Add Stepfun LLM Support (#6346)

This commit is contained in:
forrestlinfeng 2024-07-18 07:47:18 +08:00 committed by GitHub
parent 4782fb50c4
commit 3b5b548af3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
16 changed files with 777 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

View File

@ -0,0 +1,6 @@
- step-1-8k
- step-1-32k
- step-1-128k
- step-1-256k
- step-1v-8k
- step-1v-32k

View File

@ -0,0 +1,328 @@
import json
from collections.abc import Generator
from typing import Optional, Union, cast
import requests
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageContent,
PromptMessageContentType,
PromptMessageTool,
SystemPromptMessage,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import (
AIModelEntity,
FetchFrom,
ModelFeature,
ModelPropertyKey,
ModelType,
ParameterRule,
ParameterType,
)
from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel
class StepfunLargeLanguageModel(OAIAPICompatLargeLanguageModel):
def _invoke(self, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) \
-> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials)
self._add_function_call(model, credentials)
user = user[:32] if user else None
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
return AIModelEntity(
model=model,
label=I18nObject(en_US=model, zh_Hans=model),
model_type=ModelType.LLM,
features=[ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL]
if credentials.get('function_calling_type') == 'tool_call'
else [],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get('context_size', 8000)),
ModelPropertyKey.MODE: LLMMode.CHAT.value,
},
parameter_rules=[
ParameterRule(
name='temperature',
use_template='temperature',
label=I18nObject(en_US='Temperature', zh_Hans='温度'),
type=ParameterType.FLOAT,
),
ParameterRule(
name='max_tokens',
use_template='max_tokens',
default=512,
min=1,
max=int(credentials.get('max_tokens', 1024)),
label=I18nObject(en_US='Max Tokens', zh_Hans='最大标记'),
type=ParameterType.INT,
),
ParameterRule(
name='top_p',
use_template='top_p',
label=I18nObject(en_US='Top P', zh_Hans='Top P'),
type=ParameterType.FLOAT,
),
]
)
def _add_custom_parameters(self, credentials: dict) -> None:
credentials['mode'] = 'chat'
credentials['endpoint_url'] = 'https://api.stepfun.com/v1'
def _add_function_call(self, model: str, credentials: dict) -> None:
model_schema = self.get_model_schema(model, credentials)
if model_schema and {
ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL
}.intersection(model_schema.features or []):
credentials['function_calling_type'] = 'tool_call'
def _convert_prompt_message_to_dict(self, message: PromptMessage,credentials: Optional[dict] = None) -> dict:
"""
Convert PromptMessage to dict for OpenAI API format
"""
if isinstance(message, UserPromptMessage):
message = cast(UserPromptMessage, message)
if isinstance(message.content, str):
message_dict = {"role": "user", "content": message.content}
else:
sub_messages = []
for message_content in message.content:
if message_content.type == PromptMessageContentType.TEXT:
message_content = cast(PromptMessageContent, message_content)
sub_message_dict = {
"type": "text",
"text": message_content.data
}
sub_messages.append(sub_message_dict)
elif message_content.type == PromptMessageContentType.IMAGE:
message_content = cast(ImagePromptMessageContent, message_content)
sub_message_dict = {
"type": "image_url",
"image_url": {
"url": message_content.data,
}
}
sub_messages.append(sub_message_dict)
message_dict = {"role": "user", "content": sub_messages}
elif isinstance(message, AssistantPromptMessage):
message = cast(AssistantPromptMessage, message)
message_dict = {"role": "assistant", "content": message.content}
if message.tool_calls:
message_dict["tool_calls"] = []
for function_call in message.tool_calls:
message_dict["tool_calls"].append({
"id": function_call.id,
"type": function_call.type,
"function": {
"name": function_call.function.name,
"arguments": function_call.function.arguments
}
})
elif isinstance(message, ToolPromptMessage):
message = cast(ToolPromptMessage, message)
message_dict = {"role": "tool", "content": message.content, "tool_call_id": message.tool_call_id}
elif isinstance(message, SystemPromptMessage):
message = cast(SystemPromptMessage, message)
message_dict = {"role": "system", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
if message.name:
message_dict["name"] = message.name
return message_dict
def _extract_response_tool_calls(self, response_tool_calls: list[dict]) -> list[AssistantPromptMessage.ToolCall]:
"""
Extract tool calls from response
:param response_tool_calls: response tool calls
:return: list of tool calls
"""
tool_calls = []
if response_tool_calls:
for response_tool_call in response_tool_calls:
function = AssistantPromptMessage.ToolCall.ToolCallFunction(
name=response_tool_call["function"]["name"] if response_tool_call.get("function", {}).get("name") else "",
arguments=response_tool_call["function"]["arguments"] if response_tool_call.get("function", {}).get("arguments") else ""
)
tool_call = AssistantPromptMessage.ToolCall(
id=response_tool_call["id"] if response_tool_call.get("id") else "",
type=response_tool_call["type"] if response_tool_call.get("type") else "",
function=function
)
tool_calls.append(tool_call)
return tool_calls
def _handle_generate_stream_response(self, model: str, credentials: dict, response: requests.Response,
prompt_messages: list[PromptMessage]) -> Generator:
"""
Handle llm stream response
:param model: model name
:param credentials: model credentials
:param response: streamed response
:param prompt_messages: prompt messages
:return: llm response chunk generator
"""
full_assistant_content = ''
chunk_index = 0
def create_final_llm_result_chunk(index: int, message: AssistantPromptMessage, finish_reason: str) \
-> LLMResultChunk:
# calculate num tokens
prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
completion_tokens = self._num_tokens_from_string(model, full_assistant_content)
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
return LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=index,
message=message,
finish_reason=finish_reason,
usage=usage
)
)
tools_calls: list[AssistantPromptMessage.ToolCall] = []
finish_reason = "Unknown"
def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]):
def get_tool_call(tool_name: str):
if not tool_name:
return tools_calls[-1]
tool_call = next((tool_call for tool_call in tools_calls if tool_call.function.name == tool_name), None)
if tool_call is None:
tool_call = AssistantPromptMessage.ToolCall(
id='',
type='',
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tool_name, arguments="")
)
tools_calls.append(tool_call)
return tool_call
for new_tool_call in new_tool_calls:
# get tool call
tool_call = get_tool_call(new_tool_call.function.name)
# update tool call
if new_tool_call.id:
tool_call.id = new_tool_call.id
if new_tool_call.type:
tool_call.type = new_tool_call.type
if new_tool_call.function.name:
tool_call.function.name = new_tool_call.function.name
if new_tool_call.function.arguments:
tool_call.function.arguments += new_tool_call.function.arguments
for chunk in response.iter_lines(decode_unicode=True, delimiter="\n\n"):
if chunk:
# ignore sse comments
if chunk.startswith(':'):
continue
decoded_chunk = chunk.strip().lstrip('data: ').lstrip()
chunk_json = None
try:
chunk_json = json.loads(decoded_chunk)
# stream ended
except json.JSONDecodeError as e:
yield create_final_llm_result_chunk(
index=chunk_index + 1,
message=AssistantPromptMessage(content=""),
finish_reason="Non-JSON encountered."
)
break
if not chunk_json or len(chunk_json['choices']) == 0:
continue
choice = chunk_json['choices'][0]
finish_reason = chunk_json['choices'][0].get('finish_reason')
chunk_index += 1
if 'delta' in choice:
delta = choice['delta']
delta_content = delta.get('content')
assistant_message_tool_calls = delta.get('tool_calls', None)
# assistant_message_function_call = delta.delta.function_call
# extract tool calls from response
if assistant_message_tool_calls:
tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
increase_tool_call(tool_calls)
if delta_content is None or delta_content == '':
continue
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta_content,
tool_calls=tool_calls if assistant_message_tool_calls else []
)
full_assistant_content += delta_content
elif 'text' in choice:
choice_text = choice.get('text', '')
if choice_text == '':
continue
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(content=choice_text)
full_assistant_content += choice_text
else:
continue
# check payload indicator for completion
yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=chunk_index,
message=assistant_prompt_message,
)
)
chunk_index += 1
if tools_calls:
yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=chunk_index,
message=AssistantPromptMessage(
tool_calls=tools_calls,
content=""
),
)
)
yield create_final_llm_result_chunk(
index=chunk_index,
message=AssistantPromptMessage(content=""),
finish_reason=finish_reason
)

