update tinyobjloader.

mesh-modify experiment.
This commit is contained in:
Syoyo Fujita 2020-03-09 22:34:50 +09:00
parent 8ec9af7f2e
commit a5416707c9
8 changed files with 2523 additions and 457 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +0,0 @@
EXTRA_CXXFLAGS := -fsanitize=address -fno-omit-frame-pointer -Wall -Werror -Weverything -Wno-c++11-long-long -Wno-c++98-compat
all:
clang++ -std=c++11 -I../../ $(EXTRA_CXXFLAGS) -o mesh-dump mesh-dump.cc

View File

@ -0,0 +1,4 @@
EXTRA_CXXFLAGS := -fsanitize=address -fno-omit-frame-pointer -Wall -Werror -Weverything -Wno-c++11-long-long -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-padded
all:
clang++ -std=c++11 -g -O1 -I../../ -I../common $(EXTRA_CXXFLAGS) -o mesh-modify mesh-modify.cc mesh-util.cc

View File

@ -1,12 +1,12 @@
# Mesh dump experiment
# Mesh modify experiment
Sometimes we want to tweak mesh attributes(e.g. vertex position, uv coord, etc).
glTF itself does not allow ASCII representation of such data.
This example show how to
- Export mesh data from .bin to .csv
- Import mesh data to .bin(update corresponding buffer data) from .csv
- Export mesh data from .bin to .obj
- Import mesh data to .bin(update corresponding buffer data) from .obj
## Requirement

