Fix ratelimit errors during document parsing (#6413)

### What problem does this PR solve?

When using the online large model API knowledge base to extract
knowledge graphs, frequent Rate Limit Errors were triggered,
causing document parsing to fail. This commit fixes the issue by
optimizing API calls in the following way:
Added exponential backoff and jitter to the API call to reduce the
frequency of Rate Limit Errors.


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
This commit is contained in:
fansir 2025-03-22 23:07:03 +08:00 committed by GitHub
parent d869e4d43f
commit efc4796f01
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -14,6 +14,7 @@
# limitations under the License.
#
import re
import random
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
@ -28,6 +29,23 @@ import os
import json
import requests
import asyncio
import logging
import time
# Error message constants
ERROR_PREFIX = "**ERROR**"
ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED"
ERROR_AUTHENTICATION = "AUTH_ERROR"
ERROR_INVALID_REQUEST = "INVALID_REQUEST"
ERROR_SERVER = "SERVER_ERROR"
ERROR_TIMEOUT = "TIMEOUT"
ERROR_CONNECTION = "CONNECTION_ERROR"
ERROR_MODEL = "MODEL_ERROR"
ERROR_CONTENT_FILTER = "CONTENT_FILTERED"
ERROR_QUOTA = "QUOTA_EXCEEDED"
ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED"
ERROR_GENERIC = "GENERIC_ERROR"
LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。"
LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
@ -38,28 +56,78 @@ class Base(ABC):
timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600))
self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
self.model_name = model_name
# Configure retry parameters
self.max_retries = int(os.environ.get('LLM_MAX_RETRIES', 5))
self.base_delay = float(os.environ.get('LLM_BASE_DELAY', 2.0))
def _get_delay(self, attempt):
"""Calculate retry delay time"""
return self.base_delay * (2 ** attempt) + random.uniform(0, 0.5)
def _classify_error(self, error):
"""Classify error based on error message content"""
error_str = str(error).lower()
if "rate limit" in error_str or "429" in error_str or "tpm limit" in error_str or "too many requests" in error_str or "requests per minute" in error_str:
return ERROR_RATE_LIMIT
elif "auth" in error_str or "key" in error_str or "apikey" in error_str or "401" in error_str or "forbidden" in error_str or "permission" in error_str:
return ERROR_AUTHENTICATION
elif "invalid" in error_str or "bad request" in error_str or "400" in error_str or "format" in error_str or "malformed" in error_str or "parameter" in error_str:
return ERROR_INVALID_REQUEST
elif "server" in error_str or "502" in error_str or "503" in error_str or "504" in error_str or "500" in error_str or "unavailable" in error_str:
return ERROR_SERVER
elif "timeout" in error_str or "timed out" in error_str:
return ERROR_TIMEOUT
elif "connect" in error_str or "network" in error_str or "unreachable" in error_str or "dns" in error_str:
return ERROR_CONNECTION
elif "quota" in error_str or "capacity" in error_str or "credit" in error_str or "billing" in error_str or "limit" in error_str and "rate" not in error_str:
return ERROR_QUOTA
elif "filter" in error_str or "content" in error_str or "policy" in error_str or "blocked" in error_str or "safety" in error_str:
return ERROR_CONTENT_FILTER
elif "model" in error_str or "not found" in error_str or "does not exist" in error_str or "not available" in error_str:
return ERROR_MODEL
else:
return ERROR_GENERIC
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf)
if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
return "", 0
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
# Implement exponential backoff retry strategy
for attempt in range(self.max_retries):
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf)
if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
return "", 0
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, self.total_token_count(response)
except Exception as e:
# Classify the error
error_code = self._classify_error(e)
# Check if it's a rate limit error or server error and not the last attempt
should_retry = (error_code == ERROR_RATE_LIMIT or error_code == ERROR_SERVER) and attempt < self.max_retries - 1
if should_retry:
delay = self._get_delay(attempt)
logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt+1}/{self.max_retries})")
time.sleep(delay)
else:
ans += LENGTH_NOTIFICATION_EN
return ans, self.total_token_count(response)
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
# For non-rate limit errors or the last attempt, return an error message
if attempt == self.max_retries - 1:
error_code = ERROR_MAX_RETRIES
return f"{ERROR_PREFIX}: {error_code} - {str(e)}", 0
def chat_streamly(self, system, history, gen_conf):
if system: