Right.Columns[0]); + Result.Columns[1] = _mm_add_ps(Left.Columns[1], Right.Columns[1]); + Result.Columns[2] = _mm_add_ps(Left.Columns[2], Right.Columns[2]); + Result.Columns[3] = _mm_add_ps(Left.Columns[3], Right.Columns[3]); + + return (Result); +} +#else +HMM_EXTERN hmm_mat4 HMM_AddMat4(hmm_mat4 Left, hmm_mat4 Right); +#endif + +#ifdef HANDMADE_MATH__USE_SSE +HMM_INLINE hmm_mat4 HMM_SubtractMat4(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result; + + Result.Columns[0] = _mm_sub_ps(Left.Columns[0], Right.Columns[0]); + Result.Columns[1] = _mm_sub_ps(Left.Columns[1], Right.Columns[1]); + Result.Columns[2] = _mm_sub_ps(Left.Columns[2], Right.Columns[2]); + Result.Columns[3] = _mm_sub_ps(Left.Columns[3], Right.Columns[3]); + + return (Result); +} +#else +HMM_EXTERN hmm_mat4 HMM_SubtractMat4(hmm_mat4 Left, hmm_mat4 Right); +#endif + +HMM_EXTERN hmm_mat4 HMM_MultiplyMat4(hmm_mat4 Left, hmm_mat4 Right); + +#ifdef HANDMADE_MATH__USE_SSE +HMM_INLINE hmm_mat4 HMM_MultiplyMat4f(hmm_mat4 Matrix, float Scalar) +{ + hmm_mat4 Result; + + __m128 SSEScalar = _mm_set1_ps(Scalar); + Result.Columns[0] = _mm_mul_ps(Matrix.Columns[0], SSEScalar); + Result.Columns[1] = _mm_mul_ps(Matrix.Columns[1], SSEScalar); + Result.Columns[2] = _mm_mul_ps(Matrix.Columns[2], SSEScalar); + Result.Columns[3] = _mm_mul_ps(Matrix.Columns[3], SSEScalar); + + return (Result); +} +#else +HMM_EXTERN hmm_mat4 HMM_MultiplyMat4f(hmm_mat4 Matrix, float Scalar); +#endif + +HMM_EXTERN hmm_vec4 HMM_MultiplyMat4ByVec4(hmm_mat4 Matrix, hmm_vec4 Vector); + +#ifdef HANDMADE_MATH__USE_SSE +HMM_INLINE hmm_mat4 HMM_DivideMat4f(hmm_mat4 Matrix, float Scalar) +{ + hmm_mat4 Result; + + __m128 SSEScalar = _mm_set1_ps(Scalar); + Result.Columns[0] = _mm_div_ps(Matrix.Columns[0], SSEScalar); + Result.Columns[1] = _mm_div_ps(Matrix.Columns[1], SSEScalar); + Result.Columns[2] = _mm_div_ps(Matrix.Columns[2], SSEScalar); + Result.Columns[3] = _mm_div_ps(Matrix.Columns[3], SSEScalar); + + return (Result); +} +#else +HMM_EXTERN hmm_mat4 HMM_DivideMat4f(hmm_mat4 Matrix, float Scalar); +#endif + + +/* + * Common graphics transformations + */ + +HMM_INLINE hmm_mat4 HMM_Orthographic(float Left, float Right, float Bottom, float Top, float Near, float Far) +{ + hmm_mat4 Result = HMM_Mat4(); + + Result.Elements[0][0] = 2.0f / (Right - Left); + Result.Elements[1][1] = 2.0f / (Top - Bottom); + Result.Elements[2][2] = 2.0f / (Near - Far); + Result.Elements[3][3] = 1.0f; + + Result.Elements[3][0] = (Left + Right) / (Left - Right); + Result.Elements[3][1] = (Bottom + Top) / (Bottom - Top); + Result.Elements[3][2] = (Far + Near) / (Near - Far); + + return (Result); +} + +HMM_INLINE hmm_mat4 HMM_Perspective(float FOV, float AspectRatio, float Near, float Far) +{ + hmm_mat4 Result = HMM_Mat4(); + + float TanThetaOver2 = HMM_TanF(FOV * (HMM_PI32 / 360.0f)); + + Result.Elements[0][0] = 1.0f / TanThetaOver2; + Result.Elements[1][1] = AspectRatio / TanThetaOver2; + Result.Elements[2][3] = -1.0f; + Result.Elements[2][2] = (Near + Far) / (Near - Far); + Result.Elements[3][2] = (2.0f * Near * Far) / (Near - Far); + Result.Elements[3][3] = 0.0f; + + return (Result); +} + +HMM_INLINE hmm_mat4 HMM_Translate(hmm_vec3 Translation) +{ + hmm_mat4 Result = HMM_Mat4d(1.0f); + + Result.Elements[3][0] = Translation.X; + Result.Elements[3][1] = Translation.Y; + Result.Elements[3][2] = Translation.Z; + + return (Result); +} + +HMM_EXTERN hmm_mat4 HMM_Rotate(float Angle, hmm_vec3 Axis); + +HMM_INLINE hmm_mat4 HMM_Scale(hmm_vec3 Scale) +{ + hmm_mat4 Result = HMM_Mat4d(1.0f); + + Result.Elements[0][0] = Scale.X; + Result.Elements[1][1] = Scale.Y; + Result.Elements[2][2] = Scale.Z; + + return (Result); +} + +HMM_EXTERN hmm_mat4 HMM_LookAt(hmm_vec3 Eye, hmm_vec3 Center, hmm_vec3 Up); + + +/* + * Quaternion operations + */ + +HMM_INLINE hmm_quaternion HMM_Quaternion(float X, float Y, float Z, float