mirror of
https://git.mirrors.martin98.com/https://github.com/langgenius/dify.git
synced 2025-08-14 04:05:53 +08:00
fix: hf hosted inference check (#1128)
This commit is contained in:
parent
681eb1cfcc
commit
c4d8bdc3db
@ -1,6 +1,5 @@
|
||||
from typing import List, Optional, Any
|
||||
|
||||
from langchain import HuggingFaceHub
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.schema import LLMResult
|
||||
|
||||
@ -9,6 +8,7 @@ from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.model_providers.models.entity.message import PromptMessage
|
||||
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
|
||||
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM
|
||||
from core.third_party.langchain.llms.huggingface_hub_llm import HuggingFaceHubLLM
|
||||
|
||||
|
||||
class HuggingfaceHubModel(BaseLLM):
|
||||
@ -31,7 +31,7 @@ class HuggingfaceHubModel(BaseLLM):
|
||||
streaming=streaming
|
||||
)
|
||||
else:
|
||||
client = HuggingFaceHub(
|
||||
client = HuggingFaceHubLLM(
|
||||
repo_id=self.name,
|
||||
task=self.credentials['task_type'],
|
||||
model_kwargs=provider_model_kwargs,
|
||||
@ -89,3 +89,5 @@ class HuggingfaceHubModel(BaseLLM):
|
||||
return False
|
||||
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
@ -89,7 +89,8 @@ class HuggingfaceHubProvider(BaseModelProvider):
|
||||
raise CredentialsValidateFailedError('Task Type must be provided.')
|
||||
|
||||
if credentials['task_type'] not in ("text2text-generation", "text-generation", "summarization"):
|
||||
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, text-generation, summarization.')
|
||||
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, '
|
||||
'text-generation, summarization.')
|
||||
|
||||
try:
|
||||
llm = HuggingFaceEndpointLLM(
|
||||
|
62
api/core/third_party/langchain/llms/huggingface_hub_llm.py
vendored
Normal file
62
api/core/third_party/langchain/llms/huggingface_hub_llm.py
vendored
Normal file
@ -0,0 +1,62 @@
|
||||
from typing import Dict, Optional, List, Any
|
||||
|
||||
from huggingface_hub import HfApi, InferenceApi
|
||||
from langchain import HuggingFaceHub
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.huggingface_hub import VALID_TASKS
|
||||
from pydantic import root_validator
|
||||
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class HuggingFaceHubLLM(HuggingFaceHub):
|
||||
"""HuggingFaceHub models.
|
||||
|
||||
To use, you should have the ``huggingface_hub`` python package installed, and the
|
||||
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
|
||||
it as a named parameter to the constructor.
|
||||
|
||||
Only supports `text-generation`, `text2text-generation` and `summarization` for now.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms import HuggingFaceHub
|
||||
hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key")
|
||||
"""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
huggingfacehub_api_token = get_from_dict_or_env(
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
||||
)
|
||||
client = InferenceApi(
|
||||
repo_id=values["repo_id"],
|
||||
token=huggingfacehub_api_token,
|
||||
task=values.get("task"),
|
||||
)
|
||||
client.options = {"wait_for_model": False, "use_gpu": False}
|
||||
values["client"] = client
|
||||
return values
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
hfapi = HfApi(token=self.huggingfacehub_api_token)
|
||||
model_info = hfapi.model_info(repo_id=self.repo_id)
|
||||
if not model_info:
|
||||
raise ValueError(f"Model {self.repo_id} not found.")
|
||||
|
||||
if 'inference' in model_info.cardData and not model_info.cardData['inference']:
|
||||
raise ValueError(f"Inference API has been turned off for this model {self.repo_id}.")
|
||||
|
||||
if model_info.pipeline_tag not in VALID_TASKS:
|
||||
raise ValueError(f"Model {self.repo_id} is not a valid task, "
|
||||
f"must be one of {VALID_TASKS}.")
|
||||
|
||||
return super()._call(prompt, stop, run_manager, **kwargs)
|
Loading…
x
Reference in New Issue
Block a user