View File

@ -7,6 +7,19 @@
#include <string>
#include <vector>
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Weverything"
#endif
#include "../../json.hpp"
using json = nlohmann::json;
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_WRITE_IMPLEMENTATION
@ -17,6 +30,8 @@
#include "tiny_gltf.h"
#endif
#include "mesh-util.hh"
namespace {
static std::string PrintMode(int mode) {
@ -36,7 +51,6 @@ static std::string PrintMode(int mode) {
return "**UNKNOWN**";
}
#if 0
static std::string PrintTarget(int target) {
if (target == 34962) {
return "GL_ARRAY_BUFFER";
@ -46,7 +60,6 @@ static std::string PrintTarget(int target) {
return "**UNKNOWN**";
}
}
#endif
static std::string PrintType(int ty) {
if (ty == TINYGLTF_TYPE_SCALAR) {
@ -93,6 +106,7 @@ static std::string PrintComponentType(int ty) {
return "**UNKNOWN**";
}
#if 0
// TODO(syoyo): Support sparse accessor(sparse vertex attribute).
// TODO(syoyo): Support more data type
struct VertexAttrib {
@ -123,7 +137,11 @@ struct MeshPrim {
std::map<int, VertexAttrib> weights; // <slot, attrib>
std::map<int, VertexAttrib>
joints; // <slot, attrib> store data as float type
int indices_type{-1}; // storage type(componentType) of `indices`.
std::vector<uint32_t> indices; // vertex indices
};
#endif
static std::string GetFilePathExtension(const std::string &FileName) {
if (FileName.find_last_of(".") != std::string::npos)
@ -356,13 +374,86 @@ static float Unpack(const unsigned char *ptr, int type) {
}
}
static uint32_t UnpackIndex(const unsigned char *ptr, int type) {
if (type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE) {
unsigned char data = *ptr;
return uint32_t(data);
} else if (type == TINYGLTF_COMPONENT_TYPE_BYTE) {
char data = static_cast<char>(*ptr);
return uint32_t(data);
} else if (type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT) {
uint16_t data = *reinterpret_cast<const uint16_t *>(ptr);
return uint32_t(data);
} else if (type == TINYGLTF_COMPONENT_TYPE_SHORT) {
int16_t data = *reinterpret_cast<const int16_t *>(ptr);
return uint32_t(data);
} else if (type == TINYGLTF_COMPONENT_TYPE_INT) {
// TODO(syoyo): Check overflow(2G+ index)
int32_t data = *reinterpret_cast<const int32_t *>(ptr);
return uint32_t(data);
} else if (type == TINYGLTF_COMPONENT_TYPE_SHORT) {
uint32_t data = *reinterpret_cast<const uint32_t *>(ptr);
return data;
} else {
std::cerr << "???: Unsupported type: " << PrintComponentType(type) << "\n";
return static_cast<uint32_t>(-1);
}
}
static bool DumpMesh(const tinygltf::Model &model, const tinygltf::Mesh &mesh,
MeshPrim *out) {
example::MeshPrim *out) {
for (size_t i = 0; i < mesh.primitives.size(); i++) {
const tinygltf::Primitive &primitive = mesh.primitives[i];
if (primitive.indices < 0) return false;
if (primitive.indices < 0) {
std::cerr << "Primitive indices must be provided\n";
return false;
}
// indices.
{
const tinygltf::Accessor &indexAccessor =
model.accessors[size_t(primitive.indices)];
size_t num_elements = indexAccessor.count;
std::cout << "index.elements = " << num_elements << "\n";
size_t byte_stride = ComponentTypeByteSize(indexAccessor.componentType);
const tinygltf::BufferView &indexBufferView =
model.bufferViews[size_t(indexAccessor.bufferView)];
// should be 34963(ELEMENT_ARRAY_BUFFER)
std::cout << "index.target = " << PrintTarget(indexBufferView.target) << "\n";
if (indexBufferView.target != TINYGLTF_TARGET_ELEMENT_ARRAY_BUFFER) {
std::cerr << "indexBufferView.target must be ELEMENT_ARRAY_BUFFER\n";
return false;
}
const tinygltf::Buffer &indexBuffer =
model.buffers[size_t(indexBufferView.buffer)];
std::vector<uint32_t> indices;
for (size_t k = 0; k < num_elements; k++) {
// TODO(syoyo): out-of-bounds check.
const unsigned char *ptr = indexBuffer.data.data() +
indexBufferView.byteOffset + (k * byte_stride) +
indexAccessor.byteOffset;
uint32_t idx = UnpackIndex(ptr, indexAccessor.componentType);
std::cout << "vertex_index[" << k << "] = " << idx << "\n";
indices.push_back(idx);
}
out->indices = indices;
out->indices_type = indexAccessor.componentType;
}
// attributes
{
std::map<std::string, int>::const_iterator it(
primitive.attributes.begin());
@ -419,7 +510,7 @@ static bool DumpMesh(const tinygltf::Model &model, const tinygltf::Mesh &mesh,
size_t num_elems = accessor.count * elem_size;
VertexAttrib attrib;
example::VertexAttrib attrib;
for (size_t k = 0; k < num_elems; k++) {
// TODO(syoyo): out-of-bounds check.
const unsigned char *ptr = buffer.data.data() +
@ -469,13 +560,14 @@ static bool DumpMesh(const tinygltf::Model &model, const tinygltf::Mesh &mesh,
}
out->mode = primitive.mode;
out->name = mesh.name;
}
return true;
}
static bool ExtractMesh(const std::string &asset_path, tinygltf::Model &model,
std::vector<MeshPrim> *outs) {
std::vector<example::MeshPrim> *outs) {
// Get .bin data
{
if (model.buffers.size() != 1) {
@ -502,6 +594,7 @@ static bool ExtractMesh(const std::string &asset_path, tinygltf::Model &model,
if (bin.size() != buffer.data.size()) {
std::cerr << "Byte size mismatch. Failed to load file: " << buffer.uri
<< "\n";
std::cerr << " .bin size = " << bin.size() << ", size in 'buffer.uri' = " << buffer.data.size() << "\n";
return false;
}
}
@ -509,7 +602,7 @@ static bool ExtractMesh(const std::string &asset_path, tinygltf::Model &model,
for (const auto &mesh : model.meshes) {
std::cout << "mesh.name: " << mesh.name << "\n";
MeshPrim output;
example::MeshPrim output;
bool ret = DumpMesh(model, mesh, &output);
if (!ret) {
return false;
@ -528,6 +621,8 @@ int main(int argc, char **argv) {
std::cout << "mesh-dump input.gltf" << std::endl;
}
#if 0
tinygltf::Model model;
tinygltf::TinyGLTF loader;
std::string err;
@ -567,9 +662,75 @@ int main(int argc, char **argv) {
}
}
json j;
{
std::ifstream i(input_filename);
i >> j;
}
std::cout << "j = " << j << "\n";
json j_patch = R"([
{ "op": "add", "path": "/buffers/-", "value": {
"name": "plane/data",
"byteLength": 480,
"uri": "plane1.bin"
} }
])"_json;
// a JSON value
json j_original = R"({
"baz": ["one", "two", "three"],
"foo": "bar"
})"_json;
//json j_patch = R"([
// { "op": "remove", "path": "/buffers" }
//])"_json;
std::cout << "patch = " << j_patch.dump(2) << "\n";
json j_ret = j.patch(j_patch);
std::cout << "patched = " << j_ret.dump(2) << "\n";
std::string basedir = GetBaseDir(input_filename);
std::vector<MeshPrim> meshes;
std::vector<example::MeshPrim> meshes;
bool ret = ExtractMesh(basedir, model, &meshes);
size_t n = 0;
for (const auto &mesh : meshes) {
// Assume no duplicated name in .glTF data
std::string filename;
if (mesh.name.empty()) {
filename = "untitled-" + std::to_string(n) + ".obj";
} else {
filename = mesh.name + ".obj";
}
bool flip_y = true; // flip texcoord Y?
bool ok = example::SaveAsObjMesh(filename, mesh,);
if (!ok) {
return EXIT_FAILURE;
}
n++;
}
#else
{
std::string input_filename(argv[1]);
// Require facevarying layout?
// false = try to keep GL-like mesh data as much as possible.
// true = reorder vertex data and re-assign vertex indices.
bool facevarying = false;
example::MeshPrim mesh;
bool ok = example::LoadObjMesh(input_filename, facevarying, &mesh);
if (!ok) {
return EXIT_FAILURE;
}
}
#endif
return ret ? EXIT_SUCCESS : EXIT_FAILURE;
}

