2020-03-11 17:58:02 +09:00

1370 lines
43 KiB
C++

#include "mesh-util.hh"
#include <cassert>
#include <fstream>
#include <iostream>
#include <sstream>
// ../common/
#define TINYOBJLOADER_IMPLEMENTATION
#include "tiny_obj_loader.h"
// Include defines
#include "tiny_gltf.h"
namespace example {
#if 0
static inline int32_t GetComponentSizeInBytes(uint32_t componentType) {
if (componentType == TINYGLTF_COMPONENT_TYPE_BYTE) {
return 1;
} else if (componentType == TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE) {
return 1;
} else if (componentType == TINYGLTF_COMPONENT_TYPE_SHORT) {
return 2;
} else if (componentType == TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT) {
return 2;
} else if (componentType == TINYGLTF_COMPONENT_TYPE_INT) {
return 4;
} else if (componentType == TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT) {
return 4;
} else if (componentType == TINYGLTF_COMPONENT_TYPE_FLOAT) {
return 4;
} else if (componentType == TINYGLTF_COMPONENT_TYPE_DOUBLE) {
return 8;
} else {
// Unknown componenty type
return -1;
}
}
#endif
static inline int32_t GetNumComponentsInType(uint32_t ty) {
if (ty == TINYGLTF_TYPE_SCALAR) {
return 1;
} else if (ty == TINYGLTF_TYPE_VEC2) {
return 2;
} else if (ty == TINYGLTF_TYPE_VEC3) {
return 3;
} else if (ty == TINYGLTF_TYPE_VEC4) {
return 4;
} else if (ty == TINYGLTF_TYPE_MAT2) {
return 4;
} else if (ty == TINYGLTF_TYPE_MAT3) {
return 9;
} else if (ty == TINYGLTF_TYPE_MAT4) {
return 16;
} else {
// Unknown componenty type
return -1;
}
}
size_t VertexAttrib::numElements() const {
size_t n = GetNumComponentsInType(data_type);
return data.size() / n;
}
// https://stackoverflow.com/questions/8520560/get-a-file-name-from-a-path
std::string GetBaseFilename(const std::string &filepath) {
return filepath.substr(filepath.find_last_of("/\\") + 1);
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
os << "(";
for (size_t i = 0; i < v.size(); i++) {
os << v[i];
if (i != (v.size() - 1)) {
os << ", ";
}
}
os << ")";
return os;
}
#if 0
static std::string PrintMode(int mode) {
if (mode == TINYGLTF_MODE_POINTS) {
return "POINTS";
} else if (mode == TINYGLTF_MODE_LINE) {
return "LINE";
} else if (mode == TINYGLTF_MODE_LINE_LOOP) {
return "LINE_LOOP";
} else if (mode == TINYGLTF_MODE_TRIANGLES) {
return "TRIANGLES";
} else if (mode == TINYGLTF_MODE_TRIANGLE_FAN) {
return "TRIANGLE_FAN";
} else if (mode == TINYGLTF_MODE_TRIANGLE_STRIP) {
return "TRIANGLE_STRIP";
}
return "**UNKNOWN**";
}
static std::string PrintTarget(int target) {
if (target == 34962) {
return "GL_ARRAY_BUFFER";
} else if (target == 34963) {
return "GL_ELEMENT_ARRAY_BUFFER";
} else {
return "**UNKNOWN**";
}
}
#endif
static std::string PrintType(int ty) {
if (ty == TINYGLTF_TYPE_SCALAR) {
return "SCALAR";
} else if (ty == TINYGLTF_TYPE_VECTOR) {
return "VECTOR";
} else if (ty == TINYGLTF_TYPE_VEC2) {
return "VEC2";
} else if (ty == TINYGLTF_TYPE_VEC3) {
return "VEC3";
} else if (ty == TINYGLTF_TYPE_VEC4) {
return "VEC4";
} else if (ty == TINYGLTF_TYPE_MATRIX) {
return "MATRIX";
} else if (ty == TINYGLTF_TYPE_MAT2) {
return "MAT2";
} else if (ty == TINYGLTF_TYPE_MAT3) {
return "MAT3";
} else if (ty == TINYGLTF_TYPE_MAT4) {
return "MAT4";
}
return "**UNKNOWN**";
}
static std::string PrintComponentType(int ty) {
if (ty == TINYGLTF_COMPONENT_TYPE_BYTE) {
return "BYTE";
} else if (ty == TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE) {
return "UNSIGNED_BYTE";
} else if (ty == TINYGLTF_COMPONENT_TYPE_SHORT) {
return "SHORT";
} else if (ty == TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT) {
return "UNSIGNED_SHORT";
} else if (ty == TINYGLTF_COMPONENT_TYPE_INT) {
return "INT";
} else if (ty == TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT) {
return "UNSIGNED_INT";
} else if (ty == TINYGLTF_COMPONENT_TYPE_FLOAT) {
return "FLOAT";
} else if (ty == TINYGLTF_COMPONENT_TYPE_DOUBLE) {
return "DOUBLE";
}
return "**UNKNOWN**";
}
// TODO(syoyo): Specify CCW(Counter-ClockWise) or CW(ClockWise)
static void CalcNormal(float N[3], float v0[3], float v1[3], float v2[3]) {
float v10[3];
v10[0] = v1[0] - v0[0];
v10[1] = v1[1] - v0[1];
v10[2] = v1[2] - v0[2];
float v20[3];
v20[0] = v2[0] - v0[0];
v20[1] = v2[1] - v0[1];
v20[2] = v2[2] - v0[2];
N[0] = v20[1] * v10[2] - v20[2] * v10[1];
N[1] = v20[2] * v10[0] - v20[0] * v10[2];
N[2] = v20[0] * v10[1] - v20[1] * v10[0];
float len2 = N[0] * N[0] + N[1] * N[1] + N[2] * N[2];
if (len2 > 0.0f) {
float len = sqrtf(len2);
N[0] /= len;
N[1] /= len;
N[2] /= len;
}
}
static std::string make_triple(int i, bool has_vn, bool has_vt) {
std::stringstream ss;
if (has_vn && has_vt) {
ss << i << "/" << i << "/" << i;
} else if (has_vn) {
ss << i << "//" << i;
} else if (has_vt) {
ss << i << "/" << i;
} else {
ss << i;
}
return ss.str();
}
namespace {
tinygltf::Accessor ConvertToGLTFAccessor(const VertexAttrib &attrib,
int bufferView, size_t byteOffset) {
tinygltf::Accessor accessor;
accessor.bufferView = bufferView;
accessor.name = attrib.name;
accessor.byteOffset = byteOffset;
accessor.componentType = attrib.component_type;
accessor.count = attrib.numElements();
accessor.type = attrib.data_type;
accessor.minValues = attrib.minValues;
accessor.maxValues = attrib.maxValues;
return accessor;
}
// data is appended to `buf`
bool SerializeVertexAttribToBuffer(const VertexAttrib &attrib,
std::vector<uint8_t> *buf, size_t *begin_loc,
size_t *end_loc) {
(*begin_loc) = buf->size();
if (attrib.component_type == TINYGLTF_COMPONENT_TYPE_BYTE) {
for (size_t i = 0; i < attrib.data.size(); i++) {
int8_t d = static_cast<int8_t>(attrib.data[i]);
buf->push_back(static_cast<uint8_t>(d));
}
} else if (attrib.component_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE) {
for (size_t i = 0; i < attrib.data.size(); i++) {
uint8_t d = static_cast<uint8_t>(attrib.data[i]);
buf->push_back(d);
}
} else if (attrib.component_type == TINYGLTF_COMPONENT_TYPE_SHORT) {
for (size_t i = 0; i < attrib.data.size(); i++) {
int16_t d = static_cast<int16_t>(attrib.data[i]);
uint8_t *ptr = reinterpret_cast<uint8_t *>(&d);
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
}
} else if (attrib.component_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT) {
for (size_t i = 0; i < attrib.data.size(); i++) {
uint16_t d = static_cast<uint16_t>(attrib.data[i]);
uint8_t *ptr = reinterpret_cast<uint8_t *>(&d);
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
}
} else if (attrib.component_type == TINYGLTF_COMPONENT_TYPE_INT) {
for (size_t i = 0; i < attrib.data.size(); i++) {
int32_t d = static_cast<int32_t>(attrib.data[i]);
uint8_t *ptr = reinterpret_cast<uint8_t *>(&d);
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
}
} else if (attrib.component_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT) {
for (size_t i = 0; i < attrib.data.size(); i++) {
uint32_t d = static_cast<uint32_t>(attrib.data[i]);
uint8_t *ptr = reinterpret_cast<uint8_t *>(&d);
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
}
} else if (attrib.component_type == TINYGLTF_COMPONENT_TYPE_FLOAT) {
for (size_t i = 0; i < attrib.data.size(); i++) {
float d = attrib.data[i];
uint8_t *ptr = reinterpret_cast<uint8_t *>(&d);
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
}
} else {
std::cerr << "Unsupported component type: "
<< PrintComponentType(attrib.component_type) << "\n";
return false;
}
(*end_loc) = buf->size();
return true;
}
// data is appended to `buf`
bool SerializeVertexIndicesToBuffer(const std::vector<uint32_t> &indices,
int data_type, std::vector<uint8_t> *buf,
size_t *begin_loc, size_t *end_loc) {
// TODO(syoyo): Check alignment
(*begin_loc) = buf->size();
if (data_type == TINYGLTF_COMPONENT_TYPE_BYTE) {
for (size_t i = 0; i < indices.size(); i++) {
int8_t d = static_cast<int8_t>(indices[i]);
buf->push_back(static_cast<uint8_t>(d));
}
} else if (data_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE) {
for (size_t i = 0; i < indices.size(); i++) {
uint8_t d = static_cast<uint8_t>(indices[i]);
buf->push_back(d);
}
} else if (data_type == TINYGLTF_COMPONENT_TYPE_SHORT) {
for (size_t i = 0; i < indices.size(); i++) {
int16_t d = static_cast<int16_t>(indices[i]);
uint8_t *ptr = reinterpret_cast<uint8_t *>(&d);
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
}
} else if (data_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT) {
for (size_t i = 0; i < indices.size(); i++) {
uint16_t d = static_cast<uint16_t>(indices[i]);
uint8_t *ptr = reinterpret_cast<uint8_t *>(&d);
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
}
} else if (data_type == TINYGLTF_COMPONENT_TYPE_INT) {
for (size_t i = 0; i < indices.size(); i++) {
int32_t d = static_cast<int32_t>(indices[i]);
uint8_t *ptr = reinterpret_cast<uint8_t *>(&d);
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
}
} else if (data_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT) {
for (size_t i = 0; i < indices.size(); i++) {
uint32_t d = static_cast<uint32_t>(indices[i]);
uint8_t *ptr = reinterpret_cast<uint8_t *>(&d);
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
ptr++;
buf->push_back(*ptr);
}
} else {
std::cerr << "Unsupported data type: " << PrintType(data_type) << "\n";
return false;
}
(*end_loc) = buf->size();
return true;
}
bool ConvertToGLTFMesh(const MeshPrim &mesh, int buffer_id,
tinygltf::Mesh *gltfmesh,
std::vector<tinygltf::Accessor> *accessors,
std::vector<tinygltf::BufferView> *bufferViews,
tinygltf::Buffer *buffer) {
std::vector<uint8_t> buf;
// single primitive per mesh
tinygltf::Primitive primitive;
// vertex index
{
size_t s, e;
if (!SerializeVertexIndicesToBuffer(mesh.indices, mesh.indices_type, &buf,
&s, &e)) {
return false;
}
std::cout << "indices: [" << s << ", " << e << "]\n";
tinygltf::BufferView bufferView;
bufferView.buffer = buffer_id;
bufferView.byteLength = e - s;
bufferView.byteOffset = s;
bufferView.target = TINYGLTF_TARGET_ELEMENT_ARRAY_BUFFER;
bufferViews->push_back(bufferView);
tinygltf::Accessor accessor;
accessor.bufferView = bufferViews->size() - 1;
accessor.minValues.resize(1);
accessor.minValues[0] = mesh.indices_min;
accessor.maxValues.resize(1);
accessor.maxValues[0] = mesh.indices_max;
accessor.count = mesh.indices.size();
accessor.componentType = mesh.indices_type;
accessor.type = TINYGLTF_TYPE_SCALAR;
accessors->push_back(accessor);
primitive.indices = accessors->size() - 1;
}
// position
{
size_t s, e;
if (!SerializeVertexAttribToBuffer(mesh.position, &buf, &s, &e)) {
return false;
}
std::cout << "postion.byteRange: [" << s << ", " << e << "]\n";