View File

@ -0,0 +1,25 @@
model: step-1-128k
label:
zh_Hans: step-1-128k
en_US: step-1-128k
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 1
max: 128000
pricing:
input: '0.04'
output: '0.20'
unit: '0.001'
currency: RMB

View File

@ -0,0 +1,25 @@
model: step-1-256k
label:
zh_Hans: step-1-256k
en_US: step-1-256k
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 256000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 1
max: 256000
pricing:
input: '0.095'
output: '0.300'
unit: '0.001'
currency: RMB

View File

@ -0,0 +1,28 @@
model: step-1-32k
label:
zh_Hans: step-1-32k
en_US: step-1-32k
model_type: llm
features:
- agent-thought
- tool-call
- multi-tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 1
max: 32000
pricing:
input: '0.015'
output: '0.070'
unit: '0.001'
currency: RMB

View File

@ -0,0 +1,28 @@
model: step-1-8k
label:
zh_Hans: step-1-8k
en_US: step-1-8k
model_type: llm
features:
- agent-thought
- tool-call
- multi-tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 8000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 8000
pricing:
input: '0.005'
output: '0.020'
unit: '0.001'
currency: RMB

View File

@ -0,0 +1,25 @@
model: step-1v-32k
label:
zh_Hans: step-1v-32k
en_US: step-1v-32k
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 1024
min: 1
max: 32000
pricing:
input: '0.015'
output: '0.070'
unit: '0.001'
currency: RMB

