Merge branch 'master' of github.com:syoyo/tinygltf

This commit is contained in:
Syoyo Fujita 2018-10-06 03:20:31 +09:00
commit 39a263c2a8
3 changed files with 367 additions and 446 deletions

View File

@ -1,292 +0,0 @@
/*
* (c) Copyright 1993, 1994, Silicon Graphics, Inc.
* ALL RIGHTS RESERVED
* Permission to use, copy, modify, and distribute this software for
* any purpose and without fee is hereby granted, provided that the above
* copyright notice appear in all copies and that both the copyright notice
* and this permission notice appear in supporting documentation, and that
* the name of Silicon Graphics, Inc. not be used in advertising
* or publicity pertaining to distribution of the software without specific,
* written prior permission.
*
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
* GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
*
* US Government Users Restricted Rights
* Use, duplication, or disclosure by the Government is subject to
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
* clause at DFARS 252.227-7013 and/or in similar or successor
* clauses in the FAR or the DOD or NASA FAR Supplement.
* Unpublished-- rights reserved under the copyright laws of the
* United States. Contractor/manufacturer is Silicon Graphics,
* Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
*
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
*/
/*
* Trackball code:
*
* Implementation of a virtual trackball.
* Implemented by Gavin Bell, lots of ideas from Thant Tessman and
* the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
*
* Vector manip code:
*
* Original code from:
* David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
*
* Much mucking with by:
* Gavin Bell
*/
#include <math.h>
#include "trackball.h"
/*
* This size should really be based on the distance from the center of
* rotation to the point on the object underneath the mouse. That
* point would then track the mouse as closely as possible. This is a
* simple example, though, so that is left as an Exercise for the
* Programmer.
*/
#define TRACKBALLSIZE (0.8)
/*
* Local function prototypes (not defined in trackball.h)
*/
static float tb_project_to_sphere(float, float, float);
static void normalize_quat(float[4]);
static void vzero(float *v) {
v[0] = 0.0;
v[1] = 0.0;
v[2] = 0.0;
}
static void vset(float *v, float x, float y, float z) {
v[0] = x;
v[1] = y;
v[2] = z;
}
static void vsub(const float *src1, const float *src2, float *dst) {
dst[0] = src1[0] - src2[0];
dst[1] = src1[1] - src2[1];
dst[2] = src1[2] - src2[2];
}
static void vcopy(const float *v1, float *v2) {
register int i;
for (i = 0; i < 3; i++)
v2[i] = v1[i];
}
static void vcross(const float *v1, const float *v2, float *cross) {
float temp[3];
temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
vcopy(temp, cross);
}
static float vlength(const float *v) {
return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
static void vscale(float *v, float div) {
v[0] *= div;
v[1] *= div;
v[2] *= div;
}
static void vnormal(float *v) { vscale(v, 1.0 / vlength(v)); }
static float vdot(const float *v1, const float *v2) {
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
static void vadd(const float *src1, const float *src2, float *dst) {
dst[0] = src1[0] + src2[0];
dst[1] = src1[1] + src2[1];
dst[2] = src1[2] + src2[2];
}
/*
* Ok, simulate a track-ball. Project the points onto the virtual
* trackball, then figure out the axis of rotation, which is the cross
* product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
* Note: This is a deformed trackball-- is a trackball in the center,
* but is deformed into a hyperbolic sheet of rotation away from the
* center. This particular function was chosen after trying out
* several variations.
*
* It is assumed that the arguments to this routine are in the range
* (-1.0 ... 1.0)
*/
void trackball(float q[4], float p1x, float p1y, float p2x, float p2y) {
float a[3]; /* Axis of rotation */
float phi; /* how much to rotate about axis */
float p1[3], p2[3], d[3];
float t;
if (p1x == p2x && p1y == p2y) {
/* Zero rotation */
vzero(q);
q[3] = 1.0;
return;
}
/*
* First, figure out z-coordinates for projection of P1 and P2 to
* deformed sphere
*/
vset(p1, p1x, p1y, tb_project_to_sphere(TRACKBALLSIZE, p1x, p1y));
vset(p2, p2x, p2y, tb_project_to_sphere(TRACKBALLSIZE, p2x, p2y));
/*
* Now, we want the cross product of P1 and P2
*/
vcross(p2, p1, a);
/*
* Figure out how much to rotate around that axis.
*/
vsub(p1, p2, d);
t = vlength(d) / (2.0 * TRACKBALLSIZE);
/*
* Avoid problems with out-of-control values...
*/
if (t > 1.0)
t = 1.0;
if (t < -1.0)
t = -1.0;
phi = 2.0 * asin(t);
axis_to_quat(a, phi, q);
}
/*
* Given an axis and angle, compute quaternion.
*/
void axis_to_quat(float a[3], float phi, float q[4]) {
vnormal(a);
vcopy(a, q);
vscale(q, sin(phi / 2.0));
q[3] = cos(phi / 2.0);
}
/*
* Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
* if we are away from the center of the sphere.