W) +{ + hmm_quaternion Result; + + Result.X = X; + Result.Y = Y; + Result.Z = Z; + Result.W = W; + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_QuaternionV4(hmm_vec4 Vector) +{ + hmm_quaternion Result; + + Result.X = Vector.X; + Result.Y = Vector.Y; + Result.Z = Vector.Z; + Result.W = Vector.W; + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_AddQuaternion(hmm_quaternion Left, hmm_quaternion Right) +{ + hmm_quaternion Result; + + Result.X = Left.X + Right.X; + Result.Y = Left.Y + Right.Y; + Result.Z = Left.Z + Right.Z; + Result.W = Left.W + Right.W; + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_SubtractQuaternion(hmm_quaternion Left, hmm_quaternion Right) +{ + hmm_quaternion Result; + + Result.X = Left.X - Right.X; + Result.Y = Left.Y - Right.Y; + Result.Z = Left.Z - Right.Z; + Result.W = Left.W - Right.W; + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_MultiplyQuaternion(hmm_quaternion Left, hmm_quaternion Right) +{ + hmm_quaternion Result; + + Result.X = (Left.X * Right.W) + (Left.Y * Right.Z) - (Left.Z * Right.Y) + (Left.W * Right.X); + Result.Y = (-Left.X * Right.Z) + (Left.Y * Right.W) + (Left.Z * Right.X) + (Left.W * Right.Y); + Result.Z = (Left.X * Right.Y) - (Left.Y * Right.X) + (Left.Z * Right.W) + (Left.W * Right.Z); + Result.W = (-Left.X * Right.X) - (Left.Y * Right.Y) - (Left.Z * Right.Z) + (Left.W * Right.W); + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_MultiplyQuaternionF(hmm_quaternion Left, float Multiplicative) +{ + hmm_quaternion Result; + + Result.X = Left.X * Multiplicative; + Result.Y = Left.Y * Multiplicative; + Result.Z = Left.Z * Multiplicative; + Result.W = Left.W * Multiplicative; + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_DivideQuaternionF(hmm_quaternion Left, float Dividend) +{ + hmm_quaternion Result; + + Result.X = Left.X / Dividend; + Result.Y = Left.Y / Dividend; + Result.Z = Left.Z / Dividend; + Result.W = Left.W / Dividend; + + return (Result); +} + +HMM_EXTERN hmm_quaternion HMM_InverseQuaternion(hmm_quaternion Left); + +HMM_INLINE float HMM_DotQuaternion(hmm_quaternion Left, hmm_quaternion Right) +{ + float Result = (Left.X * Right.X) + (Left.Y * Right.Y) + (Left.Z * Right.Z) + (Left.W * Right.W); + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_NormalizeQuaternion(hmm_quaternion Left) +{ + hmm_quaternion Result; + + float Length = HMM_SquareRootF(HMM_DotQuaternion(Left, Left)); + Result = HMM_DivideQuaternionF(Left, Length); + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_NLerp(hmm_quaternion Left, float Time, hmm_quaternion Right) +{ + hmm_quaternion Result; + + Result.X = HMM_Lerp(Left.X, Time, Right.X); + Result.Y = HMM_Lerp(Left.Y, Time, Right.Y); + Result.Z = HMM_Lerp(Left.Z, Time, Right.Z); + Result.W = HMM_Lerp(Left.W, Time, Right.W); + + Result = HMM_NormalizeQuaternion(Result); + + return (Result); +} + +HMM_EXTERN hmm_quaternion HMM_Slerp(hmm_quaternion Left, float Time, hmm_quaternion Right); +HMM_EXTERN hmm_mat4 HMM_QuaternionToMat4(hmm_quaternion Left); +HMM_EXTERN hmm_quaternion HMM_QuaternionFromAxisAngle(hmm_vec3 Axis, float AngleOfRotation); + +#ifdef __cplusplus +} +#endif + +#ifdef __cplusplus + +HMM_INLINE float HMM_Length(hmm_vec2 A) +{ + float Result = HMM_LengthVec2(A); + + return (Result); +} + +HMM_INLINE float HMM_Length(hmm_vec3 A) +{ + float Result = HMM_LengthVec3(A); + + return (Result); +} + +HMM_INLINE float HMM_Length(hmm_vec4 A) +{ + float Result = HMM_LengthVec4(A); + + return (Result); +} + +HMM_INLINE float HMM_LengthSquared(hmm_vec2 A) +{ + float Result = HMM_LengthSquaredVec2(A); + + return (Result); +} + +HMM_INLINE float HMM_LengthSquared(hmm_vec3 A) +{ + float Result = HMM_LengthSquaredVec3(A); + + return (Result); +} + +HMM_INLINE float HMM_LengthSquared(hmm_vec4 A) +{ + float Result = HMM_LengthSquaredVec4(A); + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_Normalize(hmm_vec2 A) +{ + hmm_vec2 Result = HMM_NormalizeVec2(A); + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Normalize(hmm_vec3 A) +{ + hmm_vec3 Result = HMM_NormalizeVec3(A); + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Normalize(hmm_vec4 A) +{ + hmm_vec4 Result = HMM_NormalizeVec4(A); + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_Normalize(hmm_quaternion A) +{ + hmm_quaternion Result = HMM_NormalizeQuaternion(A); + + return (Result); +} + +HMM_INLINE float HMM_Dot(hmm_vec2 VecOne, hmm_vec2 VecTwo) +{ + float Result = HMM_DotVec2(VecOne, VecTwo); + + return (Result); +} + +HMM_INLINE float HMM_Dot(hmm_vec3 VecOne, hmm_vec3 VecTwo) +{ + float Result = HMM_DotVec3(VecOne, VecTwo); + + return (Result); +} + +HMM_INLINE float HMM_Dot(hmm_vec4 VecOne, hmm_vec4 VecTwo) +{ + float Result = HMM_DotVec4(VecOne, VecTwo); + + return (Result); +} + +HMM_INLINE float HMM_Dot(hmm_quaternion QuatOne, hmm_quaternion QuatTwo) +{ + float Result = HMM_DotQuaternion(QuatOne, QuatTwo); + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_Add(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result = HMM_AddVec2(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Add(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result = HMM_AddVec3(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Add(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result = HMM_AddVec4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 HMM_Add(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result = HMM_AddMat4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_Add(hmm_quaternion Left, hmm_quaternion Right) +{ + hmm_quaternion Result = HMM_AddQuaternion(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_Subtract(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result = HMM_SubtractVec2(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Subtract(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result = HMM_SubtractVec3(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Subtract(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result = HMM_SubtractVec4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 HMM_Subtract(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result = HMM_SubtractMat4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_Subtract(hmm_quaternion Left, hmm_quaternion Right) +{ + hmm_quaternion Result = HMM_SubtractQuaternion(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_Multiply(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result = HMM_MultiplyVec2(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_Multiply(hmm_vec2 Left, float Right) +{ + hmm_vec2 Result = HMM_MultiplyVec2f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Multiply(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result = HMM_MultiplyVec3(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Multiply(hmm_vec3 Left, float Right) +{ + hmm_vec3 Result = HMM_MultiplyVec3f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Multiply(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result = HMM_MultiplyVec4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Multiply(hmm_vec4 Left, float Right) +{ + hmm_vec4 Result = HMM_MultiplyVec4f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 HMM_Multiply(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result = HMM_MultiplyMat4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 HMM_Multiply(hmm_mat4 Left, float Right) +{ + hmm_mat4 Result = HMM_MultiplyMat4f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Multiply(hmm_mat4 Matrix, hmm_vec4 Vector) +{ + hmm_vec4 Result = HMM_MultiplyMat4ByVec4(Matrix, Vector); + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_Multiply(hmm_quaternion Left, hmm_quaternion Right) +{ + hmm_quaternion Result = HMM_MultiplyQuaternion(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_Multiply(hmm_quaternion