View File

@ -0,0 +1,25 @@
model: step-1v-8k
label:
zh_Hans: step-1v-8k
en_US: step-1v-8k
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 8192
pricing:
input: '0.005'
output: '0.020'
unit: '0.001'
currency: RMB

View File

@ -0,0 +1,30 @@
import logging
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
logger = logging.getLogger(__name__)
class StepfunProvider(ModelProvider):
def validate_provider_credentials(self, credentials: dict) -> None:
"""
Validate provider credentials
if validate failed, raise exception
:param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
"""
try:
model_instance = self.get_model_instance(ModelType.LLM)
model_instance.validate_credentials(
model='step-1-8k',
credentials=credentials
)
except CredentialsValidateFailedError as ex:
raise ex
except Exception as ex:
logger.exception(f'{self.get_provider_schema().provider} credentials validate failed')
raise ex

View File

@ -0,0 +1,81 @@
provider: stepfun
label:
zh_Hans: 阶跃星辰
en_US: Stepfun
description:
en_US: Models provided by stepfun, such as step-1-8k, step-1-32k、step-1v-8k、step-1v-32k, step-1-128k and step-1-256k
zh_Hans: 阶跃星辰提供的模型,例如 step-1-8k、step-1-32k、step-1v-8k、step-1v-32k、step-1-128k 和 step-1-256k。
icon_small:
en_US: icon_s_en.png
icon_large:
en_US: icon_l_en.png
background: "#FFFFFF"
help:
title:
en_US: Get your API Key from stepfun
zh_Hans: 从 stepfun 获取 API Key
url:
en_US: https://platform.stepfun.com/interface-key
supported_model_types:
- llm
configurate_methods:
- predefined-model
- customizable-model
provider_credential_schema:
credential_form_schemas:
- variable: api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key
model_credential_schema:
model:
label:
en_US: Model Name
zh_Hans: 模型名称
placeholder:
en_US: Enter your model name
zh_Hans: 输入模型名称
credential_form_schemas:
- variable: api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 在此输入您的 API Key
en_US: Enter your API Key
- variable: context_size
label:
zh_Hans: 模型上下文长度
en_US: Model context size
required: true
type: text-input
default: '8192'
placeholder:
zh_Hans: 在此输入您的模型上下文长度
en_US: Enter your Model context size
- variable: max_tokens
label:
zh_Hans: 最大 token 上限
en_US: Upper bound for max tokens
default: '8192'
type: text-input
- variable: function_calling_type
label:
en_US: Function calling
type: select
required: false
default: no_call
options:
- value: no_call
label:
en_US: Not supported
zh_Hans: 不支持
- value: tool_call
label:
en_US: Tool Call
zh_Hans: Tool Call

View File

@ -0,0 +1,176 @@
import os
from collections.abc import Generator
import pytest
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessageTool,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity, ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.stepfun.llm.llm import StepfunLargeLanguageModel
def test_validate_credentials():
model = StepfunLargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model='step-1-8k',
credentials={
'api_key': 'invalid_key'
}
)
model.validate_credentials(
model='step-1-8k',
credentials={
'api_key': os.environ.get('STEPFUN_API_KEY')
}
)
def test_invoke_model():
model = StepfunLargeLanguageModel()
response = model.invoke(
model='step-1-8k',
credentials={
'api_key': os.environ.get('STEPFUN_API_KEY')
},
prompt_messages=[
UserPromptMessage(
content='Hello World!'
)
],
model_parameters={
'temperature': 0.9,
'top_p': 0.7
},
stop=['Hi'],
stream=False,
user="abc-123"
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
def test_invoke_stream_model():
model = StepfunLargeLanguageModel()
response = model.invoke(
model='step-1-8k',
credentials={
'api_key': os.environ.get('STEPFUN_API_KEY')
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
],
model_parameters={
'temperature': 0.9,
'top_p': 0.7
},
stream=True,
user="abc-123"
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
def test_get_customizable_model_schema():
model = StepfunLargeLanguageModel()
schema = model.get_customizable_model_schema(
model='step-1-8k',
credentials={
'api_key': os.environ.get('STEPFUN_API_KEY')
}
)
assert isinstance(schema, AIModelEntity)
def test_invoke_chat_model_with_tools():
model = StepfunLargeLanguageModel()
result = model.invoke(
model='step-1-8k',
credentials={
'api_key': os.environ.get('STEPFUN_API_KEY')
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content="what's the weather today in Shanghai?",
)
],
model_parameters={
'temperature': 0.9,
'max_tokens': 100
},
tools=[
PromptMessageTool(
name='get_weather',
description='Determine weather in my location',
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"c",
"f"
]
}
},
"required": [
"location"
]
}
),
PromptMessageTool(
name='get_stock_price',
description='Get the current stock price',
parameters={
"type": "object",
"properties": {
"symbol": {
"type": "string",
"description": "The stock symbol"
}
},
"required": [
"symbol"
]
}
)
],
stream=False,
user="abc-123"
)
assert isinstance(result, LLMResult)
assert isinstance(result.message, AssistantPromptMessage)
assert len(result.message.tool_calls) > 0