tinygltf::BufferView bufferView;
bufferView.buffer = buffer_id;
bufferView.byteLength = e - s;
bufferView.byteOffset = s;
bufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER;
bufferViews->push_back(bufferView);
tinygltf::Accessor accessor = ConvertToGLTFAccessor(
mesh.position, bufferViews->size() - 1, /* offset */ 0);
accessors->push_back(accessor);
primitive.attributes["POSITION"] = accessors->size() - 1;
}
if (mesh.normal.data.size() > 0) {
size_t s, e;
if (!SerializeVertexAttribToBuffer(mesh.normal, &buf, &s, &e)) {
return false;
}
std::cout << "normal.byteRange: [" << s << ", " << e << "]\n";
tinygltf::BufferView bufferView;
bufferView.buffer = buffer_id;
bufferView.byteLength = e - s;
bufferView.byteOffset = s;
bufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER;
bufferViews->push_back(bufferView);
tinygltf::Accessor accessor = ConvertToGLTFAccessor(
mesh.normal, bufferViews->size() - 1, /* offset */ 0);
accessors->push_back(accessor);
primitive.attributes["NORMAL"] = accessors->size() - 1;
}
if (mesh.tangent.data.size() > 0) {
size_t s, e;
if (!SerializeVertexAttribToBuffer(mesh.tangent, &buf, &s, &e)) {
return false;
}
std::cout << "tangent.byteRange: [" << s << ", " << e << "]\n";
tinygltf::BufferView bufferView;
bufferView.buffer = buffer_id;
bufferView.byteLength = e - s;
bufferView.byteOffset = s;
bufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER;
bufferViews->push_back(bufferView);
tinygltf::Accessor accessor = ConvertToGLTFAccessor(
mesh.tangent, bufferViews->size() - 1, /* offset */ 0);
accessors->push_back(accessor);
primitive.attributes["TANGENT"] = accessors->size() - 1;
}
if (mesh.texcoords.size() > 0) {
for (const auto &item : mesh.texcoords) {
size_t s, e;
if (!SerializeVertexAttribToBuffer(item.second, &buf, &s, &e)) {
return false;
}
std::cout << "tangent.byteRange: [" << s << ", " << e << "]\n";
tinygltf::BufferView bufferView;
bufferView.buffer = buffer_id;
bufferView.byteLength = e - s;
bufferView.byteOffset = s;
bufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER;
bufferViews->push_back(bufferView);
tinygltf::Accessor accessor = ConvertToGLTFAccessor(
item.second, bufferViews->size() - 1, /* offset */ 0);
accessors->push_back(accessor);
std::string target = "TEXCOORD_" + std::to_string(item.first);
primitive.attributes[target] = accessors->size() - 1;
}
}
if (mesh.joints.size() > 0) {
for (const auto &item : mesh.joints) {
size_t s, e;
if (!SerializeVertexAttribToBuffer(item.second, &buf, &s, &e)) {
return false;
}
std::cout << "joint[" << item.first << "].byteRange: [" << s << ", " << e
<< "]\n";
tinygltf::BufferView bufferView;
bufferView.buffer = buffer_id;
bufferView.byteLength = e - s;
bufferView.byteOffset = s;
bufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER;
bufferViews->push_back(bufferView);
tinygltf::Accessor accessor = ConvertToGLTFAccessor(
mesh.tangent, bufferViews->size() - 1, /* offset */ 0);
accessors->push_back(accessor);
std::string target = "JOINTS_" + std::to_string(item.first);
primitive.attributes[target] = accessors->size() - 1;
}
}
if (mesh.weights.size() > 0) {
for (const auto &item : mesh.weights) {
size_t s, e;
if (!SerializeVertexAttribToBuffer(item.second, &buf, &s, &e)) {
return false;
}
std::cout << "weight[" << item.first << "].byteRange: [" << s << ", " << e
<< "]\n";
tinygltf::BufferView bufferView;
bufferView.buffer = buffer_id;
bufferView.byteLength = e - s;
bufferView.byteOffset = s;
bufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER;
bufferViews->push_back(bufferView);
tinygltf::Accessor accessor = ConvertToGLTFAccessor(
mesh.tangent, bufferViews->size() - 1, /* offset */ 0);
accessors->push_back(accessor);
std::string target = "WEIGHTS_" + std::to_string(item.first);
primitive.attributes[target] = accessors->size() - 1;
}
}
primitive.mode = mesh.mode;
gltfmesh->primitives.push_back(primitive);
buffer->data = buf;
buffer->name = "bufffer0"; // temporary
return true;
}
} // namespace
bool SaveAsObjMesh(const std::string &filename, const MeshPrim &mesh,
bool flip_texcoord_y) {
std::ofstream ofs(filename);
if (!ofs) {
std::cerr << "Failed to open .obj to write: " << filename << "\n";
return false;
}
bool has_vn = false;
bool has_vt = false;
has_vn = mesh.normal.data.size() == mesh.position.data.size();
has_vt = mesh.texcoords.count(0) &&
(mesh.texcoords.at(0).data.size() > 0); // TEXCOORD_0
// v
for (size_t i = 0; i < mesh.position.data.size() / 3; i++) {
ofs << "v " << mesh.position.data[3 * i + 0] << " "
<< mesh.position.data[3 * i + 1] << " " << mesh.position.data[3 * i + 2]
<< "\n";
}
// vn
for (size_t i = 0; i < mesh.normal.data.size() / 3; i++) {
ofs << "vn " << mesh.normal.data[3 * i + 0] << " "
<< mesh.normal.data[3 * i + 1] << " " << mesh.normal.data[3 * i + 2]
<< "\n";
}
assert((mesh.texcoords.at(0).data.size() / 2) ==
(mesh.position.data.size() / 3));
// vt
for (size_t i = 0; i < mesh.texcoords.at(0).data.size() / 2; i++) {
float y = mesh.texcoords.at(0).data[2 * i + 1];
if (flip_texcoord_y) {
y = 1.0f - y;
}
ofs << "vt " << mesh.texcoords.at(0).data[2 * i + 0] << " " << y << "\n";
}
// v, vn, vt has same index
for (size_t i = 0; i < mesh.indices.size() / 3; i++) {
// .obj's index start with 1.
