mirror of
https://git.mirrors.martin98.com/https://github.com/syoyo/tinygltf.git
synced 2025-09-23 15:03:15 +08:00
Merge branch 'skinning' of github.com:syoyo/tinygltf into skinning
This commit is contained in:
commit
39a309c416
@ -99,6 +99,28 @@ void Matrix::LookAt(float m[4][4], float eye[3], float lookat[3],
|
||||
#endif
|
||||
}
|
||||
|
||||
void Matrix::Identity(float m[4][4]) {
|
||||
m[0][0] = 1.0f;
|
||||
m[0][1] = 0.0f;
|
||||
m[0][2] = 0.0f;
|
||||
m[0][3] = 0.0f;
|
||||
|
||||
m[1][0] = 0.0f;
|
||||
m[1][1] = 1.0f;
|
||||
m[1][2] = 0.0f;
|
||||
m[1][3] = 0.0f;
|
||||
|
||||
m[2][0] = 0.0f;
|
||||
m[2][1] = 0.0f;
|
||||
m[2][2] = 1.0f;
|
||||
m[2][3] = 0.0f;
|
||||
|
||||
m[3][0] = 0.0f;
|
||||
m[3][1] = 0.0f;
|
||||
m[3][2] = 0.0f;
|
||||
m[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
void Matrix::Inverse(float m[4][4]) {
|
||||
/*
|
||||
* codes from intel web
|
||||
@ -195,7 +217,16 @@ void Matrix::Inverse(float m[4][4]) {
|
||||
}
|
||||
}
|
||||
|
||||
void Matrix::Mult(float dst[4][4], float m0[4][4], float m1[4][4]) {
|
||||
void Matrix::Add(float dst[4][4], const float m0[4][4], const float m1[4][4]) {
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
dst[i][j] += m0[i][j] + m1[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Matrix::Mult(float dst[4][4], const float m0[4][4], const float m1[4][4]) {
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
dst[i][j] = 0;
|
||||
@ -206,7 +237,7 @@ void Matrix::Mult(float dst[4][4], float m0[4][4], float m1[4][4]) {
|
||||
}
|
||||
}
|
||||
|
||||
void Matrix::MultV(float dst[3], float m[4][4], float v[3]) {
|
||||
void Matrix::MultV(float dst[3], const float m[4][4], const float v[3]) {
|
||||
// printf("v = %f, %f, %f\n", v[0], v[1], v[2]);
|
||||
dst[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0];
|
||||
dst[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1];
|
||||
@ -214,3 +245,10 @@ void Matrix::MultV(float dst[3], float m[4][4], float v[3]) {
|
||||
// printf("m = %f, %f, %f\n", m[3][0], m[3][1], m[3][2]);
|
||||
// printf("dst = %f, %f, %f\n", dst[0], dst[1], dst[2]);
|
||||
}
|
||||
|
||||
void Matrix::MultV4(float dst[4], const float m[4][4], const float v[4]) {
|
||||
dst[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0] * v[3];
|
||||
dst[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1] * v[3];
|
||||
dst[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2] * v[3];
|
||||
dst[3] = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3] * v[3];
|
||||
}
|
||||
|
@ -10,8 +10,11 @@ public:
|
||||
static void LookAt(float m[4][4], float eye[3], float lookat[3],
|
||||
float up[3]);
|
||||
static void Inverse(float m[4][4]);
|
||||
static void Mult(float dst[4][4], float m0[4][4], float m1[4][4]);
|
||||
static void MultV(float dst[3], float m[4][4], float v[3]);
|
||||
static void Identity(float m[4][4]);
|
||||
static void Add(float dst[4][4], const float m0[4][4], const float m1[4][4]);
|
||||
static void Mult(float dst[4][4], const float m0[4][4], const float m1[4][4]);
|
||||
static void MultV(float dst[3], const float m[4][4], const float v[3]);
|
||||
static void MultV4(float dst[4], const float m[4][4], const float v[4]);
|
||||
};
|
||||
|
||||
#endif //
|
||||
|
@ -52,11 +52,6 @@
|
||||
#include <math.h>
|
||||
#include "trackball.h"
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(disable : 4244)
|
||||
#pragma warning(disable : 4305)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This size should really be based on the distance from the center of
|
||||
* rotation to the point on the object underneath the mouse. That
|
||||
@ -173,11 +168,11 @@ void trackball(float q[4], float p1x, float p1y, float p2x, float p2y) {
|
||||
/*
|
||||
* Avoid problems with out-of-control values...
