mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-08-14 14:45:53 +08:00
Refactor rerank model with dynamic batch processing and memory manage… (#5273)
…ment ### What problem does this PR solve? Issue:https://github.com/infiniflow/ragflow/issues/5262 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) Co-authored-by: wenju.li <wenju.li@deepctr.cn>
This commit is contained in:
parent
3d605a23fe
commit
569e40544d
@ -31,6 +31,7 @@ from rag.utils import num_tokens_from_string, truncate
|
||||
import json
|
||||
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
@ -86,6 +87,57 @@ class DefaultRerank(Base):
|
||||
local_dir_use_symlinks=False)
|
||||
DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available())
|
||||
self._model = DefaultRerank._model
|
||||
self._dynamic_batch_size = 8
|
||||
self._min_batch_size = 1
|
||||
|
||||
|
||||
def torch_empty_cache(self):
|
||||
try:
|
||||
import torch
|
||||
torch.cuda.empty_cache()
|
||||
except Exception as e:
|
||||
print(f"Error emptying cache: {e}")
|
||||
|
||||
def _process_batch(self, pairs, max_batch_size=None):
|
||||
"""template method for subclass call"""
|
||||
old_dynamic_batch_size = self._dynamic_batch_size
|
||||
if max_batch_size is not None:
|
||||
self._dynamic_batch_size = max_batch_size
|
||||
res = []
|
||||
i = 0
|
||||
while i < len(pairs):
|
||||
current_batch = self._dynamic_batch_size
|
||||
max_retries = 5
|
||||
retry_count = 0
|
||||
while retry_count < max_retries:
|
||||
try:
|
||||
# call subclass implemented batch processing calculation
|
||||
batch_scores = self._compute_batch_scores(pairs[i:i+current_batch])
|
||||
res.extend(batch_scores)
|
||||
i += current_batch
|
||||
self._dynamic_batch_size = min(self._dynamic_batch_size * 2, 8)
|
||||
break
|
||||
except RuntimeError as e:
|
||||
if "CUDA out of memory" in str(e) and current_batch > self._min_batch_size:
|
||||
current_batch = max(current_batch // 2, self._min_batch_size)
|
||||
self.torch_empty_cache()
|
||||
retry_count += 1
|
||||
else:
|
||||
raise
|
||||
if retry_count >= max_retries:
|
||||
raise RuntimeError("max retry times, still cannot process batch, please check your GPU memory")
|
||||
self.torch_empty_cache()
|
||||
|
||||
self._dynamic_batch_size = old_dynamic_batch_size
|
||||
return np.array(res)
|
||||
|
||||
|
||||
def _compute_batch_scores(self, batch_pairs, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = self._model.max_length
|
||||
scores = self._model.compute_score(batch_pairs, max_length=max_length)
|
||||
scores = sigmoid(np.array(scores)).tolist()
|
||||
return scores
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
pairs = [(query, truncate(t, 2048)) for t in texts]
|
||||
@ -93,14 +145,7 @@ class DefaultRerank(Base):
|
||||
for _, t in pairs:
|
||||
token_count += num_tokens_from_string(t)
|
||||
batch_size = 4096
|
||||
res = []
|
||||
for i in range(0, len(pairs), batch_size):
|
||||
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048)
|
||||
scores = sigmoid(np.array(scores)).tolist()
|
||||
if isinstance(scores, float):
|
||||
res.append(scores)
|
||||
else:
|
||||
res.extend(scores)
|
||||
res = self._process_batch(pairs, max_batch_size=batch_size)
|
||||
return np.array(res), token_count
|
||||
|
||||
|
||||
@ -155,14 +200,7 @@ class YoudaoRerank(DefaultRerank):
|
||||
for _, t in pairs:
|
||||
token_count += num_tokens_from_string(t)
|
||||
batch_size = 8
|
||||
res = []
|
||||
for i in range(0, len(pairs), batch_size):
|
||||
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length)
|
||||
scores = sigmoid(np.array(scores)).tolist()
|
||||
if isinstance(scores, float):
|
||||
res.append(scores)
|
||||
else:
|
||||
res.extend(scores)
|
||||
res = self._process_batch(pairs, max_batch_size=batch_size)
|
||||
return np.array(res), token_count
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user