int f0 = int(mesh.indices[3 * i + 0]) + 1;
int f1 = int(mesh.indices[3 * i + 1]) + 1;
int f2 = int(mesh.indices[3 * i + 2]) + 1;
ofs << "f " << make_triple(f0, has_vn, has_vt) << " "
<< make_triple(f1, has_vn, has_vt) << " "
<< make_triple(f2, has_vn, has_vt) << "\n";
}
// TODO(syoyo): Write joints/weights
return true;
}
bool SaveAsGLTFMesh(const std::string &filename, const MeshPrim &mesh) {
tinygltf::TinyGLTF ctx;
tinygltf::Model model;
bool embedImages = false;
bool embedBuffers = false;
bool prettyPrint = true;
bool writeBinary = false;
// Create dummy node
tinygltf::Node node;
node.mesh = 0;
node.name = "mesh";
tinygltf::Scene scene;
scene.nodes.push_back(0);
model.defaultScene = 0;
model.scenes.push_back(scene);
model.nodes.push_back(node);
int buffer_id = 0;
tinygltf::Mesh gltfmesh;
tinygltf::Buffer buffer;
if (!ConvertToGLTFMesh(mesh, buffer_id, &gltfmesh, &(model.accessors),
&(model.bufferViews), &buffer)) {
std::cerr << "Failed to convert Mesh\n";
return false;
}
std::cout << "mesh.name: " << mesh.name << "\n";
gltfmesh.name = mesh.name;
model.meshes.push_back(gltfmesh);
model.buffers.push_back(buffer);
// Fill some required fields
tinygltf::Asset asset;
asset.version = "2.0"; // required
asset.generator = "mesh-modify";
model.asset = asset;
bool ret = ctx.WriteGltfSceneToFile(&model, filename, embedImages,
embedBuffers, prettyPrint, writeBinary);
return ret;
}
bool RequireFacevaringLayout(const tinyobj::attrib_t &attrib,
const std::vector<tinyobj::shape_t> &shapes) {
// Check if all normals and texcoords has same index with vertex
if ((attrib.texcoords.size() / 2) != attrib.vertices.size() / 3) {
std::cerr << "Texcoords and Vertices length mismatch. Mesh data cannot be "
"represented as non-facevarying. texcoords.size = "
<< (attrib.texcoords.size() / 2)
<< ", vertices.size = " << (attrib.vertices.size() / 3) << "\n";
return true;
}
if ((attrib.normals.size() / 3) != attrib.vertices.size() / 3) {
std::cerr << "Normals and Vertices length mismatch. Mesh data cannot be "
"represented as non-facevarying. normals.size = "
<< (attrib.normals.size() / 3)
<< ", vertices.szie = " << (attrib.vertices.size() / 3) << "\n";
return true;
}
// Check indices.
for (size_t s = 0; s < shapes.size(); s++) {
const tinyobj::shape_t &shape = shapes[s];
for (size_t f = 0; f < shape.mesh.indices.size() / 3; f++) {
tinyobj::index_t idx0 = shape.mesh.indices[3 * f + 0];
tinyobj::index_t idx1 = shape.mesh.indices[3 * f + 1];
tinyobj::index_t idx2 = shape.mesh.indices[3 * f + 2];
// index must be all same
if ((idx0.vertex_index != idx0.normal_index) ||
(idx0.vertex_index != idx0.texcoord_index)) {
return true;
}
if ((idx1.vertex_index != idx1.normal_index) ||
(idx1.vertex_index != idx1.texcoord_index)) {
return true;
}
if ((idx2.vertex_index != idx2.normal_index) ||
(idx2.vertex_index != idx2.texcoord_index)) {
return true;
}
}
}
return false;
}
static void ConstructVertexSkinWeight(
const std::vector<tinyobj::real_t> &vertices,
const std::vector<tinyobj::skin_weight_t> &skin_weights,
std::vector<tinyobj::skin_weight_t> *vertex_skin_weights) {
size_t num_vertices = vertices.size() / 3;
vertex_skin_weights->resize(num_vertices);
for (size_t i = 0; i < skin_weights.size(); i++) {
const tinyobj::skin_weight_t &skin = skin_weights[i];
assert(skin.vertex_id >= 0);
assert(skin.vertex_id < num_vertices);
(*vertex_skin_weights)[skin.vertex_id] = skin;
}
// now you can lookup i'th vertex skin weight by `vertex_skin_weights[i]`
}
bool LoadObjMesh(const std::string &filename, bool facevarying,
MeshPrim *mesh) {
tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials;
std::string warn;
std::string err;
bool ret = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err,
filename.c_str(), /* base_path */ nullptr,
/* triangulate */ true);
if (!warn.empty()) {
std::cout << "WARN: " << warn << std::endl;
}
if (!err.empty()) {
std::cerr << "ERR: " << err << std::endl;
}
if (!ret) {
std::cerr << "Failed to load wavefront .obj\n";
return false;
}
if (!facevarying) {
// TODO(syoyo): Allow per-shape non-facevarying layout
facevarying = RequireFacevaringLayout(attrib, shapes);
}
bool has_texcoord = (attrib.texcoords.size() > 0);
bool has_normal = (attrib.normals.size() > 0);
float bmin[3];
float bmax[3];
bmin[0] = bmin[1] = bmin[2] = std::numeric_limits<float>::max();
bmax[0] = bmax[1] = bmax[2] = -std::numeric_limits<float>::max();
// reorder texcoords and normals so that it has same indexing to vertices.