|
||||
*/
|
||||
if (t > 1.0f)
|
||||
t = 1.0f;
|
||||
if (t < -1.0f)
|
||||
t = -1.0f;
|
||||
phi = 2.0f * asinf(t);
|
||||
if (t > 1.0)
|
||||
t = 1.0;
|
||||
if (t < -1.0)
|
||||
t = -1.0;
|
||||
phi = 2.0 * asin(t);
|
||||
|
||||
axis_to_quat(a, phi, q);
|
||||
}
|
||||
|
@ -12,7 +12,10 @@
|
||||
#define GLFW_INCLUDE_GLU
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
#include "trackball.h"
|
||||
#include "../common/trackball.h"
|
||||
#include "../common/matrix.h"
|
||||
|
||||
#include "skinning.h"
|
||||
|
||||
#define TINYGLTF_IMPLEMENTATION
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
@ -726,6 +729,44 @@ static void PrintNodes(const tinygltf::Scene &scene) {
|
||||
}
|
||||
}
|
||||
|
||||
static void SetupSkinningState(const tinygltf::Model &model)
|
||||
{
|
||||
for (auto &s : model.skins) {
|
||||
if (s.inverseBindMatrices > -1) {
|
||||
|
||||
if (s.joints.size() > 0) {
|
||||
for (auto const &j : s.joints) {
|
||||
std::cout << j << std::endl;
|
||||
}
|
||||
|
||||
std::vector<example::mat4> inverse_bind_matrices(s.joints.size());
|
||||
|
||||
const tinygltf::Accessor &accessor = model.accessors[s.inverseBindMatrices];
|
||||
assert(accessor.type == TINYGLTF_TYPE_MAT4);
|
||||
|
||||
const tinygltf::BufferView &bufferView = model.bufferViews[accessor.bufferView];
|
||||
|
||||
const tinygltf::Buffer &buffer = model.buffers[bufferView.buffer];
|
||||
|
||||
const float *ptr = reinterpret_cast<const float *>(buffer.data.data() + bufferView.byteOffset);
|
||||
|
||||
for (size_t j = 0; j < s.joints.size(); j++) {
|
||||
example::mat4 m;
|
||||
memcpy(m.m, ptr + j * 16 * sizeof(float), 16 * sizeof(float));
|
||||
|
||||
inverse_bind_matrices[j] = m;
|
||||
|
||||
std::cout << "j[" << j << "] = " << std::endl;
|
||||
Matrix::Print(inverse_bind_matrices[j].m);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
if (argc < 2) {
|
||||
std::cout << "glview input.gltf <scale>\n" << std::endl;
|
||||
@ -787,6 +828,8 @@ int main(int argc, char **argv) {
|
||||
// DBG
|
||||
PrintNodes(model.scenes[scene_idx]);
|
||||
|
||||
SetupSkinningState(model);
|
||||
|
||||
if (!glfwInit()) {
|
||||
std::cerr << "Failed to initialize GLFW." << std::endl;
|
||||
return -1;
|
||||
|
@ -18,7 +18,7 @@ solution "skinning"
|
||||
kind "ConsoleApp"
|
||||
language "C++"
|
||||
cppdialect "C++11"
|
||||
files { "main.cc", "skinning.cc", "trackball.cc" }
|
||||
files { "main.cc", "skinning.cc", "../common/trackball.cc", "../common/matrix.cc" }
|
||||
includedirs { "./" }
|
||||
includedirs { "../../" }
|
||||
|
||||
@ -45,7 +45,7 @@ solution "skinning"
|
||||
includedirs { "/usr/local/include" }
|
||||
buildoptions { "-Wno-deprecated-declarations" }
|
||||
libdirs { "/usr/local/lib" }
|
||||
links { "glfw3", "GLEW" }
|
||||
links { "glfw", "GLEW" }
|
||||
linkoptions { "-framework OpenGL", "-framework Cocoa", "-framework IOKit", "-framework CoreVideo" }
|
||||
|
||||
configuration "Debug"
|
||||
|
@ -1,9 +1,152 @@
|
||||
#include "skinning.h"
|
||||
|
||||
#if 0
|
||||
#include "../common/matrix.h"
|
||||
#include "../common/trackball.h" // for quaternion