Left, float Right) +{ + hmm_quaternion Result = HMM_MultiplyQuaternionF(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_Divide(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result = HMM_DivideVec2(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 HMM_Divide(hmm_vec2 Left, float Right) +{ + hmm_vec2 Result = HMM_DivideVec2f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Divide(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result = HMM_DivideVec3(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 HMM_Divide(hmm_vec3 Left, float Right) +{ + hmm_vec3 Result = HMM_DivideVec3f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Divide(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result = HMM_DivideVec4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 HMM_Divide(hmm_vec4 Left, float Right) +{ + hmm_vec4 Result = HMM_DivideVec4f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 HMM_Divide(hmm_mat4 Left, float Right) +{ + hmm_mat4 Result = HMM_DivideMat4f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_quaternion HMM_Divide(hmm_quaternion Left, float Right) +{ + hmm_quaternion Result = HMM_DivideQuaternionF(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_bool HMM_Equals(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_bool Result = HMM_EqualsVec2(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_bool HMM_Equals(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_bool Result = HMM_EqualsVec3(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_bool HMM_Equals(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_bool Result = HMM_EqualsVec4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 operator+(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result = HMM_AddVec2(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 operator+(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result = HMM_AddVec3(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 operator+(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result = HMM_AddVec4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 operator+(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result = HMM_AddMat4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_quaternion operator+(hmm_quaternion Left, hmm_quaternion Right) +{ + hmm_quaternion Result = HMM_AddQuaternion(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 operator-(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result = HMM_SubtractVec2(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 operator-(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result = HMM_SubtractVec3(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 operator-(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result = HMM_SubtractVec4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 operator-(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result = HMM_SubtractMat4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_quaternion operator-(hmm_quaternion Left, hmm_quaternion Right) +{ + hmm_quaternion Result = HMM_SubtractQuaternion(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 operator*(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result = HMM_MultiplyVec2(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 operator*(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result = HMM_MultiplyVec3(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 operator*(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result = HMM_MultiplyVec4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 operator*(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result = HMM_MultiplyMat4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_quaternion operator*(hmm_quaternion Left, hmm_quaternion Right) +{ + hmm_quaternion Result = HMM_MultiplyQuaternion(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 operator*(hmm_vec2 Left, float Right) +{ + hmm_vec2 Result = HMM_MultiplyVec2f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 operator*(hmm_vec3 Left, float Right) +{ + hmm_vec3 Result = HMM_MultiplyVec3f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 operator*(hmm_vec4 Left, float Right) +{ + hmm_vec4 Result = HMM_MultiplyVec4f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 operator*(hmm_mat4 Left, float Right) +{ + hmm_mat4 Result = HMM_MultiplyMat4f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_quaternion operator*(hmm_quaternion Left, float Right) +{ + hmm_quaternion Result = HMM_MultiplyQuaternionF(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 operator*(float Left, hmm_vec2 Right) +{ + hmm_vec2 Result = HMM_MultiplyVec2f(Right, Left); + + return (Result); +} + +HMM_INLINE hmm_vec3 operator*(float Left, hmm_vec3 Right) +{ + hmm_vec3 Result = HMM_MultiplyVec3f(Right, Left); + + return (Result); +} + +HMM_INLINE hmm_vec4 operator*(float Left, hmm_vec4 Right) +{ + hmm_vec4 Result = HMM_MultiplyVec4f(Right, Left); + + return (Result); +} + +HMM_INLINE hmm_mat4 operator*(float Left, hmm_mat4 Right) +{ + hmm_mat4 Result = HMM_MultiplyMat4f(Right, Left); + + return (Result); +} + +HMM_INLINE hmm_quaternion operator*(float Left, hmm_quaternion Right) +{ + hmm_quaternion Result = HMM_MultiplyQuaternionF(Right, Left); + + return (Result); +} + +HMM_INLINE hmm_vec4 operator*(hmm_mat4 Matrix, hmm_vec4 Vector) +{ + hmm_vec4 Result = HMM_MultiplyMat4ByVec4(Matrix, Vector); + + return (Result); +} + +HMM_INLINE hmm_vec2 operator/(hmm_vec2 Left, hmm_vec2 Right) +{ + hmm_vec2 Result = HMM_DivideVec2(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 operator/(hmm_vec3 Left, hmm_vec3 Right) +{ + hmm_vec3 Result = HMM_DivideVec3(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 operator/(hmm_vec4 Left, hmm_vec4 Right) +{ + hmm_vec4 Result = HMM_DivideVec4(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 operator/(hmm_vec2 Left, float Right) +{ + hmm_vec2 Result = HMM_DivideVec2f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec3 operator/(hmm_vec3 Left, float Right) +{ + hmm_vec3 Result = HMM_DivideVec3f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec4 operator/(hmm_vec4 Left, float Right) +{ + hmm_vec4 Result = HMM_DivideVec4f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_mat4 operator/(hmm_mat4 Left, float Right) +{ + hmm_mat4 Result = HMM_DivideMat4f(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_quaternion operator/(hmm_quaternion Left, float Right) +{ + hmm_quaternion Result = HMM_DivideQuaternionF(Left, Right); + + return (Result); +} + +HMM_INLINE hmm_vec2 &operator+=(hmm_vec2 &Left, hmm_vec2 Right) +{ + return (Left = Left + Right); +} + +HMM_INLINE hmm_vec3 &operator+=(hmm_vec3 &Left, hmm_vec3 Right) +{ + return (Left = Left + Right); +} + +HMM_INLINE hmm_vec4 &operator+=(hmm_vec4 &Left, hmm_vec4 Right) +{ + return (Left = Left + Right); +} + +HMM_INLINE hmm_mat4 &operator+=(hmm_mat4 &Left, hmm_mat4 Right) +{ + return (Left = Left + Right); +} + +HMM_INLINE hmm_quaternion &operator+=(hmm_quaternion &Left, hmm_quaternion Right) +{ + return (Left = Left + Right); +} + +HMM_INLINE hmm_vec2 &operator-=(hmm_vec2 &Left, hmm_vec2 Right) +{ + return (Left = Left - Right); +} + +HMM_INLINE hmm_vec3 &operator-=(hmm_vec3 &Left, hmm_vec3 Right) +{ + return (Left = Left - Right); +} + +HMM_INLINE hmm_vec4 &operator-=(hmm_vec4 &Left, hmm_vec4 Right) +{ + return (Left = Left - Right); +} + +HMM_INLINE hmm_mat4 &operator-=(hmm_mat4 &Left, hmm_mat4 Right) +{ + return (Left = Left - Right); +} + +HMM_INLINE hmm_quaternion &operator-=(hmm_quaternion &Left, hmm_quaternion Right) +{ + return (Left = Left - Right); +} + +HMM_INLINE hmm_vec2 &operator*=(hmm_vec2 &Left, hmm_vec2 Right) +{ + return (Left = Left * Right); +} + +HMM_INLINE hmm_vec3 &operator*=(hmm_vec3 &Left, hmm_vec3 Right) +{ + return (Left = Left * Right); +} + +HMM_INLINE hmm_vec4 &operator*=(hmm_vec4 &Left, hmm_vec4 Right) +{ + return (Left = Left * Right); +} + +HMM_INLINE hmm_vec2 &operator*=(hmm_vec2 &Left, float Right) +{ + return (Left = Left * Right); +} + +HMM_INLINE hmm_vec3 &operator*=(hmm_vec3 &Left, float Right) +{ + return (Left = Left * Right); +} + +HMM_INLINE hmm_vec4 &operator*=(hmm_vec4 &Left, float Right) +{ + return (Left = Left * Right); +} + +HMM_INLINE hmm_mat4 &operator*=(hmm_mat4 &Left, float Right) +{ + return (Left = Left * Right); +} + +HMM_INLINE hmm_quaternion &operator*=(hmm_quaternion &Left, float Right) +{ + return (Left = Left * Right); +} + +HMM_INLINE hmm_vec2 &operator/=(hmm_vec2 &Left, hmm_vec2 Right) +{ + return (Left = Left / Right); +} + +HMM_INLINE hmm_vec3 &operator/=(hmm_vec3 &Left, hmm_vec3 Right) +{ + return (Left = Left / Right); +} + +HMM_INLINE hmm_vec4 &operator/=(hmm_vec4 &Left, hmm_vec4 Right) +{ + return (Left = Left / Right); +} + +HMM_INLINE hmm_vec2 &operator/=(hmm_vec2 &Left, float Right) +{ + return (Left = Left / Right); +} + +HMM_INLINE hmm_vec3 &operator/=(hmm_vec3 &Left, float Right) +{ + return (Left = Left / Right); +} + +HMM_INLINE hmm_vec4 &operator/=(hmm_vec4 &Left, float Right) +{ + return (Left = Left / Right); +} + +HMM_INLINE hmm_mat4 &operator/=(hmm_mat4 &Left, float Right) +{ + return (Left = Left / Right); +} + +HMM_INLINE hmm_quaternion &operator/=(hmm_quaternion &Left, float Right) +{ + return (Left = Left / Right); +} + +HMM_INLINE hmm_bool operator==(hmm_vec2 Left, hmm_vec2 Right) +{ + return HMM_EqualsVec2(Left, Right); +} + +HMM_INLINE hmm_bool operator==(hmm_vec3 Left, hmm_vec3 Right) +{ + return HMM_EqualsVec3(Left, Right); +} + +HMM_INLINE hmm_bool operator==(hmm_vec4 Left, hmm_vec4 Right) +{ + return HMM_EqualsVec4(Left, Right); +} + +HMM_INLINE hmm_bool operator!=(hmm_vec2 Left, hmm_vec2 Right) +{ + return !HMM_EqualsVec2(Left, Right); +} + +HMM_INLINE hmm_bool operator!=(hmm_vec3 Left, hmm_vec3 Right) +{ + return !HMM_EqualsVec3(Left, Right); +} + +HMM_INLINE hmm_bool operator!=(hmm_vec4 Left, hmm_vec4 Right) +{ + return !HMM_EqualsVec4(Left, Right); +} + +#endif /* __cplusplus */ + +#ifdef __clang__ +#pragma GCC diagnostic pop +#endif + +#endif /* HANDMADE_MATH_H */ + +#ifdef HANDMADE_MATH_IMPLEMENTATION + +float HMM_Power(float Base, int Exponent) +{ + float Result = 1.0f; + float Mul = Exponent < 0 ? 1.f / Base : Base; + unsigned int X = Exponent < 0 ? -Exponent : Exponent; + while (X) + { + if (X & 1) + { + Result *= Mul; + } + + Mul *= Mul; + X >>= 1; + } + + return (Result); +} + +#ifndef HANDMADE_MATH__USE_SSE +hmm_mat4 HMM_Transpose(hmm_mat4 Matrix) +{ + hmm_mat4 Result; + + int Columns; + for(Columns = 0; Columns < 4; ++Columns) + { + int Rows; + for(Rows = 0; Rows < 4; ++Rows) + { + Result.Elements[Rows][Columns] = Matrix.Elements[Columns][Rows]; + } + } + + return (Result); +} +#endif + +#ifndef HANDMADE_MATH__USE_SSE +hmm_mat4 HMM_AddMat4(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result; + + int Columns; + for(Columns = 0; Columns < 4; ++Columns) + { + int Rows; + for(Rows = 0; Rows < 4; ++Rows) + { + Result.Elements[Columns][Rows] = Left.Elements[Columns][Rows] + Right.Elements[Columns][Rows]; + } + } + + return (Result); +} +#endif + +#ifndef HANDMADE_MATH__USE_SSE +hmm_mat4 HMM_SubtractMat4(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result; + + int Columns; + for(Columns = 0; Columns < 4; ++Columns) + { + int Rows; + for(Rows = 0; Rows < 4; ++Rows) + { + Result.Elements[Columns][Rows] = Left.Elements[Columns][Rows] - Right.Elements[Columns][Rows]; + } + } + + return (Result); +} +#endif + +hmm_mat4 HMM_MultiplyMat4(hmm_mat4 Left, hmm_mat4 Right) +{ + hmm_mat4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + + Result.Columns[0] = HMM_LinearCombineSSE(Right.Columns[0], Left); + Result.Columns[1] = HMM_LinearCombineSSE(Right.Columns[1], Left); + Result.Columns[2] = HMM_LinearCombineSSE(Right.Columns[2], Left); + Result.Columns[3] = HMM_LinearCombineSSE(Right.Columns[3], Left); + +#else + int Columns; + for(Columns = 0; Columns < 4; ++Columns) + { + int Rows; + for(Rows = 0; Rows < 4; ++Rows) + { + float Sum = 0; + int CurrentMatrice; + for(CurrentMatrice = 0; CurrentMatrice < 4; ++CurrentMatrice) + { + Sum += Left.Elements[CurrentMatrice][Rows] * Right.Elements[Columns][CurrentMatrice]; + } + + Result.Elements[Columns][Rows] = Sum; + } + } +#endif + + return (Result); +} + +#ifndef HANDMADE_MATH__USE_SSE +hmm_mat4 HMM_MultiplyMat4f(hmm_mat4 Matrix, float Scalar) +{ + hmm_mat4 Result; + + int Columns; + for(Columns = 0; Columns < 4; ++Columns) + { + int Rows; + for(Rows = 0; Rows < 4; ++Rows) + { + Result.Elements[Columns][Rows] = Matrix.Elements[Columns][Rows] * Scalar; + } + } + + return (Result); +} +#endif + +hmm_vec4 HMM_MultiplyMat4ByVec4(hmm_mat4 Matrix, hmm_vec4 Vector) +{ + hmm_vec4 Result; + +#ifdef HANDMADE_MATH__USE_SSE + Result.InternalElementsSSE = HMM_LinearCombineSSE(Vector.InternalElementsSSE, Matrix); +#else + int Columns, Rows; + for(Rows = 0; Rows < 4; ++Rows) + { + float Sum = 0; + for(Columns = 0; Columns < 4; ++Columns) + { + Sum += Matrix.Elements[Columns][Rows] * Vector.Elements[Columns]; + } + + Result.Elements[Rows] = Sum; + } +#endif + + return (Result); +} + +#ifndef HANDMADE_MATH__USE_SSE +hmm_mat4 HMM_DivideMat4f(hmm_mat4 Matrix, float Scalar) +{ + hmm_mat4 Result; + + int Columns; + for(Columns = 0; Columns < 4; ++Columns) + { + int Rows; + for(Rows = 0; Rows < 4; ++Rows) + { + Result.Elements[Columns][Rows] = Matrix.Elements[Columns][Rows] / Scalar; + } + } + + return (Result); +} +#endif + +hmm_mat4 HMM_Rotate(float Angle, hmm_vec3 Axis) +{ + hmm_mat4 Result = HMM_Mat4d(1.0f); + + Axis = HMM_NormalizeVec3(Axis); + + float SinTheta = HMM_SinF(HMM_ToRadians(Angle)); + float CosTheta = HMM_CosF(HMM_ToRadians(Angle)); + float CosValue = 1.0f - CosTheta; + + Result.Elements[0][0] = (Axis.X * Axis.X * CosValue) + CosTheta; + Result.Elements[0][1] = (Axis.X * Axis.Y * CosValue) + (Axis.Z * SinTheta); + Result.Elements[0][2] = (Axis.X * Axis.Z * CosValue) - (Axis.Y * SinTheta); + + Result.Elements[1][0] = (Axis.Y * Axis.X * CosValue) - (Axis.Z * SinTheta); + Result.Elements[1][1] = (Axis.Y * Axis.Y * CosValue) + CosTheta; + Result.Elements[1][2] = (Axis.Y * Axis.Z * CosValue) + (Axis.X * SinTheta); + + Result.Elements[2][0] = (Axis.Z * Axis.X * CosValue) + (Axis.Y * SinTheta); + Result.Elements[2][1] = (Axis.Z * Axis.Y * CosValue) - (Axis.X * SinTheta); + Result.Elements[2][2] = (Axis.Z * Axis.Z * CosValue) + CosTheta; + + return (Result); +} + +hmm_mat4 HMM_LookAt(hmm_vec3 Eye, hmm_vec3 Center, hmm_vec3 Up) +{ + hmm_mat4 Result; + + hmm_vec3 F = HMM_NormalizeVec3(HMM_SubtractVec3(Center, Eye)); + hmm_vec3 S = HMM_NormalizeVec3(HMM_Cross(F, Up)); + hmm_vec3 U = HMM_Cross(S, F); + + Result.Elements[0][0] = S.X; + Result.Elements[0][1] = U.X; + Result.Elements[0][2] = -F.X; + Result.Elements[0][3] = 0.0f; + + Result.Elements[1][0] = S.Y; + Result.Elements[1][1] = U.Y; + Result.Elements[1][2] = -F.Y; + Result.Elements[1][3] = 0.0f; + + Result.Elements[2][0] = S.Z; + Result.Elements[2][1] = U.Z; + Result.Elements[2][2] = -F.Z; + Result.Elements[2][3] = 0.0f; + + Result.Elements[3][0] = -HMM_DotVec3(S, Eye); + Result.Elements[3][1] = -HMM_DotVec3(U, Eye); + Result.Elements[3][2] = HMM_DotVec3(F, Eye); + Result.Elements[3][3] = 1.0f; + + return (Result); +} + +hmm_quaternion HMM_InverseQuaternion(hmm_quaternion Left) +{ + hmm_quaternion Conjugate; + hmm_quaternion Result; + float Norm = 0; + float NormSquared = 0; + + Conjugate.X = -Left.X; + Conjugate.Y = -Left.Y; + Conjugate.Z = -Left.Z; + Conjugate.W = Left.W; + + Norm = HMM_SquareRootF(HMM_DotQuaternion(Left, Left)); + NormSquared = Norm * Norm; + + Result.X = Conjugate.X / NormSquared; + Result.Y = Conjugate.Y / NormSquared; + Result.Z = Conjugate.Z / NormSquared; + Result.W = Conjugate.W / NormSquared; + + return (Result); +} + +hmm_quaternion HMM_Slerp(hmm_quaternion Left, float Time, hmm_quaternion Right) +{ + hmm_quaternion Result; + hmm_quaternion QuaternionLeft; + hmm_quaternion QuaternionRight; + + float Cos_Theta = HMM_DotQuaternion(Left, Right); + float Angle = HMM_ACosF(Cos_Theta); + + float S1 = HMM_SinF((1.0f - Time) * Angle); + float S2 = HMM_SinF(Time * Angle); + float Is = 1.0f / HMM_SinF(Angle); + + QuaternionLeft = HMM_MultiplyQuaternionF(Left, S1); + QuaternionRight = HMM_MultiplyQuaternionF(Right, S2); + + Result = HMM_AddQuaternion(QuaternionLeft, QuaternionRight); + Result = HMM_MultiplyQuaternionF(Result, Is); + + return (Result); +} + +hmm_mat4 HMM_QuaternionToMat4(hmm_quaternion Left) +{ + hmm_mat4 Result; + Result = HMM_Mat4d(1); + + hmm_quaternion NormalizedQuaternion = HMM_NormalizeQuaternion(Left); + + float XX, YY, ZZ, + XY, XZ, YZ, + WX, WY, WZ; + + XX = NormalizedQuaternion.X * NormalizedQuaternion.X; + YY = NormalizedQuaternion.Y * NormalizedQuaternion.Y; + ZZ = NormalizedQuaternion.Z * NormalizedQuaternion.Z; + XY = NormalizedQuaternion.X * NormalizedQuaternion.Y; + XZ = NormalizedQuaternion.X * NormalizedQuaternion.Z; + YZ = NormalizedQuaternion.Y * NormalizedQuaternion.Z; + WX = NormalizedQuaternion.W * NormalizedQuaternion.X; + WY = NormalizedQuaternion.W * NormalizedQuaternion.Y; + WZ = NormalizedQuaternion.W * NormalizedQuaternion.Z; + + Result.Elements[0][0] = 1.0f - 2.0f * (YY + ZZ); + Result.Elements[0][1] = 2.0f * (XY + WZ); + Result.Elements[0][2] = 2.0f * (XZ - WY); + + Result.Elements[1][0] = 2.0f * (XY - WZ); + Result.Elements[1][1] = 1.0f - 2.0f * (XX + ZZ); + Result.Elements[1][2] = 2.0f * (YZ + WX); + + Result.Elements[2][0] = 2.0f * (XZ + WY); + Result.Elements[2][1] = 2.0f * (YZ - WX); + Result.Elements[2][2] = 1.0f - 2.0f * (XX + YY); + + return (Result); +} + +hmm_quaternion HMM_QuaternionFromAxisAngle(hmm_vec3 Axis, float AngleOfRotation) +{ + hmm_quaternion Result; + + hmm_vec3 RotatedVector; + + float AxisNorm = 0; + float SineOfRotation = 0; + + AxisNorm = HMM_SquareRootF(HMM_DotVec3(Axis, Axis)); + SineOfRotation = HMM_SinF(AngleOfRotation / 2.0f); + RotatedVector = HMM_MultiplyVec3f(Axis, SineOfRotation); + + Result.W = HMM_CosF(AngleOfRotation / 2.0f); + Result.XYZ = HMM_DivideVec3f(RotatedVector, AxisNorm); + + return (Result); +} + +#endif /* HANDMADE_MATH_IMPLEMENTATION */ diff --git a/examples/skinning/morph-targets.cc b/examples/skinning/morph-targets.cc new file mode 100644 index 0000000..645501b --- /dev/null +++ b/examples/skinning/morph-targets.cc @@ -0,0 +1,22 @@ +#include +#include +#include + +void MorthTargets(std::vector &weights, + std::vector> &targets, + std::vector *output) +{ + assert(weights.size() > 0); + assert(targets.size() > 0); + assert(weights.size() == targets.size()); + + // Assume all position has same number of vertices; + + // TODO(parallelize) + for (size_t v = 0; v < targets[0].size(); v++) { // for each vertex + (*output)[v] = 0.0f; + for (size_t i = 0; i < weights.size(); i++) { + (*output)[v] += weights[i] * targets[i][v]; + } + } +} diff --git a/examples/skinning/premake5.lua b/examples/skinning/premake5.lua index 8d3a969..14bf09c 100644 --- a/examples/skinning/premake5.lua +++ b/examples/skinning/premake5.lua @@ -18,7 +18,7 @@ solution "skinning" kind "ConsoleApp" language "C++" cppdialect "C++11" - files { "main.cc", "skinning.cc", "../common/trackball.cc", "../common/matrix.cc" } + files { "main.cc", "skinning.cc", "morph-targets.cc", "../common/trackball.cc", "../common/matrix.cc" } includedirs { "./" } includedirs { "../../" }