if (facevarying) {
mesh->position.data.clear();
mesh->normal.data.clear();
mesh->tangent.data.clear();
mesh->texcoords[0] = VertexAttrib();
// Concat shapes
for (size_t s = 0; s < shapes.size(); s++) {
const tinyobj::shape_t &shape = shapes[s];
for (size_t f = 0; f < shape.mesh.indices.size() / 3; f++) {
tinyobj::index_t idx0 = shape.mesh.indices[3 * f + 0];
tinyobj::index_t idx1 = shape.mesh.indices[3 * f + 1];
tinyobj::index_t idx2 = shape.mesh.indices[3 * f + 2];
float tc[3][2];
if (has_texcoord) {
if ((idx0.texcoord_index < 0) || (idx1.texcoord_index < 0) ||
(idx2.texcoord_index < 0)) {
// This face does contain valid texcoord
tc[0][0] = 0.0f;
tc[0][1] = 0.0f;
tc[1][0] = 0.0f;
tc[1][1] = 0.0f;
tc[2][0] = 0.0f;
tc[2][1] = 0.0f;
} else {
assert(attrib.texcoords.size() >
size_t(2 * idx0.texcoord_index + 1));
assert(attrib.texcoords.size() >
size_t(2 * idx1.texcoord_index + 1));
assert(attrib.texcoords.size() >
size_t(2 * idx2.texcoord_index + 1));
// Flip Y coord.
tc[0][0] = attrib.texcoords[2 * idx0.texcoord_index];
tc[0][1] = 1.0f - attrib.texcoords[2 * idx0.texcoord_index + 1];
tc[1][0] = attrib.texcoords[2 * idx1.texcoord_index];
tc[1][1] = 1.0f - attrib.texcoords[2 * idx1.texcoord_index + 1];
tc[2][0] = attrib.texcoords[2 * idx2.texcoord_index];
tc[2][1] = 1.0f - attrib.texcoords[2 * idx2.texcoord_index + 1];
}
} else {
tc[0][0] = 0.0f;
tc[0][1] = 0.0f;
tc[1][0] = 0.0f;
tc[1][1] = 0.0f;
tc[2][0] = 0.0f;
tc[2][1] = 0.0f;
}
float v[3][3];
for (int k = 0; k < 3; k++) {
int f0 = idx0.vertex_index;
int f1 = idx1.vertex_index;
int f2 = idx2.vertex_index;
assert(f0 >= 0);
assert(f1 >= 0);
assert(f2 >= 0);
v[0][k] = attrib.vertices[3 * f0 + k];
v[1][k] = attrib.vertices[3 * f1 + k];
v[2][k] = attrib.vertices[3 * f2 + k];
bmin[k] = std::min(v[0][k], bmin[k]);
bmin[k] = std::min(v[1][k], bmin[k]);
bmin[k] = std::min(v[2][k], bmin[k]);
bmax[k] = std::max(v[0][k], bmax[k]);
bmax[k] = std::max(v[1][k], bmax[k]);
bmax[k] = std::max(v[2][k], bmax[k]);
}
float n[3][3];
if (has_normal) {
if ((idx0.normal_index < 0) || (idx1.normal_index < 0) ||
(idx2.normal_index < 0)) {
// This face does contain valid normal
// Calc geometric normal
CalcNormal(n[0], v[0], v[1], v[2]);
n[1][0] = n[0][0];
n[1][1] = n[0][1];
n[1][2] = n[0][2];
n[2][0] = n[0][0];
n[2][1] = n[0][1];
n[2][2] = n[0][2];
} else {
int nf0 = idx0.normal_index;
int nf1 = idx1.normal_index;
int nf2 = idx2.normal_index;
for (int k = 0; k < 3; k++) {
assert(size_t(3 * nf0 + k) < attrib.normals.size());
assert(size_t(3 * nf1 + k) < attrib.normals.size());
assert(size_t(3 * nf2 + k) < attrib.normals.size());
n[0][k] = attrib.normals[3 * nf0 + k];
n[1][k] = attrib.normals[3 * nf1 + k];
n[2][k] = attrib.normals[3 * nf2 + k];
}
}
} else {
// Calc geometric normal
CalcNormal(n[0], v[0], v[1], v[2]);
n[1][0] = n[0][0];
n[1][1] = n[0][1];
n[1][2] = n[0][2];
n[2][0] = n[0][0];
n[2][1] = n[0][1];
n[2][2] = n[0][2];
}
mesh->position.data.push_back(v[0][0]);
mesh->position.data.push_back(v[0][1]);
mesh->position.data.push_back(v[0][2]);
mesh->position.data.push_back(v[1][0]);
mesh->position.data.push_back(v[1][1]);
mesh->position.data.push_back(v[1][2]);
mesh->position.data.push_back(v[2][0]);
mesh->position.data.push_back(v[2][1]);
mesh->position.data.push_back(v[2][2]);
mesh->normal.data.push_back(n[0][0]);
mesh->normal.data.push_back(n[0][1]);
mesh->normal.data.push_back(n[0][2]);
mesh->normal.data.push_back(n[1][0]);
mesh->normal.data.push_back(n[1][1]);
mesh->normal.data.push_back(n[1][2]);
mesh->normal.data.push_back(n[2][0]);
mesh->normal.data.push_back(n[2][1]);
mesh->normal.data.push_back(n[2][2]);
mesh->texcoords[0].data.push_back(tc[0][0]);
mesh->texcoords[0].data.push_back(tc[0][1]);
mesh->texcoords[0].data.push_back(tc[1][0]);
mesh->texcoords[0].data.push_back(tc[1][1]);
mesh->texcoords[0].data.push_back(tc[2][0]);
mesh->texcoords[0].data.push_back(tc[2][1]);
size_t idx = mesh->indices.size();
mesh->indices.push_back(int(idx) + 0);
mesh->indices.push_back(int(idx) + 1);
mesh->indices.push_back(int(idx) + 2);
}
}
// weights/joints
if (attrib.skin_weights.size() > 0) {
// Reorder vertex skin weights
std::vector<tinyobj::skin_weight_t> vertex_skin_weights;
ConstructVertexSkinWeight(attrib.vertices, attrib.skin_weights,
&vertex_skin_weights);
// Find max # of slots.