|
||||
|
||||
jointMatrix(j) =
|
||||
globalTransform^-1 * // The "^-1" here means the inverse of this transform
|
||||
globalJointTransform *
|
||||
inverseBindMatrix(j);
|
||||
#include <cstring>
|
||||
#include <cassert>
|
||||
|
||||
#endif
|
||||
namespace example {
|
||||
|
||||
void BuildTransofrmMatrix(
|
||||
const float translate[3],
|
||||
const float rotation[4], // as quaternion in glTF
|
||||
const float scale[3],
|
||||
mat4 *transform_matrix) {
|
||||
|
||||
float T[4][4];
|
||||
T[0][0] = 1.0f;
|
||||
T[0][1] = 0.0f;
|
||||
T[0][2] = 0.0f;
|
||||
T[0][3] = 0.0f;
|
||||
|
||||
T[1][0] = 0.0f;
|
||||
T[1][1] = 1.0f;
|
||||
T[1][2] = 0.0f;
|
||||
T[1][3] = 0.0f;
|
||||
|
||||
T[2][0] = 0.0f;
|
||||
T[2][1] = 0.0f;
|
||||
T[2][2] = 1.0f;
|
||||
T[2][3] = 0.0f;
|
||||
|
||||
T[3][0] = translate[0];
|
||||
T[3][1] = translate[1];
|
||||
T[3][2] = translate[2];
|
||||
T[3][3] = 1.0f;
|
||||
|
||||
float R[4][4];
|
||||
|
||||
build_rotmatrix(R, rotation);
|
||||
|
||||
float S[4][4];
|
||||
S[0][0] = scale[0];
|
||||
S[0][1] = 0.0f;
|
||||
S[0][2] = 0.0f;
|
||||
S[0][3] = 0.0f;
|
||||
|
||||
S[1][0] = 0.0f;
|
||||
S[1][1] = scale[1];
|
||||
S[1][2] = 0.0f;
|
||||
S[1][3] = 0.0f;
|
||||
|
||||
S[2][0] = 0.0f;
|
||||
S[2][1] = 0.0f;
|
||||
S[2][2] = scale[2];
|
||||
S[2][3] = 0.0f;
|
||||
|
||||
S[3][0] = 0.0f;
|
||||
S[3][1] = 0.0f;
|
||||
S[3][2] = 0.0f;
|
||||
S[3][3] = 1.0f;
|
||||
|
||||
float RS[4][4];
|
||||
|
||||
Matrix::Mult(RS, R, S);
|
||||
|
||||
Matrix::Mult(transform_matrix->m, T, RS);
|
||||
}
|
||||
|
||||
void ComputeJointMatrices(
|
||||
const std::vector<mat4> global_transform_of_nodes,
|
||||
const std::vector<mat4> global_transform_of_joint_nodes,
|
||||
const std::vector<mat4> inverse_bind_matrix_for_joints,
|
||||
std::vector<mat4> *output_joint_matrices) {
|
||||
|
||||
const size_t n = global_transform_of_nodes.size();
|
||||
|
||||
output_joint_matrices->resize(n);
|
||||
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
mat4 g_inv = global_transform_of_nodes[i];
|
||||
Matrix::Inverse(g_inv.m);
|
||||
|
||||
mat4 g_joint = global_transform_of_joint_nodes[i];
|
||||
mat4 inverse_bind_matrix = inverse_bind_matrix_for_joints[i];
|
||||
|
||||
float a[4][4]; // temp matrix
|
||||
Matrix::Mult(a, g_joint.m, inverse_bind_matrix.m);
|
||||
|
||||
Matrix::Mult((*output_joint_matrices)[i].m, g_inv.m, a);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Skining(const std::vector<float> vertices,
|
||||
const std::vector<float> weights, const std::vector<size_t> joints,
|
||||
const size_t num_skinning_weights,
|
||||
const std::vector<mat4> joint_matrices,
|
||||
const float t,
|
||||
std::vector<float> *skinned_vertices) {
|
||||
|
||||
assert((vertices.size() % 4) == 0);
|
||||
const size_t num_vertices = vertices.size() / 4;
|
||||
|
||||
skinned_vertices->resize(vertices.size());
|
||||
|
||||
// TODO(syoyo): Ensure sum(weights) = 1.0;
|
||||
|
||||
for (size_t v = 0; v < num_vertices; v++) {
|
||||
const float *w_p = weights.data() + v * num_skinning_weights;
|
||||