*/
static float tb_project_to_sphere(float r, float x, float y) {
float d, t, z;
d = sqrt(x * x + y * y);
if (d < r * 0.70710678118654752440) { /* Inside sphere */
z = sqrt(r * r - d * d);
} else { /* On hyperbola */
t = r / 1.41421356237309504880;
z = t * t / d;
}
return z;
}
/*
* Given two rotations, e1 and e2, expressed as quaternion rotations,
* figure out the equivalent single rotation and stuff it into dest.
*
* This routine also normalizes the result every RENORMCOUNT times it is
* called, to keep error from creeping in.
*
* NOTE: This routine is written so that q1 or q2 may be the same
* as dest (or each other).
*/
#define RENORMCOUNT 97
void add_quats(float q1[4], float q2[4], float dest[4]) {
static int count = 0;
float t1[4], t2[4], t3[4];
float tf[4];
vcopy(q1, t1);
vscale(t1, q2[3]);
vcopy(q2, t2);
vscale(t2, q1[3]);
vcross(q2, q1, t3);
vadd(t1, t2, tf);
vadd(t3, tf, tf);
tf[3] = q1[3] * q2[3] - vdot(q1, q2);
dest[0] = tf[0];
dest[1] = tf[1];
dest[2] = tf[2];
dest[3] = tf[3];
if (++count > RENORMCOUNT) {
count = 0;
normalize_quat(dest);
}
}
/*
* Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0
* If they don't add up to 1.0, dividing by their magnitued will
* renormalize them.
*
* Note: See the following for more information on quaternions:
*
* - Shoemake, K., Animating rotation with quaternion curves, Computer
* Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
* - Pletinckx, D., Quaternion calculus as a basic tool in computer
* graphics, The Visual Computer 5, 2-13, 1989.
*/
static void normalize_quat(float q[4]) {
int i;
float mag;
mag = (q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
for (i = 0; i < 4; i++)
q[i] /= mag;
}
/*
* Build a rotation matrix, given a quaternion rotation.
*
*/
void build_rotmatrix(float m[4][4], const float q[4]) {
m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
m[0][3] = 0.0;
m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
m[1][1] = 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
m[1][3] = 0.0;
m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
m[2][3] = 0.0;
m[3][0] = 0.0;
m[3][1] = 0.0;
m[3][2] = 0.0;
m[3][3] = 1.0;
}

View File

@ -1,75 +0,0 @@
/*
* (c) Copyright 1993, 1994, Silicon Graphics, Inc.
* ALL RIGHTS RESERVED
* Permission to use, copy, modify, and distribute this software for
* any purpose and without fee is hereby granted, provided that the above
* copyright notice appear in all copies and that both the copyright notice
* and this permission notice appear in supporting documentation, and that
* the name of Silicon Graphics, Inc. not be used in advertising
* or publicity pertaining to distribution of the software without specific,
* written prior permission.
*
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
* GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
*
* US Government Users Restricted Rights
* Use, duplication, or disclosure by the Government is subject to
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
* clause at DFARS 252.227-7013 and/or in similar or successor
* clauses in the FAR or the DOD or NASA FAR Supplement.
* Unpublished-- rights reserved under the copyright laws of the
* United States. Contractor/manufacturer is Silicon Graphics,
* Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
*
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
*/
/*
* trackball.h
* A virtual trackball implementation
* Written by Gavin Bell for Silicon Graphics, November 1988.
*/
/*
* Pass the x and y coordinates of the last and current positions of
* the mouse, scaled so they are from (-1.0 ... 1.0).
*
* The resulting rotation is returned as a quaternion rotation in the
* first paramater.
*/
void trackball(float q[4], float p1x, float p1y, float p2x, float p2y);
void negate_quat(float *q, float *qn);
/*
* Given two quaternions, add them together to get a third quaternion.
* Adding quaternions to get a compound rotation is analagous to adding
* translations to get a compound translation. When incrementally
* adding rotations, the first argument here should be the new
* rotation, the second and third the total rotation (which will be
* over-written with the resulting new total rotation).
*/
void add_quats(float *q1, float *q2, float *dest);
/*
* A useful function, builds a rotation matrix in Matrix based on
* given quaternion.
*/
void build_rotmatrix(float m[4][4], const float q[4]);
/*
* This function computes a quaternion based on an axis (defined by
* the given vector) and an angle about which to rotate. The angle is
* expressed in radians. The result is put into the third argument.
*/
void axis_to_quat(float a[3], float phi, float q[4]);

View File

@ -26,6 +26,7 @@
// THE SOFTWARE.
// Version:
// - v2.0.1 Add comparsion feature(Thanks to @Selmar).
// - v2.0.0 glTF 2.0!.
