enhance: use urllib join instead of fstring (#9549)

This commit is contained in:
Byron.wang 2024-10-21 19:04:28 +08:00 committed by GitHub
parent 31a603e905
commit 37fea072bc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 7 additions and 5 deletions

View File

@ -168,7 +168,7 @@ Star Dify on GitHub and be instantly notified of new releases.
> Before installing Dify, make sure your machine meets the following minimum system requirements:
>
>- CPU >= 2 Core
>- RAM >= 4GB
>- RAM >= 4 GiB
</br>

View File

@ -174,7 +174,7 @@ Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI
在安装 Dify 之前,请确保您的机器满足以下最低系统要求:
- CPU >= 2 Core
- RAM >= 4GB
- RAM >= 4 GiB
### 快速启动

View File

@ -1,4 +1,5 @@
import os
from urllib.parse import urljoin
import requests
@ -15,8 +16,7 @@ class EnterpriseRequest:
@classmethod
def send_request(cls, method, endpoint, json=None, params=None):
headers = {"Content-Type": "application/json", "Enterprise-Api-Secret-Key": cls.secret_key}
url = f"{cls.base_url}{endpoint}"
url = urljoin(cls.base_url, endpoint)
response = requests.request(method, url, json=json, params=params, headers=headers, proxies=cls.proxies)
return response.json()

View File

@ -1,3 +1,5 @@
import string
import numpy as np
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
@ -31,7 +33,7 @@ def test_max_chunks():
max_chunks = embedding_model._get_max_chunks(model, credentials)
embedding_model._create_text_embedding = _create_text_embedding
texts = ["0123456789" for i in range(0, max_chunks * 2)]
texts = [string.digits for i in range(0, max_chunks * 2)]
result: TextEmbeddingResult = embedding_model.invoke(model, credentials, texts, "test")
assert len(result.embeddings) == max_chunks * 2