const size_t *j_p = joints.data() + v * num_skinning_weights;
|
||||
|
||||
mat4 skin_mat;
|
||||
memset(skin_mat.m, 0, sizeof(float) * 4 * 4);
|
||||
|
||||
for (size_t k = 0; k < num_skinning_weights; k++) {
|
||||
const float w = w_p[k];
|
||||
const mat4 &m = joint_matrices[j_p[k]];
|
||||
|
||||
for (size_t j = 0; j < 4; j++) {
|
||||
for (size_t i = 0; i < 4; i++) {
|
||||
skin_mat.m[j][i] += w * m.m[j][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// M = lerp I and skin_mat
|
||||
mat4 M;
|
||||
|
||||
mat4 I;
|
||||
Matrix::Identity(I.m);
|
||||
|
||||
for (size_t j = 0; j < 4; j++) {
|
||||
for (size_t i = 0; i < 4; i++) {
|
||||
M.m[j][i] = I.m[j][i] * t + (1.0f - t) * skin_mat.m[j][i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float vtx[4];
|
||||
vtx[0] = vertices[4 * v + 0];
|
||||
vtx[1] = vertices[4 * v + 1];
|
||||
vtx[2] = vertices[4 * v + 2];
|
||||
vtx[3] = vertices[4 * v + 3];
|
||||
|
||||
float ret[4];
|
||||
Matrix::MultV4(ret, M.m, vtx);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // namespace example
|
||||
|
@ -1,292 +0,0 @@
|
||||
/*
|
||||
* (c) Copyright 1993, 1994, Silicon Graphics, Inc.
|
||||
* ALL RIGHTS RESERVED
|
||||
* Permission to use, copy, modify, and distribute this software for
|
||||
* any purpose and without fee is hereby granted, provided that the above
|
||||
* copyright notice appear in all copies and that both the copyright notice
|
||||
* and this permission notice appear in supporting documentation, and that
|
||||
* the name of Silicon Graphics, Inc. not be used in advertising
|
||||
* or publicity pertaining to distribution of the software without specific,
|
||||
* written prior permission.
|
||||
*
|
||||
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
|
||||
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
|
||||
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
|
||||
* GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
|
||||
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
|
||||
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
|
||||
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
|
||||
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
|
||||
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
|
||||
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
|
||||
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*
|
||||
* US Government Users Restricted Rights
|
||||
* Use, duplication, or disclosure by the Government is subject to
|
||||
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
|
||||
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
|
||||
* clause at DFARS 252.227-7013 and/or in similar or successor
|
||||
* clauses in the FAR or the DOD or NASA FAR Supplement.
|
||||
* Unpublished-- rights reserved under the copyright laws of the
|
||||
* United States. Contractor/manufacturer is Silicon Graphics,
|
||||
* Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
|
||||
*
|
||||
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
|
||||
*/
|
||||
/*
|
||||
* Trackball code:
|
||||
*
|
||||
* Implementation of a virtual trackball.