size_t maxn = 0;
for (size_t i = 0; i < vertex_skin_weights.size(); i++) {
maxn = std::max(vertex_skin_weights[i].weightValues.size(), maxn);
}
int num_slots = 0;
if (maxn > 0) {
num_slots = (((maxn - 1) / 4) + 1) * 4;
}
std::cout << "# of slots = " << num_slots << "\n";
for (size_t t = 0; t < size_t(num_slots); t++) {
VertexAttrib weights, joints;
size_t num_faceverts = mesh->indices.size();
// facevarying weights/joints Fill with zeros
weights.data.resize(4 * num_faceverts, 0.0f);
joints.data.resize(4 * num_faceverts, 0.0f);
for (size_t s = 0; s < shapes.size(); s++) {
const tinyobj::shape_t &shape = shapes[s];
for (size_t f = 0; f < shape.mesh.indices.size(); f++) {
tinyobj::index_t idx = shape.mesh.indices[f];
size_t vid = idx.vertex_index;
assert(vid < vertex_skin_weights.size());
const tinyobj::skin_weight_t &sw = vertex_skin_weights[vid];
for (size_t j0 = 0; j0 < 4; j0++) {
size_t j = t * 4 + j0;
if (j < sw.weightValues.size()) {
joints.data[4 * vid + j0] = float(sw.weightValues[j].joint_id);
weights.data[4 * vid + j0] = float(sw.weightValues[j].weight);
}
}
}
}
mesh->weights[t] = weights;
mesh->joints[t] = joints;
}
}
} else {
// position/texcoord/normal can be represented in shared vertex manner
mesh->position.data.clear();
for (size_t v = 0; v < attrib.vertices.size(); v++) {
mesh->position.data.push_back(attrib.vertices[v]);
}
mesh->normal.data.clear();
for (size_t v = 0; v < attrib.normals.size(); v++) {
mesh->normal.data.push_back(attrib.normals[v]);
}
mesh->texcoords[0] = VertexAttrib();
for (size_t v = 0; v < attrib.texcoords.size(); v++) {
mesh->texcoords[0].data.push_back(attrib.texcoords[v]);
}
mesh->indices_type = TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT;
mesh->indices.clear();
size_t face_index_offset = 0;
for (size_t s = 0; s < shapes.size(); s++) {
const tinyobj::shape_t &shape = shapes[s];
for (size_t f = 0; f < shape.mesh.indices.size(); f++) {
mesh->indices.push_back(uint32_t(face_index_offset) +
uint32_t(shape.mesh.indices[f].vertex_index));
}
face_index_offset = mesh->indices.size();
}
// weights/joints
if (attrib.skin_weights.size() > 0) {
// Find max # of slots.
size_t maxn = 0;
for (size_t i = 0; i < attrib.skin_weights.size(); i++) {
maxn = std::max(attrib.skin_weights[i].weightValues.size(), maxn);
}
int num_slots = 0;
if (maxn > 0) {
num_slots = (((maxn - 1) / 4) + 1) * 4;
}
std::cout << "# of slots = " << num_slots << "\n";
for (size_t s = 0; s < size_t(num_slots); s++) {
VertexAttrib weights, joints;
// Fill with zeros
weights.data.resize(4 * (mesh->position.data.size() / 3), 0.0f);
joints.data.resize(4 * (mesh->position.data.size() / 3), 0.0f);
for (size_t v = 0; v < attrib.skin_weights.size(); v++) {
const tinyobj::skin_weight_t &sw = attrib.skin_weights[v];
assert(sw.vertex_id < (mesh->position.data.size() / 3));
size_t dst_vid = sw.vertex_id;
for (size_t j0 = 0; j0 < 4; j0++) {
size_t j = s * 4 + j0;
if (j < sw.weightValues.size()) {
joints.data[4 * dst_vid + j0] =
float(sw.weightValues[j].joint_id);
weights.data[4 * dst_vid + j0] = float(sw.weightValues[j].weight);
}
}
}
weights.data_type = TINYGLTF_TYPE_VEC4;
weights.component_type =
TINYGLTF_COMPONENT_TYPE_FLOAT; // storage format
mesh->weights[s] = weights;
joints.data_type = TINYGLTF_TYPE_VEC4;
joints.component_type =
TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT; // storage format
mesh->joints[s] = joints;
}
}
}
// postprocessing. e.g. find min/max
{
{
uint32_t minv = 0.0;
uint32_t maxv = 0.0;
for (size_t i = 0; i < mesh->indices.size(); i++) {
minv = std::min(minv, uint32_t(mesh->indices[i]));
maxv = std::max(maxv, uint32_t(mesh->indices[i]));
}
mesh->indices_min = int(minv);
mesh->indices_max = int(maxv);
mesh->indices_type = TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT;
}
{
float bmin[3];
float bmax[3];
bmin[0] = bmin[1] = bmin[2] = std::numeric_limits<float>::max();
bmax[0] = bmax[1] = bmax[2] = -std::numeric_limits<float>::max();
for (size_t i = 0; i < mesh->position.data.size() / 3; i++) {
for (size_t k = 0; k < 3; k++) {
bmin[k] = std::min(bmin[k], mesh->position.data[3 * i + k]);
bmax[k] = std::max(bmax[k], mesh->position.data[3 * i + k]);
}
}
mesh->position.minValues.resize(3);
mesh->position.minValues[0] = bmin[0];
mesh->position.minValues[1] = bmin[1];
mesh->position.minValues[2] = bmin[2];
mesh->position.maxValues.resize(3);
mesh->position.maxValues[0] = bmax[0];