//
// Tiny glTF loader is using following third party libraries:
@ -40,6 +41,7 @@
#include <array>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <map>
#include <string>
@ -134,6 +136,9 @@ namespace tinygltf {
#define TINYGLTF_SHADER_TYPE_VERTEX_SHADER (35633)
#define TINYGLTF_SHADER_TYPE_FRAGMENT_SHADER (35632)
#define TINYGLTF_DOUBLE_EPS (1.e-12)
#define TINYGLTF_DOUBLE_EQUAL(a, b) (std::fabs((b) - (a)) < TINYGLTF_DOUBLE_EPS)
typedef enum {
NULL_TYPE = 0,
NUMBER_TYPE = 1,
@ -190,9 +195,8 @@ static inline int32_t GetTypeSizeInBytes(uint32_t ty) {
}
bool IsDataURI(const std::string &in);
bool DecodeDataURI(std::vector<unsigned char> *out,
std::string &mime_type, const std::string &in,
size_t reqBytes, bool checkSize);
bool DecodeDataURI(std::vector<unsigned char> *out, std::string &mime_type,
const std::string &in, size_t reqBytes, bool checkSize);
#ifdef __clang__
#pragma clang diagnostic push
@ -294,6 +298,8 @@ class Value {
size_t Size() const { return (IsArray() ? ArrayLen() : Keys().size()); }
bool operator==(const tinygltf::Value &other) const;
protected:
int type_;
@ -338,12 +344,12 @@ TINYGLTF_VALUE_GET(Value::Object, object_value_)
using ColorValue = std::array<double, 4>;
struct Parameter {
bool bool_value;
bool bool_value = false;
bool has_number_value = false;
std::string string_value;
std::vector<double> number_array;
std::map<std::string, double> json_double_value;
double number_value;
double number_value = 0.0;
// context sensitive methods. depending the type of the Parameter you are
// accessing, these are either valid or not
// If this parameter represent a texture map in a material, will return the
@ -374,6 +380,8 @@ struct Parameter {
number_array[0], number_array[1], number_array[2],
(number_array.size() > 3 ? number_array[3] : 1.0)}};
}
bool operator==(const Parameter &) const;
};
#ifdef __clang__
@ -396,6 +404,7 @@ struct AnimationChannel {
Value extras;
AnimationChannel() : sampler(-1), target_node(-1) {}
bool operator==(const AnimationChannel &) const;
};
struct AnimationSampler {
@ -406,6 +415,7 @@ struct AnimationSampler {
Value extras;
AnimationSampler() : input(-1), output(-1), interpolation("LINEAR") {}
bool operator==(const AnimationSampler &) const;
};
struct Animation {
@ -413,6 +423,8 @@ struct Animation {
std::vector<AnimationChannel> channels;
std::vector<AnimationSampler> samplers;
Value extras;
bool operator==(const Animation &) const;
};
struct Skin {
@ -425,6 +437,7 @@ struct Skin {
inverseBindMatrices = -1;
skeleton = -1;
}
bool operator==(const Skin &) const;
};
struct Sampler {
@ -443,6 +456,7 @@ struct Sampler {
Sampler()
: wrapS(TINYGLTF_TEXTURE_WRAP_REPEAT),
wrapT(TINYGLTF_TEXTURE_WRAP_REPEAT) {}
bool operator==(const Sampler &) const;
};
struct Image {
@ -458,25 +472,33 @@ struct Image {
Value extras;
ExtensionMap extensions;
// When this flag is true, data is stored to `image` in as-is format(e.g. jpeg compressed for "image/jpeg" mime)
// This feature is good if you use custom image loader function.
// (e.g. delayed decoding of images for faster glTF parsing)
// Default parser for Image does not provide as-is loading feature at the moment.
// (You can manipulate this by providing your own LoadImageData function)
bool as_is;
// When this flag is true, data is stored to `image` in as-is format(e.g. jpeg
// compressed for "image/jpeg" mime) This feature is good if you use custom
// image loader function. (e.g. delayed decoding of images for faster glTF
// parsing) Default parser for Image does not provide as-is loading feature at
// the moment. (You can manipulate this by providing your own LoadImageData
// function)
bool as_is;
Image() : as_is(false) { bufferView = -1; }
Image() : as_is(false) {
bufferView = -1;
width = -1;
height = -1;
component = -1;
}
bool operator==(const Image &) const;
};
struct Texture {
std::string name;
int sampler;
int source; // Required (not specified in the spec ?)
int source;
Value extras;
ExtensionMap extensions;
Texture() : sampler(-1), source(-1) {}
bool operator==(const Texture &) const;
};
// Each extension should be stored in a ParameterMap.
@ -490,6 +512,8 @@ struct Material {
ExtensionMap extensions;
Value extras;
bool operator==(const Material &) const;
};
struct BufferView {
@ -503,6 +527,7 @@ struct BufferView {
Value extras;
BufferView() : byteOffset(0), byteStride(0) {}
bool operator==(const BufferView &) const;
};
struct Accessor {
@ -559,32 +584,35 @@ struct Accessor {
}
Accessor() { bufferView = -1; }
bool operator==(const tinygltf::Accessor &) const;
};
struct PerspectiveCamera {
float aspectRatio; // min > 0
float yfov; // required. min > 0
float zfar; // min > 0
float znear; // required. min > 0
double aspectRatio; // min > 0
double yfov; // required. min > 0
double zfar; // min > 0
double znear; // required. min > 0
PerspectiveCamera()
: aspectRatio(0.0f),
yfov(0.0f),
zfar(0.0f) // 0 = use infinite projecton matrix
: aspectRatio(0.0),
yfov(0.0),
zfar(0.0) // 0 = use infinite projecton matrix
,
znear(0.0f) {}
znear(0.0) {}
bool operator==(const PerspectiveCamera &) const;
ExtensionMap extensions;
Value extras;
};
struct OrthographicCamera {
float xmag; // required. must not be zero.
float ymag; // required. must not be zero.
float zfar; // required. `zfar` must be greater than `znear`.
float znear; // required
double xmag; // required. must not be zero.
double ymag; // required. must not be zero.
double zfar; // required. `zfar` must be greater than `znear`.
double znear; // required
OrthographicCamera() : xmag(0.0f), ymag(0.0f), zfar(0.0f), znear(0.0f) {}
OrthographicCamera() : xmag(0.0), ymag(0.0), zfar(0.0), znear(0.0) {}
bool operator==(const OrthographicCamera &) const;
ExtensionMap extensions;
Value extras;
@ -598,6 +626,7 @@ struct Camera {
OrthographicCamera orthographic;
Camera() {}
bool operator==(const Camera &) const;
ExtensionMap extensions;
Value extras;
@ -612,7 +641,7 @@ struct Primitive {
// when rendering.
int indices; // The index of the accessor that contains the indices.
int mode; // one of TINYGLTF_MODE_***
std::vector<std::map<std::string, int>> targets; // array of morph targets,
std::vector<std::map<std::string, int> > targets; // array of morph targets,
// where each target is a dict with attribues in ["POSITION, "NORMAL",
// "TANGENT"] pointing
// to their corresponding accessors
@ -622,15 +651,18 @@ struct Primitive {
material = -1;
indices = -1;
}
bool operator==(const Primitive &) const;
};
struct Mesh {
std::string name;
std::vector<Primitive> primitives;
std::vector<double> weights; // weights to be applied to the Morph Targets
std::vector<std::map<std::string, int>> targets;
std::vector<std::map<std::string, int> > targets;
ExtensionMap extensions;
Value extras;
bool operator==(const Mesh &) const;
};
class Node {
@ -653,8 +685,8 @@ class Node {
extensions = rhs.extensions;
extras = rhs.extras;
}
~Node() {}
bool operator==(const Node &) const;
int camera; // the index of the camera referenced by this node
@ -678,6 +710,8 @@ struct Buffer {
std::string
uri; // considered as required here but not in the spec (need to clarify)
Value extras;
bool operator==(const Buffer &) const;
};
struct Asset {
@ -687,6 +721,8 @@ struct Asset {
std::string copyright;
ExtensionMap extensions;
Value extras;
bool operator==(const Asset &) const;
};
struct Scene {
@ -695,18 +731,23 @@ struct Scene {
ExtensionMap extensions;
Value extras;
bool operator==(const Scene &) const;
};
struct Light {
std::string name;
std::vector<double> color;
std::string type;
bool operator==(const Light &) const;
};
class Model {
public:
Model() {}
~Model() {}
bool operator==(const Model &) const;
std::vector<Accessor> accessors;
std::vector<Animation> animations;
@ -952,7 +993,7 @@ class TinyGLTF {
#endif // TINY_GLTF_H_
#ifdef TINYGLTF_IMPLEMENTATION
#if defined(TINYGLTF_IMPLEMENTATION) || defined(__INTELLISENSE__)
#include <algorithm>
//#include <cassert>
#ifndef TINYGLTF_NO_FS
@ -1045,6 +1086,220 @@ using nlohmann::json;
namespace tinygltf {
// Equals function for Value, for recursivity
static bool Equals(const tinygltf::Value &one, const tinygltf::Value &other) {
if (one.Type() != other.Type()) return false;
switch (one.Type()) {
case NULL_TYPE:
return true;
case BOOL_TYPE:
return one.Get<bool>() == other.Get<bool>();
case NUMBER_TYPE:
return TINYGLTF_DOUBLE_EQUAL(one.Get<double>(), other.Get<double>());
case INT_TYPE:
return one.Get<int>() == other.Get<int>();
case OBJECT_TYPE: {
auto oneObj = one.Get<tinygltf::Value::Object>();
auto otherObj = other.Get<tinygltf::Value::Object>();
if (oneObj.size() != otherObj.size()) return false;
for (auto &it : oneObj) {
auto otherIt = otherObj.find(it.first);
if (otherIt == otherObj.end()) return false;
if (!Equals(it.second, otherIt->second)) return false;
}
return true;
}
case ARRAY_TYPE: {
if (one.Size() != other.Size()) return false;
for (int i = 0; i < int(one.Size()); ++i)
if (Equals(one.Get(i), other.Get(i))) return false;
return true;
}
case STRING_TYPE:
return one.Get<std::string>() == other.Get<std::string>();
case BINARY_TYPE:
return one.Get<std::vector<unsigned char> >() ==
other.Get<std::vector<unsigned char> >();
default: {
// unhandled type
return false;
}
}
return false;
}
// Equals function for std::vector<double> using TINYGLTF_DOUBLE_EPSILON
static bool Equals(const std::vector<double> &one,
const std::vector<double> &other) {
if (one.size() != other.size()) return false;
for (int i = 0; i < int(one.size()); ++i) {
if (!TINYGLTF_DOUBLE_EQUAL(one[size_t(i)], other[size_t(i)])) return false;
}
return true;
}
bool Accessor::operator==(const Accessor &other) const {
return this->bufferView == other.bufferView &&
this->byteOffset == other.byteOffset &&
this->componentType == other.componentType &&
this->count == other.count && this->extras == other.extras &&
Equals(this->maxValues, other.maxValues) &&
Equals(this->minValues, other.minValues) && this->name == other.name &&
this->normalized == other.normalized && this->type == other.type;
}
bool Animation::operator==(const Animation &other) const {
return this->channels == other.channels && this->extras == other.extras &&
this->name == other.name && this->samplers == other.samplers;
}
bool AnimationChannel::operator==(const AnimationChannel &other) const {
return this->extras == other.extras &&
this->target_node == other.target_node &&
this->target_path == other.target_path &&
this->sampler == other.sampler;
}
bool AnimationSampler::operator==(const AnimationSampler &other) const {
return this->extras == other.extras && this->input == other.input &&
this->interpolation == other.interpolation &&
this->output == other.output;
}
bool Asset::operator==(const Asset &other) const {
return this->copyright == other.copyright &&
this->extensions == other.extensions && this->extras == other.extras &&
this->generator == other.generator &&
this->minVersion == other.minVersion && this->version == other.version;
}
bool Buffer::operator==(const Buffer &other) const {
return this->data == other.data && this->extras == other.extras &&
this->name == other.name && this->uri == other.uri;
}
bool BufferView::operator==(const BufferView &other) const {
return this->buffer == other.buffer && this->byteLength == other.byteLength &&
this->byteOffset == other.byteOffset &&
this->byteStride == other.byteStride && this->name == other.name &&
this->target == other.target && this->extras == other.extras;
}
bool Camera::operator==(const Camera &other) const {
return this->name == other.name && this->extensions == other.extensions &&
this->extras == other.extras &&
this->orthographic == other.orthographic &&
this->perspective == other.perspective && this->type == other.type;
}
bool Image::operator==(const Image &other) const {
return this->bufferView == other.bufferView &&
this->component == other.component && this->extras == other.extras &&
this->height == other.height && this->image == other.image &&
this->mimeType == other.mimeType && this->name == other.name &&
this->uri == other.uri && this->width == other.width;
}
bool Light::operator==(const Light &other) const {
return Equals(this->color, other.color) && this->name == other.name &&
this->type == other.type;
}
bool Material::operator==(const Material &other) const {
return this->additionalValues == other.additionalValues &&
this->extensions == other.extensions && this->extras == other.extras &&
this->name == other.name && this->values == other.values;
}
bool Mesh::operator==(const Mesh &other) const {
return this->extensions == other.extensions && this->extras == other.extras &&
this->name == other.name && this->primitives == other.primitives &&
this->targets == other.targets && Equals(this->weights, other.weights);
}
bool Model::operator==(const Model &other) const {
return this->accessors == other.accessors &&
this->animations == other.animations && this->asset == other.asset &&
this->buffers == other.buffers &&
this->bufferViews == other.bufferViews &&
this->cameras == other.cameras &&
this->defaultScene == other.defaultScene &&
this->extensions == other.extensions &&
this->extensionsRequired == other.extensionsRequired &&
this->extensionsUsed == other.extensionsUsed &&
this->extras == other.extras && this->images == other.images &&
this->lights == other.lights && this->materials == other.materials &&
this->meshes == other.meshes && this->nodes == other.nodes &&
this->samplers == other.samplers && this->scenes == other.scenes &&
this->skins == other.skins && this->textures == other.textures;
}
bool Node::operator==(const Node &other) const {
return this->camera == other.camera && this->children == other.children &&
this->extensions == other.extensions && this->extras == other.extras &&
Equals(this->matrix, other.matrix) && this->mesh == other.mesh &&
this->name == other.name && Equals(this->rotation, other.rotation) &&
Equals(this->scale, other.scale) && this->skin == other.skin &&
Equals(this->translation, other.translation) &&
Equals(this->weights, other.weights);
}
bool OrthographicCamera::operator==(const OrthographicCamera &other) const {
return this->extensions == other.extensions && this->extras == other.extras &&
TINYGLTF_DOUBLE_EQUAL(this->xmag, other.xmag) &&
TINYGLTF_DOUBLE_EQUAL(this->ymag, other.ymag) &&
TINYGLTF_DOUBLE_EQUAL(this->zfar, other.zfar) &&
TINYGLTF_DOUBLE_EQUAL(this->znear, other.znear);
}
bool Parameter::operator==(const Parameter &other) const {
if (this->bool_value != other.bool_value ||
this->has_number_value != other.has_number_value)
return false;
if (!TINYGLTF_DOUBLE_EQUAL(this->number_value, other.number_value))
return false;
if (this->json_double_value.size() != other.json_double_value.size())
return false;
for (auto &it : this->json_double_value) {
auto otherIt = other.json_double_value.find(it.first);
if (otherIt == other.json_double_value.end()) return false;
if (!TINYGLTF_DOUBLE_EQUAL(it.second, otherIt->second)) return false;
}
if (!Equals(this->number_array, other.number_array)) return false;
if (this->string_value != other.string_value) return false;
return true;
}
bool PerspectiveCamera::operator==(const PerspectiveCamera &other) const {
return TINYGLTF_DOUBLE_EQUAL(this->aspectRatio, other.aspectRatio) &&
this->extensions == other.extensions && this->extras == other.extras &&
TINYGLTF_DOUBLE_EQUAL(this->yfov, other.yfov) &&
TINYGLTF_DOUBLE_EQUAL(this->zfar, other.zfar) &&
TINYGLTF_DOUBLE_EQUAL(this->znear, other.znear);
}
bool Primitive::operator==(const Primitive &other) const {
return this->attributes == other.attributes && this->extras == other.extras &&
this->indices == other.indices && this->material == other.material &&
this->mode == other.mode && this->targets == other.targets;
}
bool Sampler::operator==(const Sampler &other) const {
return this->extras == other.extras && this->magFilter == other.magFilter &&
this->minFilter == other.minFilter && this->name == other.name &&
this->wrapR == other.wrapR && this->wrapS == other.wrapS &&
this->wrapT == other.wrapT;
}
bool Scene::operator==(const Scene &other) const {
return this->extensions == other.extensions && this->extras == other.extras &&
this->name == other.name && this->nodes == other.nodes;
;
}
bool Skin::operator==(const Skin &other) const {
return this->inverseBindMatrices == other.inverseBindMatrices &&
this->joints == other.joints && this->name == other.name &&
this->skeleton == other.skeleton;
}
bool Texture::operator==(const Texture &other) const {
return this->extensions == other.extensions && this->extras == other.extras &&
this->name == other.name && this->sampler == other.sampler &&
this->source == other.source;
}
bool Value::operator==(const Value &other) const {
return Equals(*this, other);
}
static void swap4(unsigned int *val) {
#ifdef TINYGLTF_LITTLE_ENDIAN
(void)val;
@ -1248,8 +1503,8 @@ std::string base64_decode(std::string const &encoded_string) {
static bool LoadExternalFile(std::vector<unsigned char> *out, std::string *err,
std::string *warn, const std::string &filename,
const std::string &basedir, bool required, size_t reqBytes,
bool checkSize, FsCallbacks *fs) {
const std::string &basedir, bool required,
size_t reqBytes, bool checkSize, FsCallbacks *fs) {
if (fs == nullptr || fs->FileExists == nullptr ||
fs->ExpandFilePath == nullptr || fs->ReadWholeFile == nullptr) {
// This is a developer error, assert() ?