|
||||
* Implemented by Gavin Bell, lots of ideas from Thant Tessman and
|
||||
* the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
|
||||
*
|
||||
* Vector manip code:
|
||||
*
|
||||
* Original code from:
|
||||
* David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
|
||||
*
|
||||
* Much mucking with by:
|
||||
* Gavin Bell
|
||||
*/
|
||||
#include <math.h>
|
||||
#include "trackball.h"
|
||||
|
||||
/*
|
||||
* This size should really be based on the distance from the center of
|
||||
* rotation to the point on the object underneath the mouse. That
|
||||
* point would then track the mouse as closely as possible. This is a
|
||||
* simple example, though, so that is left as an Exercise for the
|
||||
* Programmer.
|
||||
*/
|
||||
#define TRACKBALLSIZE (0.8)
|
||||
|
||||
/*
|
||||
* Local function prototypes (not defined in trackball.h)
|
||||
*/
|
||||
static float tb_project_to_sphere(float, float, float);
|
||||
static void normalize_quat(float[4]);
|
||||
|
||||
static void vzero(float *v) {
|
||||
v[0] = 0.0;
|
||||
v[1] = 0.0;
|
||||
v[2] = 0.0;
|
||||
}
|
||||
|
||||
static void vset(float *v, float x, float y, float z) {
|
||||
v[0] = x;
|
||||
v[1] = y;
|
||||
v[2] = z;
|
||||
}
|
||||
|
||||
static void vsub(const float *src1, const float *src2, float *dst) {
|
||||
dst[0] = src1[0] - src2[0];
|
||||
dst[1] = src1[1] - src2[1];
|
||||
dst[2] = src1[2] - src2[2];
|
||||
}
|
||||
|
||||
static void vcopy(const float *v1, float *v2) {
|
||||
register int i;
|
||||
for (i = 0; i < 3; i++)
|
||||
v2[i] = v1[i];
|
||||
}
|
||||
|
||||
static void vcross(const float *v1, const float *v2, float *cross) {
|
||||
float temp[3];
|
||||
|
||||
temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
|
||||
temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
|
||||
temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
|
||||
vcopy(temp, cross);
|
||||
}
|
||||
|
||||
static float vlength(const float *v) {
|
||||
return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
||||
}
|
||||
|
||||
static void vscale(float *v, float div) {
|
||||
v[0] *= div;
|
||||
v[1] *= div;
|
||||
v[2] *= div;
|
||||
}
|
||||
|
||||
static void vnormal(float *v) { vscale(v, 1.0 / vlength(v)); }
|
||||
|
||||
static float vdot(const float *v1, const float *v2) {
|
||||
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
|
||||
}
|
||||
|
||||
static void vadd(const float *src1, const float *src2, float *dst) {
|
||||
dst[0] = src1[0] + src2[0];
|
||||
dst[1] = src1[1] + src2[1];
|
||||
dst[2] = src1[2] + src2[2];
|
||||
}
|
||||
|
||||
/*
|
||||
* Ok, simulate a track-ball. Project the points onto the virtual
|
||||
* trackball, then figure out the axis of rotation, which is the cross
|
||||
* product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
|
||||
* Note: This is a deformed trackball-- is a trackball in the center,
|
||||
* but is deformed into a hyperbolic sheet of rotation away from the
|
||||
* center. This particular function was chosen after trying out
|
||||
* several variations.
|
||||
*
|
||||
* It is assumed that the arguments to this routine are in the range
|
||||
* (-1.0 ... 1.0)
|
||||
*/
|
||||
void trackball(float q[4], float p1x, float p1y, float p2x, float p2y) {
|
||||
float a[3]; /* Axis of rotation */
|
||||
float phi; /* how much to rotate about axis */
|
||||
float p1[3], p2[3], d[3];
|
||||
float t;
|
||||
|
||||
if (p1x == p2x && p1y == p2y) {
|
||||
/* Zero rotation */
|
||||
vzero(q);
|
||||
q[3] = 1.0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* First, figure out z-coordinates for projection of P1 and P2 to
|
||||
* deformed sphere
|
||||
*/
|
||||
vset(p1, p1x, p1y, tb_project_to_sphere(TRACKBALLSIZE, p1x, p1y));
|
||||
vset(p2, p2x, p2y, tb_project_to_sphere(TRACKBALLSIZE, p2x, p2y));
|
||||
|
||||
/*
|
||||
* Now, we want the cross product of P1 and P2
|
||||
*/
|
||||
vcross(p2, p1, a);
|
||||
|
||||
/*
|
||||
* Figure out how much to rotate around that axis.