mesh->position.maxValues[1] = bmax[1];
mesh->position.maxValues[2] = bmax[2];
mesh->position.data_type = TINYGLTF_TYPE_VEC3;
mesh->position.component_type = TINYGLTF_COMPONENT_TYPE_FLOAT;
}
{
float bmin[3];
float bmax[3];
bmin[0] = bmin[1] = bmin[2] = std::numeric_limits<float>::max();
bmax[0] = bmax[1] = bmax[2] = -std::numeric_limits<float>::max();
for (size_t i = 0; i < mesh->normal.data.size() / 3; i++) {
for (size_t k = 0; k < 3; k++) {
bmin[k] = std::min(bmin[k], mesh->normal.data[3 * i + k]);
bmax[k] = std::max(bmax[k], mesh->normal.data[3 * i + k]);
}
}
mesh->normal.minValues.resize(3);
mesh->normal.minValues[0] = bmin[0];
mesh->normal.minValues[1] = bmin[1];
mesh->normal.minValues[2] = bmin[2];
mesh->normal.maxValues.resize(3);
mesh->normal.maxValues[0] = bmax[0];
mesh->normal.maxValues[1] = bmax[1];
mesh->normal.maxValues[2] = bmax[2];
mesh->normal.data_type = TINYGLTF_TYPE_VEC3;
mesh->normal.component_type = TINYGLTF_COMPONENT_TYPE_FLOAT;
}
{
float bmin[4];
float bmax[4];
bmin[0] = bmin[1] = bmin[2] = bmin[3] = std::numeric_limits<float>::max();
bmax[0] = bmax[1] = bmax[2] = bmin[3] =
-std::numeric_limits<float>::max();
size_t n = 3;
for (size_t i = 0; i < mesh->tangent.data.size() / n; i++) {
for (size_t k = 0; k < n; k++) {
bmin[k] = std::min(bmin[k], mesh->tangent.data[n * i + k]);
bmax[k] = std::max(bmax[k], mesh->tangent.data[n * i + k]);
}
}
mesh->tangent.minValues.resize(n);
mesh->tangent.maxValues.resize(n);
for (size_t k = 0; k < n; k++) {
mesh->tangent.minValues[k] = bmin[k];
mesh->tangent.maxValues[k] = bmax[k];
}
mesh->tangent.data_type =
(n == 3) ? TINYGLTF_TYPE_VEC3 : TINYGLTF_TYPE_VEC4;
mesh->tangent.component_type = TINYGLTF_COMPONENT_TYPE_FLOAT;
}
// texcoord
for (auto &item : mesh->texcoords) {
float bmin[2];
float bmax[2];
bmin[0] = bmin[1] = std::numeric_limits<float>::max();
bmax[0] = bmax[1] = -std::numeric_limits<float>::max();
for (size_t i = 0; i < item.second.data.size() / 2; i++) {
for (size_t k = 0; k < 2; k++) {
bmin[k] = std::min(bmin[k], item.second.data[2 * i + k]);
bmax[k] = std::max(bmax[k], item.second.data[2 * i + k]);
}
}
item.second.minValues.resize(2);
item.second.maxValues.resize(2);
for (size_t k = 0; k < 2; k++) {
item.second.minValues[k] = bmin[k];
item.second.maxValues[k] = bmax[k];
}
item.second.data_type = TINYGLTF_TYPE_VEC2;
item.second.component_type = TINYGLTF_COMPONENT_TYPE_FLOAT;
}
// joints
for (auto &item : mesh->joints) {
float bmin;
float bmax;
bmin = std::numeric_limits<float>::max();
bmax = -std::numeric_limits<float>::max();
for (size_t i = 0; i < item.second.data.size(); i++) {
bmin = std::min(bmin, item.second.data[i]);
bmax = std::max(bmax, item.second.data[i]);
}
item.second.minValues.resize(1);
item.second.maxValues.resize(1);
item.second.minValues[0] = bmin;
item.second.maxValues[0] = bmax;
item.second.data_type = TINYGLTF_TYPE_VEC4;
item.second.component_type =
TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT; // storage format
}
// weights
for (auto &item : mesh->weights) {
float bmin;
float bmax;
bmin = std::numeric_limits<float>::max();
bmax = -std::numeric_limits<float>::max();
for (size_t i = 0; i < item.second.data.size(); i++) {
bmin = std::min(bmin, item.second.data[i]);
bmax = std::max(bmax, item.second.data[i]);
}
item.second.minValues.resize(1);
item.second.maxValues.resize(1);
item.second.minValues[0] = bmin;
item.second.maxValues[0] = bmax;
item.second.data_type = TINYGLTF_TYPE_VEC4;
item.second.component_type =
TINYGLTF_COMPONENT_TYPE_FLOAT; // storage format
}
}
// Use filename as mesh's name
mesh->name = GetBaseFilename(filename);
mesh->mode = TINYGLTF_MODE_TRIANGLES;
return true;
}
void PrintMeshPrim(const MeshPrim &mesh) {
std::cout << "indices.component_type : "
<< PrintComponentType(mesh.indices_type) << "\n";
std::cout << "# of indices : " << mesh.indices.size() << "\n";
std::cout << " indices.min = " << mesh.indices_min
<< ", max = " << mesh.indices_max << "\n";
for (size_t i = 0; i < mesh.indices.size(); i++) {
std::cout << " index[" << i << "] = " << mesh.indices[i] << "\n";
}
std::cout << "position.type : " << PrintType(mesh.position.data_type) << "\n";
std::cout << "position.component_type : "
<< PrintComponentType(mesh.position.component_type) << "\n";
std::cout << "# of positions : " << mesh.position.data.size() / 3 << "\n";
if ((mesh.position.minValues.size() == 3) &&