@ -1259,7 +1514,7 @@ static bool LoadExternalFile(std::vector<unsigned char> *out, std::string *err,
return false;
}
std::string* failMsgOut = required ? err : warn;
std::string *failMsgOut = required ? err : warn;
out->clear();
@ -1281,16 +1536,17 @@ static bool LoadExternalFile(std::vector<unsigned char> *out, std::string *err,
fs->ReadWholeFile(&buf, &fileReadErr, filepath, fs->user_data);
if (!fileRead) {
if (failMsgOut) {
(*failMsgOut) += "File read error : " + filepath + " : " + fileReadErr + "\n";
(*failMsgOut) +=
"File read error : " + filepath + " : " + fileReadErr + "\n";
}
return false;
}
size_t sz = buf.size();
if (sz == 0) {
if(failMsgOut) {
if (failMsgOut) {
(*failMsgOut) += "File is empty : " + filepath + "\n";
}
}
return false;
}
@ -1325,18 +1581,19 @@ bool LoadImageData(Image *image, std::string *err, std::string *warn,
(void)warn;
int w, h, comp, req_comp;
// force 32-bit textures for common Vulkan compatibility. It appears that
// some GPU drivers do not support 24-bit images for Vulkan
req_comp = 4;
// if image cannot be decoded, ignore parsing and keep it by its path
// don't break in this case
// FIXME we should only enter this function if the image is embedded. If
// image->uri references
// an image file, it should be left as it is. Image loading should not be
// mandatory (to support other formats)
unsigned char *data = stbi_load_from_memory(bytes, size, &w, &h, &comp, req_comp);
unsigned char *data =
stbi_load_from_memory(bytes, size, &w, &h, &comp, req_comp);
if (!data) {
// NOTE: you can use `warn` instead of `err`
if (err) {
@ -1409,18 +1666,25 @@ bool WriteImageData(const std::string *basepath, const std::string *filename,
std::vector<unsigned char> data;
if (ext == "png") {
stbi_write_png_to_func(WriteToMemory_stbi, &data, image->width,
image->height, image->component, &image->image[0],
0);
if (!stbi_write_png_to_func(WriteToMemory_stbi, &data, image->width,
image->height, image->component,
&image->image[0], 0)) {
return false;
}
header = "data:image/png;base64,";
} else if (ext == "jpg") {
stbi_write_jpg_to_func(WriteToMemory_stbi, &data, image->width,
image->height, image->component, &image->image[0],
100);
if (!stbi_write_jpg_to_func(WriteToMemory_stbi, &data, image->width,
image->height, image->component,
&image->image[0], 100)) {
return false;
}
header = "data:image/jpeg;base64,";
} else if (ext == "bmp") {
stbi_write_bmp_to_func(WriteToMemory_stbi, &data, image->width,
image->height, image->component, &image->image[0]);
if (!stbi_write_bmp_to_func(WriteToMemory_stbi, &data, image->width,
image->height, image->component,
&image->image[0])) {
return false;
}
header = "data:image/bmp;base64,";
} else if (!embedImages) {
// Error: can't output requested format to file
@ -1445,6 +1709,7 @@ bool WriteImageData(const std::string *basepath, const std::string *filename,
if (!fs->WriteWholeFile(&writeError, imagefilepath, data,
fs->user_data)) {
// Could not write image file to disc; Throw error ?
return false;
}
} else {
// Throw error?
@ -1671,9 +1936,8 @@ bool IsDataURI(const std::string &in) {
return false;
}
bool DecodeDataURI(std::vector<unsigned char> *out,
std::string &mime_type, const std::string &in,
size_t reqBytes, bool checkSize) {
bool DecodeDataURI(std::vector<unsigned char> *out, std::string &mime_type,
const std::string &in, size_t reqBytes, bool checkSize) {
std::string header = "data:application/octet-stream;base64,";
std::string data;
if (in.find(header) == 0) {
@ -2135,6 +2399,7 @@ static bool ParseImage(Image *image, std::string *err, std::string *warn,
ParseStringProperty(&image->name, err, o, "name", false);
ParseExtensionsProperty(&image->extensions, err, o);
ParseExtrasProperty(&image->extras, o);
if (hasBufferView) {
double bufferView = -1;
@ -2285,8 +2550,8 @@ static bool ParseBuffer(Buffer *buffer, std::string *err, const json &o,
}
} else {
// External .bin file.
if (!LoadExternalFile(&buffer->data, err, /* warn */ nullptr, buffer->uri,
basedir, true, bytes, true, fs)) {
if (!LoadExternalFile(&buffer->data, err, /* warn */ nullptr,
buffer->uri, basedir, true, bytes, true, fs)) {
return false;
}
}
@ -2837,10 +3102,10 @@ static bool ParsePerspectiveCamera(PerspectiveCamera *camera, std::string *err,
double zfar = 0.0; // = invalid
ParseNumberProperty(&zfar, err, o, "zfar", false, "PerspectiveCamera");
camera->aspectRatio = float(aspectRatio);
camera->zfar = float(zfar);
camera->yfov = float(yfov);
camera->znear = float(znear);
camera->aspectRatio = aspectRatio;
camera->zfar = zfar;
camera->yfov = yfov;
camera->znear = znear;
ParseExtensionsProperty(&camera->extensions, err, o);
ParseExtrasProperty(&(camera->extras), o);
@ -2876,10 +3141,10 @@ static bool ParseOrthographicCamera(OrthographicCamera *camera,
ParseExtensionsProperty(&camera->extensions, err, o);
ParseExtrasProperty(&(camera->extras), o);
camera->xmag = float(xmag);
camera->ymag = float(ymag);
camera->zfar = float(zfar);
camera->znear = float(znear);
camera->xmag = xmag;
camera->ymag = ymag;
camera->zfar = zfar;
camera->znear = znear;
// TODO(syoyo): Validate parameter values.
@ -3891,6 +4156,7 @@ static void SerializeGltfAccessor(Accessor &accessor, json &o) {
}
SerializeStringProperty("type", type, o);
if (!accessor.name.empty()) SerializeStringProperty("name", accessor.name, o);
if (accessor.extras.Type() != NULL_TYPE) {
SerializeValue("extras", accessor.extras, o);
@ -3921,7 +4187,8 @@ static void SerializeGltfAnimationSampler(AnimationSampler &sampler, json &o) {
}
static void SerializeGltfAnimation(Animation &animation, json &o) {
SerializeStringProperty("name", animation.name, o);
if (!animation.name.empty())
SerializeStringProperty("name", animation.name, o);
json channels;
for (unsigned int i = 0; i < animation.channels.size(); ++i) {
json channel;
@ -4112,7 +4379,7 @@ static void SerializeGltfMesh(Mesh &mesh, json &o) {
}
static void SerializeGltfLight(Light &light, json &o) {
SerializeStringProperty("name", light.name, o);
if (!light.name.empty()) SerializeStringProperty("name", light.name, o);
SerializeNumberArrayProperty("color", light.color, o);
SerializeStringProperty("type", light.type, o);
}
@ -4147,7 +4414,7 @@ static void SerializeGltfNode(Node &node, json &o) {
}
SerializeExtensionMap(node.extensions, o);
SerializeStringProperty("name", node.name, o);
if (!node.name.empty()) SerializeStringProperty("name", node.name, o);
SerializeNumberArrayProperty<int>("children", node.children, o);
}
@ -4237,18 +4504,21 @@ static void SerializeGltfTexture(Texture &texture, json &o) {
if (texture.sampler > -1) {
SerializeNumberProperty("sampler", texture.sampler, o);
}
SerializeNumberProperty("source", texture.source, o);
if (texture.source > -1) {
SerializeNumberProperty("source", texture.source, o);
}
if (texture.extras.Type() != NULL_TYPE) {
SerializeValue("extras", texture.extras, o);
}
SerializeExtensionMap(texture.extensions, o);
}
static void WriteGltfFile(const std::string &output,
static bool WriteGltfFile(const std::string &output,
const std::string &content) {
std::ofstream gltfFile(output.c_str());
if (!gltfFile.is_open()) return false;
gltfFile << content << std::endl;
return true;
}
bool TinyGLTF::WriteGltfSceneToFile(Model *model, const std::string &filename,
@ -4284,31 +4554,50 @@ bool TinyGLTF::WriteGltfSceneToFile(Model *model, const std::string &filename,
SerializeGltfAsset(model->asset, asset);
output["asset"] = asset;
std::string binFilename = GetBaseFilename(filename);
std::string ext = ".bin";
std::string::size_type pos = binFilename.rfind('.', binFilename.length());
std::string defaultBinFilename = GetBaseFilename(filename);
std::string defaultBinFileExt = ".bin";
std::string::size_type pos = defaultBinFilename.rfind('.', defaultBinFilename.length());
if (pos != std::string::npos) {
binFilename = binFilename.substr(0, pos) + ext;
} else {
binFilename = binFilename + ".bin";
defaultBinFilename = defaultBinFilename.substr(0, pos);
}
std::string baseDir = GetBaseDir(filename);
if (baseDir.empty()) {
baseDir = "./";
}
std::string binSaveFilePath = JoinPath(baseDir, binFilename);
// BUFFERS (We expect only one buffer here)
// BUFFERS
std::vector<std::string> usedUris;
json buffers;
for (unsigned int i = 0; i < model->buffers.size(); ++i) {
json buffer;
if (embedBuffers) {
SerializeGltfBuffer(model->buffers[i], buffer);
} else {
SerializeGltfBuffer(model->buffers[i], buffer, binSaveFilePath,
binFilename);
std::string binSavePath;
std::string binUri;
if (!model->buffers[i].uri.empty()
&& !IsDataURI(model->buffers[i].uri)) {
binUri = model->buffers[i].uri;
}
else {
binUri = defaultBinFilename + defaultBinFileExt;
bool inUse = true;
int numUsed = 0;
while(inUse) {
inUse = false;
for (const std::string& usedName : usedUris) {
if (binUri.compare(usedName) != 0) continue;
inUse = true;
binUri = defaultBinFilename + std::to_string(numUsed++) + defaultBinFileExt;
break;
}
}
}
usedUris.push_back(binUri);
binSavePath = JoinPath(baseDir, binUri);
SerializeGltfBuffer(model->buffers[i], buffer, binSavePath,
binUri);
}
buffers.push_back(buffer);
}
@ -4471,8 +4760,7 @@ bool TinyGLTF::WriteGltfSceneToFile(Model *model, const std::string &filename,
SerializeValue("extras", model->extras, output);
}
WriteGltfFile(filename, output.dump());
return true;
return WriteGltfFile(filename, output.dump());
}
} // namespace tinygltf