|
||||
*/
|
||||
vsub(p1, p2, d);
|
||||
t = vlength(d) / (2.0 * TRACKBALLSIZE);
|
||||
|
||||
/*
|
||||
* Avoid problems with out-of-control values...
|
||||
*/
|
||||
if (t > 1.0)
|
||||
t = 1.0;
|
||||
if (t < -1.0)
|
||||
t = -1.0;
|
||||
phi = 2.0 * asin(t);
|
||||
|
||||
axis_to_quat(a, phi, q);
|
||||
}
|
||||
|
||||
/*
|
||||
* Given an axis and angle, compute quaternion.
|
||||
*/
|
||||
void axis_to_quat(float a[3], float phi, float q[4]) {
|
||||
vnormal(a);
|
||||
vcopy(a, q);
|
||||
vscale(q, sin(phi / 2.0));
|
||||
q[3] = cos(phi / 2.0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
|
||||
* if we are away from the center of the sphere.
|
||||
*/
|
||||
static float tb_project_to_sphere(float r, float x, float y) {
|
||||
float d, t, z;
|
||||
|
||||
d = sqrt(x * x + y * y);
|
||||
if (d < r * 0.70710678118654752440) { /* Inside sphere */
|
||||
z = sqrt(r * r - d * d);
|
||||
} else { /* On hyperbola */
|
||||
t = r / 1.41421356237309504880;
|
||||
z = t * t / d;
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
* Given two rotations, e1 and e2, expressed as quaternion rotations,
|
||||
* figure out the equivalent single rotation and stuff it into dest.
|
||||
*
|
||||
* This routine also normalizes the result every RENORMCOUNT times it is
|
||||
* called, to keep error from creeping in.
|
||||
*
|
||||
* NOTE: This routine is written so that q1 or q2 may be the same
|
||||
* as dest (or each other).
|
||||
*/
|
||||
|
||||
#define RENORMCOUNT 97
|
||||
|
||||
void add_quats(float q1[4], float q2[4], float dest[4]) {
|
||||
static int count = 0;
|
||||
float t1[4], t2[4], t3[4];
|
||||
float tf[4];
|
||||
|
||||
vcopy(q1, t1);
|
||||
vscale(t1, q2[3]);
|
||||
|
||||
vcopy(q2, t2);
|
||||
vscale(t2, q1[3]);
|
||||
|
||||
vcross(q2, q1, t3);
|
||||
vadd(t1, t2, tf);
|
||||
vadd(t3, tf, tf);
|
||||
tf[3] = q1[3] * q2[3] - vdot(q1, q2);
|
||||
|
||||
dest[0] = tf[0];
|
||||
dest[1] = tf[1];
|
||||
dest[2] = tf[2];
|
||||
dest[3] = tf[3];
|
||||
|
||||
if (++count > RENORMCOUNT) {
|
||||
count = 0;
|
||||
normalize_quat(dest);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0
|
||||
* If they don't add up to 1.0, dividing by their magnitued will
|
||||
* renormalize them.
|
||||
*
|
||||
* Note: See the following for more information on quaternions:
|
||||
*
|
||||
* - Shoemake, K., Animating rotation with quaternion curves, Computer
|
||||
* Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
|
||||
* - Pletinckx, D., Quaternion calculus as a basic tool in computer
|
||||
* graphics, The Visual Computer 5, 2-13, 1989.