View File

@ -0,0 +1,372 @@
#include "mesh-util.hh"
#include <cassert>
#include <fstream>
#include <iostream>
#include <sstream>
// ../common/
#define TINYOBJLOADER_IMPLEMENTATION
#include "tiny_obj_loader.h"
namespace example {
// TODO(syoyo): Specify CCW(Counter-ClockWise) or CW(ClockWise)
static void CalcNormal(float N[3], float v0[3], float v1[3], float v2[3]) {
float v10[3];
v10[0] = v1[0] - v0[0];
v10[1] = v1[1] - v0[1];
v10[2] = v1[2] - v0[2];
float v20[3];
v20[0] = v2[0] - v0[0];
v20[1] = v2[1] - v0[1];
v20[2] = v2[2] - v0[2];
N[0] = v20[1] * v10[2] - v20[2] * v10[1];
N[1] = v20[2] * v10[0] - v20[0] * v10[2];
N[2] = v20[0] * v10[1] - v20[1] * v10[0];
float len2 = N[0] * N[0] + N[1] * N[1] + N[2] * N[2];
if (len2 > 0.0f) {
float len = sqrtf(len2);
N[0] /= len;
N[1] /= len;
N[2] /= len;
}
}
static std::string make_triple(int i, bool has_vn, bool has_vt) {
std::stringstream ss;
if (has_vn && has_vt) {
ss << i << "/" << i << "/" << i;
} else if (has_vn) {
ss << i << "//" << i;
} else if (has_vt) {
ss << i << "/" << i;
} else {
ss << i;
}
return ss.str();
}
bool SaveAsObjMesh(const std::string &filename, const MeshPrim &mesh,
bool flip_texcoord_y) {
std::ofstream ofs(filename);
if (!ofs) {
std::cerr << "Failed to open .obj to write: " << filename << "\n";
return false;
}
bool has_vn = false;
bool has_vt = false;
has_vn = mesh.normal.data.size() == mesh.position.data.size();
has_vt = mesh.texcoords.count(0) &&
(mesh.texcoords.at(0).data.size() > 0); // TEXCOORD_0
// v
for (size_t i = 0; i < mesh.position.data.size() / 3; i++) {
ofs << "v " << mesh.position.data[3 * i + 0] << " "
<< mesh.position.data[3 * i + 1] << " " << mesh.position.data[3 * i + 2]
<< "\n";
}
// vn
for (size_t i = 0; i < mesh.normal.data.size() / 3; i++) {
ofs << "vn " << mesh.normal.data[3 * i + 0] << " "
<< mesh.normal.data[3 * i + 1] << " " << mesh.normal.data[3 * i + 2]
<< "\n";
}
assert((mesh.texcoords.at(0).data.size() / 2) ==
(mesh.position.data.size() / 3));
// vt
for (size_t i = 0; i < mesh.texcoords.at(0).data.size() / 2; i++) {
float y = mesh.texcoords.at(0).data[2 * i + 1];
if (flip_texcoord_y) {
y = 1.0f - y;
}
ofs << "vt " << mesh.texcoords.at(0).data[2 * i + 0] << " " << y << "\n";
}
// v, vn, vt has same index
for (size_t i = 0; i < mesh.indices.size() / 3; i++) {
// .obj's index start with 1.
int f0 = int(mesh.indices[3 * i + 0]) + 1;
int f1 = int(mesh.indices[3 * i + 1]) + 1;
int f2 = int(mesh.indices[3 * i + 2]) + 1;
ofs << "f " << make_triple(f0, has_vn, has_vt) << " "
<< make_triple(f1, has_vn, has_vt) << " "
<< make_triple(f2, has_vn, has_vt) << "\n";
}
// TODO(syoyo): Write joints/weights
return true;
}
bool RequireFacevaringLayout(const tinyobj::attrib_t &attrib,
const std::vector<tinyobj::shape_t> &shapes) {
// Check if all normals and texcoords has same index with vertex
if ((attrib.texcoords.size() / 3) != attrib.vertices.size() / 3) {
std::cerr << "Texcoords and Vertices length mismatch. Mesh data cannot be "
"represented as non-facevarying\n";
return true;
}
if ((attrib.normals.size() / 2) != attrib.vertices.size() / 3) {
std::cerr << "Normals and Vertices length mismatch. Mesh data cannot be "
"represented as non-facevarying\n";