(mesh.position.maxValues.size() == 3)) {
std::cout << " position.min = " << mesh.position.minValues
<< ", max = " << mesh.position.maxValues << "\n";
}
for (size_t i = 0; i < mesh.position.data.size() / 3; i++) {
std::cout << " position[" << i << "] = " << mesh.position.data[3 * i + 0]
<< ", " << mesh.position.data[3 * i + 1] << ", "
<< mesh.position.data[3 * i + 2] << std::endl;
}
std::cout << "normal.type : " << PrintType(mesh.normal.data_type) << "\n";
std::cout << "normal.component_type : "
<< PrintComponentType(mesh.normal.component_type) << "\n";
std::cout << "# of normals : " << mesh.normal.data.size() / 3 << "\n";
if ((mesh.normal.minValues.size() == 3) &&
(mesh.normal.maxValues.size() == 3)) {
std::cout << " normal.min = " << mesh.normal.minValues
<< ", max = " << mesh.normal.maxValues << "\n";
}
for (size_t i = 0; i < mesh.normal.data.size() / 3; i++) {
std::cout << " normal[" << i << "] = " << mesh.normal.data[3 * i + 0]
<< ", " << mesh.normal.data[3 * i + 1] << ", "
<< mesh.normal.data[3 * i + 2] << std::endl;
}
if (mesh.tangent.data.size() > 0) {
assert((mesh.tangent.data_type == TINYGLTF_TYPE_VEC3) ||
(mesh.tangent.data_type == TINYGLTF_TYPE_VEC4));
size_t n = mesh.tangent.data_type == TINYGLTF_TYPE_VEC3 ? 3 : 4;
std::cout << "tangent.type : " << PrintType(mesh.tangent.data_type) << "\n";
std::cout << "tangent.component_type : "
<< PrintComponentType(mesh.tangent.component_type) << "\n";
std::cout << "# of tangents : " << mesh.tangent.data.size() / n << "\n";
if ((mesh.tangent.minValues.size() == 3) &&
(mesh.tangent.maxValues.size() == 3)) {
std::cout << " tangent.min = " << mesh.tangent.minValues
<< ", max = " << mesh.tangent.maxValues << "\n";
}
for (size_t i = 0; i < mesh.tangent.data.size() / n; i++) {
std::cout << " tangent[" << i << "] = " << mesh.tangent.data[n * i + 0]
<< ", " << mesh.tangent.data[n * i + 1] << ", "
<< mesh.tangent.data[n * i + 2];
if (n == 4) {
std::cout << ", " << mesh.tangent.data[n * i + 3];
}
std::cout << std::endl;
}
}
std::cout << "# of texcoord slots : " << mesh.texcoords.size() << "\n";
for (const auto &item : mesh.texcoords) {
std::cout << "TEXCOORD_" << item.first << "\n";
assert(item.second.data_type == TINYGLTF_TYPE_VEC2);
std::cout << "texcoord.type : " << PrintType(item.second.data_type) << "\n";
std::cout << "texcoord.component_type : "
<< PrintComponentType(item.second.component_type) << "\n";
std::cout << "# of texcoords : " << item.second.data.size() / 2 << "\n";
if ((item.second.minValues.size() == 2) &&
(item.second.maxValues.size() == 2)) {
std::cout << " texcood.min = " << item.second.minValues
<< ", max = " << item.second.maxValues << "\n";
}
for (size_t i = 0; i < item.second.data.size() / 2; i++) {
std::cout << " texcoord[" << i << "] = " << item.second.data[2 * i + 0]
<< ", " << item.second.data[2 * i + 1];
std::cout << std::endl;
}
}
assert(mesh.joints.size() == mesh.weights.size());
std::cout << "# of joints/weights slots : " << mesh.joints.size() << "\n";
for (const auto &item : mesh.joints) {
assert(mesh.weights.count(item.first));
assert(item.second.data_type == TINYGLTF_TYPE_VEC4);
// joint must be uint8 or uint16
assert(
(item.second.component_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE) ||
(item.second.component_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT));
std::cout << "joint.type : " << PrintType(item.second.data_type) << "\n";
std::cout << "joint.component_type : "
<< PrintComponentType(item.second.component_type) << "\n";
std::cout << "JOINTS_" << item.first << "\n";
for (size_t i = 0; i < item.second.data.size(); i++) {
std::cout << " joints[" << i << "] = " << int(item.second.data[i])
<< "\n";
}
const VertexAttrib &attrib = mesh.weights.at(item.first);
// weight must be uint8 or uint16(normalized), or float
assert((attrib.component_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE) ||
(attrib.component_type == TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT) ||
(attrib.component_type == TINYGLTF_COMPONENT_TYPE_FLOAT));
std::cout << "weight.type : " << PrintType(attrib.data_type) << "\n";
std::cout << "weight.component_type : "
<< PrintComponentType(attrib.component_type) << "\n";
std::cout << "WEIGHTS_" << item.first << "\n";
for (size_t i = 0; i < attrib.data.size(); i++) {
std::cout << " weights[" << i << "] = " << attrib.data[i] << "\n";
}
}
}
} // namespace example