|
||||
*/
|
||||
static void normalize_quat(float q[4]) {
|
||||
int i;
|
||||
float mag;
|
||||
|
||||
mag = (q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
|
||||
for (i = 0; i < 4; i++)
|
||||
q[i] /= mag;
|
||||
}
|
||||
|
||||
/*
|
||||
* Build a rotation matrix, given a quaternion rotation.
|
||||
*
|
||||
*/
|
||||
void build_rotmatrix(float m[4][4], const float q[4]) {
|
||||
m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
|
||||
m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
|
||||
m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
|
||||
m[0][3] = 0.0;
|
||||
|
||||
m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
|
||||
m[1][1] = 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
|
||||
m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
|
||||
m[1][3] = 0.0;
|
||||
|
||||
m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
|
||||
m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
|
||||
m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
|
||||
m[2][3] = 0.0;
|
||||
|
||||
m[3][0] = 0.0;
|
||||
m[3][1] = 0.0;
|
||||
m[3][2] = 0.0;
|
||||
m[3][3] = 1.0;
|
||||
}
|
@ -1,75 +0,0 @@
|
||||
/*
|
||||
* (c) Copyright 1993, 1994, Silicon Graphics, Inc.
|
||||
* ALL RIGHTS RESERVED
|
||||
* Permission to use, copy, modify, and distribute this software for
|
||||
* any purpose and without fee is hereby granted, provided that the above
|
||||
* copyright notice appear in all copies and that both the copyright notice
|
||||
* and this permission notice appear in supporting documentation, and that
|
||||
* the name of Silicon Graphics, Inc. not be used in advertising
|
||||
* or publicity pertaining to distribution of the software without specific,
|
||||
* written prior permission.
|
||||
*
|
||||
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
|
||||
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
|
||||
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
|
||||
* GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
|
||||
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
|
||||
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
|
||||
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
|
||||
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
|
||||
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
|
||||
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
|
||||
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*
|
||||
* US Government Users Restricted Rights
|
||||
* Use, duplication, or disclosure by the Government is subject to
|
||||
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
|
||||
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
|
||||
* clause at DFARS 252.227-7013 and/or in similar or successor
|
||||
* clauses in the FAR or the DOD or NASA FAR Supplement.
|
||||
* Unpublished-- rights reserved under the copyright laws of the
|
||||
* United States. Contractor/manufacturer is Silicon Graphics,
|
||||
* Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
|
||||
*
|
||||
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
|
||||
*/
|
||||
/*
|
||||
* trackball.h
|
||||
* A virtual trackball implementation
|
||||
* Written by Gavin Bell for Silicon Graphics, November 1988.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Pass the x and y coordinates of the last and current positions of
|
||||
* the mouse, scaled so they are from (-1.0 ... 1.0).
|
||||
*
|
||||
* The resulting rotation is returned as a quaternion rotation in the
|
||||
* first paramater.
|
||||
*/
|
||||
void trackball(float q[4], float p1x, float p1y, float p2x, float p2y);
|
||||
|
||||
void negate_quat(float *q, float *qn);
|
||||
|
||||
/*
|
||||
* Given two quaternions, add them together to get a third quaternion.
|
||||
* Adding quaternions to get a compound rotation is analagous to adding
|
||||
* translations to get a compound translation. When incrementally
|
||||
* adding rotations, the first argument here should be the new
|
||||
* rotation, the second and third the total rotation (which will be
|
||||
* over-written with the resulting new total rotation).
|
||||
*/
|
||||
void add_quats(float *q1, float *q2, float *dest);
|
||||
|
||||
/*
|
||||
* A useful function, builds a rotation matrix in Matrix based on
|
||||
* given quaternion.
|
||||
*/
|
||||
void build_rotmatrix(float m[4][4], const float q[4]);
|
||||
|
||||
/*
|
||||
* This function computes a quaternion based on an axis (defined by
|
||||
* the given vector) and an angle about which to rotate. The angle is
|
||||
* expressed in radians. The result is put into the third argument.
|
||||
*/
|
||||
void axis_to_quat(float a[3], float phi, float q[4]);
|
Loading…
x
Reference in New Issue
Block a user