return true;
}
// Check indices.
for (size_t s = 0; s < shapes.size(); s++) {
const tinyobj::shape_t &shape = shapes[s];
for (size_t f = 0; f < shape.mesh.indices.size() / 3; f++) {
tinyobj::index_t idx0 = shape.mesh.indices[3 * f + 0];
tinyobj::index_t idx1 = shape.mesh.indices[3 * f + 1];
tinyobj::index_t idx2 = shape.mesh.indices[3 * f + 2];
// index must be all same
if ((idx0.vertex_index != idx0.normal_index) ||
(idx0.vertex_index != idx0.texcoord_index)) {
return true;
}
if ((idx1.vertex_index != idx1.normal_index) ||
(idx1.vertex_index != idx1.texcoord_index)) {
return true;
}
if ((idx2.vertex_index != idx2.normal_index) ||
(idx2.vertex_index != idx2.texcoord_index)) {
return true;
}
}
}
return false;
}
bool LoadObjMesh(const std::string &filename, bool facevarying,
MeshPrim *mesh) {
tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials;
std::string warn;
std::string err;
bool ret = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err,
filename.c_str(), /* base_path */ nullptr,
/* triangulate */ true);
if (!warn.empty()) {
std::cout << "WARN: " << warn << std::endl;
}
if (!err.empty()) {
std::cerr << "ERR: " << err << std::endl;
}
if (!ret) {
std::cerr << "Failed to load wavefront .obj\n";
return false;
}
if (!facevarying) {
// TODO(syoyo): Allow per-shape non-facevarying layout
facevarying = RequireFacevaringLayout(attrib, shapes);
}
bool has_texcoord = (attrib.texcoords.size() > 0);
bool has_normal = (attrib.normals.size() > 0);
float bmin[3];
float bmax[3];
bmin[0] = bmin[1] = bmin[2] = std::numeric_limits<float>::max();
bmax[0] = bmax[1] = bmax[2] = -std::numeric_limits<float>::max();
// reorder texcoords and normals so that it has same indexing to vertices.
if (facevarying) {
mesh->position.data.clear();
mesh->normal.data.clear();
mesh->texcoords[0] = VertexAttrib();
// Concat shapes
for (size_t s = 0; s < shapes.size(); s++) {
const tinyobj::shape_t &shape = shapes[s];
for (size_t f = 0; f < shape.mesh.indices.size() / 3; f++) {
tinyobj::index_t idx0 = shape.mesh.indices[3 * f + 0];
tinyobj::index_t idx1 = shape.mesh.indices[3 * f + 1];
tinyobj::index_t idx2 = shape.mesh.indices[3 * f + 2];
float tc[3][2];
if (has_texcoord) {
if ((idx0.texcoord_index < 0) || (idx1.texcoord_index < 0) ||
(idx2.texcoord_index < 0)) {
// This face does contain valid texcoord
tc[0][0] = 0.0f;
tc[0][1] = 0.0f;
tc[1][0] = 0.0f;
tc[1][1] = 0.0f;
tc[2][0] = 0.0f;
tc[2][1] = 0.0f;
} else {
assert(attrib.texcoords.size() >
size_t(2 * idx0.texcoord_index + 1));
assert(attrib.texcoords.size() >
size_t(2 * idx1.texcoord_index + 1));
assert(attrib.texcoords.size() >
size_t(2 * idx2.texcoord_index + 1));
// Flip Y coord.
tc[0][0] = attrib.texcoords[2 * idx0.texcoord_index];
tc[0][1] = 1.0f - attrib.texcoords[2 * idx0.texcoord_index + 1];
tc[1][0] = attrib.texcoords[2 * idx1.texcoord_index];
tc[1][1] = 1.0f - attrib.texcoords[2 * idx1.texcoord_index + 1];
tc[2][0] = attrib.texcoords[2 * idx2.texcoord_index];
tc[2][1] = 1.0f - attrib.texcoords[2 * idx2.texcoord_index + 1];
}
} else {
tc[0][0] = 0.0f;
tc[0][1] = 0.0f;
tc[1][0] = 0.0f;
tc[1][1] = 0.0f;
tc[2][0] = 0.0f;
tc[2][1] = 0.0f;
}
float v[3][3];
for (int k = 0; k < 3; k++) {
int f0 = idx0.vertex_index;
int f1 = idx1.vertex_index;
int f2 = idx2.vertex_index;
assert(f0 >= 0);
assert(f1 >= 0);
assert(f2 >= 0);
v[0][k] = attrib.vertices[3 * f0 + k];
v[1][k] = attrib.vertices[3 * f1 + k];
v[2][k] = attrib.vertices[3 * f2 + k];
bmin[k] = std::min(v[0][k], bmin[k]);
bmin[k] = std::min(v[1][k], bmin[k]);
bmin[k] = std::min(v[2][k], bmin[k]);
bmax[k] = std::max(v[0][k], bmax[k]);
bmax[k] = std::max(v[1][k], bmax[k]);
bmax[k] = std::max(v[2][k], bmax[k]);
}
float n[3][3];
if (has_normal) {
if ((idx0.normal_index < 0) || (idx1.normal_index < 0) ||
(idx2.normal_index < 0)) {
// This face does contain valid normal
CalcNormal(n[0], v[0], v[1], v[2]);
n[1][0] = n[0][0];
n[1][1] = n[0][1];
n[1][2] = n[0][2];
n[2][0] = n[0][0];
n[2][1] = n[0][1];
n[2][2] = n[0][2];
} else {
int nf0 = idx0.normal_index;
int nf1 = idx1.normal_index;
int nf2 = idx2.normal_index;
for (int k = 0; k < 3; k++) {
assert(size_t(3 * nf0 + k) < attrib.normals.size());
assert(size_t(3 * nf1 + k) < attrib.normals.size());
assert(size_t(3 * nf2 + k) < attrib.normals.size());
n[0][k] = attrib.normals[3 * nf0 + k];
n[1][k] = attrib.normals[3 * nf1 + k];
n[2][k] = attrib.normals[3 * nf2 + k];
}
}
}
mesh->position.data.push_back(v[0][0]);
mesh->position.data.push_back(v[0][1]);
mesh->position.data.push_back(v[0][2]);
mesh->position.data.push_back(v[1][0]);
mesh->position.data.push_back(v[1][1]);
mesh->position.data.push_back(v[1][2]);
mesh->position.data.push_back(v[2][0]);
mesh->position.data.push_back(v[2][1]);
mesh->position.data.push_back(v[2][2]);
mesh->normal.data.push_back(n[0][0]);
mesh->normal.data.push_back(n[0][1]);
mesh->normal.data.push_back(n[0][2]);
mesh->normal.data.push_back(n[1][0]);
mesh->normal.data.push_back(n[1][1]);
mesh->normal.data.push_back(n[1][2]);
mesh->normal.data.push_back(n[2][0]);
mesh->normal.data.push_back(n[2][1]);
mesh->normal.data.push_back(n[2][2]);
mesh->texcoords[0].data.push_back(tc[0][0]);
mesh->texcoords[0].data.push_back(tc[0][1]);
mesh->texcoords[0].data.push_back(tc[1][0]);
mesh->texcoords[0].data.push_back(tc[1][1]);
mesh->texcoords[0].data.push_back(tc[2][0]);
mesh->texcoords[0].data.push_back(tc[2][1]);
size_t idx = mesh->indices.size();
mesh->indices.push_back(int(idx) + 0);
mesh->indices.push_back(int(idx) + 1);
mesh->indices.push_back(int(idx) + 2);
}
}
} else {
// position/texcoord/normal can be represented in shared vertex manner
mesh->position.data.clear();
for (size_t v = 0; v < attrib.vertices.size(); v++) {
mesh->position.data.push_back(attrib.vertices[v]);
}
mesh->normal.data.clear();
for (size_t v = 0; v < attrib.normals.size(); v++) {
mesh->normal.data.push_back(attrib.normals[v]);
}
mesh->texcoords[0] = VertexAttrib();
for (size_t v = 0; v < attrib.texcoords.size(); v++) {
mesh->texcoords[0].data.push_back(attrib.texcoords[v]);
}
mesh->indices.clear();
size_t face_index_offset = 0;
for (size_t s = 0; s < shapes.size(); s++) {
const tinyobj::shape_t &shape = shapes[s];
for (size_t f = 0; f < shape.mesh.indices.size(); f++) {
mesh->indices.push_back(uint32_t(face_index_offset) + uint32_t(shape.mesh.indices[f].vertex_index));
}
face_index_offset = mesh->indices.size();
}
}
return true;
}
} // namespace example

View File

@ -0,0 +1,55 @@
#pragma once
#include <vector>
#include <map>
namespace example {
// TODO(syoyo): Support sparse accessor(sparse vertex attribute).
// TODO(syoyo): Support more data type
struct VertexAttrib {
std::string name;
// Value are converted to float type.
std::vector<float> data;
// Corresponding info in binary data
int data_type; // e.g. TINYGLTF_TYPE_VEC2
int component_type; // storage type. e.g.
// TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT
uint64_t buffer_offset{0};
size_t buffer_length{0};
};
struct MeshPrim {
std::string name;
int32_t id{-1};
int mode; // e.g. TRIANGLES
VertexAttrib position; // vec3
VertexAttrib normal; // vec3
VertexAttrib tangent; // vec4
VertexAttrib color; // vec3 or vec4
std::map<int, VertexAttrib> texcoords; // <slot, attrib> vec2
std::map<int, VertexAttrib> weights; // <slot, attrib>
std::map<int, VertexAttrib>
joints; // <slot, attrib> store data as float type
int indices_type{-1}; // storage type(componentType) of `indices`.
std::vector<uint32_t> indices; // vertex indices
};
///
/// Save MeshPrim as wavefront .obj
///
bool SaveAsObjMesh(const std::string &filename, const MeshPrim &mesh);
///
/// Loads .obj and convert to MeshPrim
///
/// @param[in] facevarying Construct mesh with facevarying vertex layout(default false)
///
bool LoadObjMesh(const std::string &filename, bool facevarying, MeshPrim *mesh);
} // namespace example

View File

@ -0,0 +1,7 @@
project('mesh-modify', 'cpp', default_options : ['cpp_std=c++11'])
thread_dep = dependency('threads')
incdir = include_directories(['../../', '../common'])
executable('mesh-modify', ['mesh-modify.cc', 'mesh-util.cc'], include_directories : incdir, dependencies : thread_dep)