mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-19 20:50:00 +08:00

* add field progress msg into docinfo; add file processing procedure * go through upload, create kb, add doc to kb
172 lines
4.7 KiB
Python
172 lines
4.7 KiB
Python
import json, re, sys, os, hashlib, copy, glob, util, time, random
|
|
from util.es_conn import HuEs, Postgres
|
|
from util import rmSpace, findMaxDt
|
|
from FlagEmbedding import FlagModel
|
|
from nlp import huchunk, huqie
|
|
import base64, hashlib
|
|
from io import BytesIO
|
|
from elasticsearch_dsl import Q
|
|
from parser import (
|
|
PdfParser,
|
|
DocxParser,
|
|
ExcelParser
|
|
)
|
|
from nlp.huchunk import (
|
|
PdfChunker,
|
|
DocxChunker,
|
|
ExcelChunker,
|
|
PptChunker,
|
|
TextChunker
|
|
)
|
|
|
|
ES = HuEs("infiniflow")
|
|
BATCH_SIZE = 64
|
|
PG = Postgres("infiniflow", "docgpt")
|
|
|
|
PDF = PdfChunker(PdfParser())
|
|
DOC = DocxChunker(DocxParser())
|
|
EXC = ExcelChunker(ExcelParser())
|
|
PPT = PptChunker()
|
|
|
|
|
|
def chuck_doc(name):
|
|
name = os.path.split(name)[-1].lower().split(".")[-1]
|
|
if name.find("pdf") >= 0: return PDF(name)
|
|
if name.find("doc") >= 0: return DOC(name)
|
|
if name.find("xlsx") >= 0: return EXC(name)
|
|
if name.find("ppt") >= 0: return PDF(name)
|
|
if name.find("pdf") >= 0: return PPT(name)
|
|
|
|
if re.match(r"(txt|csv)", name): return TextChunker(name)
|
|
|
|
|
|
def collect(comm, mod, tm):
|
|
sql = f"""
|
|
select
|
|
did,
|
|
uid,
|
|
doc_name,
|
|
location,
|
|
updated_at
|
|
from docinfo
|
|
where
|
|
updated_at >= '{tm}'
|
|
and kb_progress = 0
|
|
and type = 'doc'
|
|
and MOD(uid, {comm}) = {mod}
|
|
order by updated_at asc
|
|
limit 1000
|
|
"""
|
|
df = PG.select(sql)
|
|
df = df.fillna("")
|
|
mtm = str(df["updated_at"].max())[:19]
|
|
print("TOTAL:", len(df), "To: ", mtm)
|
|
return df, mtm
|
|
|
|
|
|
def set_progress(did, prog, msg):
|
|
sql = f"""
|
|
update docinfo set kb_progress={prog}, kb_progress_msg='{msg}' where did={did}
|
|
"""
|
|
PG.update(sql)
|
|
|
|
|
|
def build(row):
|
|
if row["size"] > 256000000:
|
|
set_progress(row["did"], -1, "File size exceeds( <= 256Mb )")
|
|
return []
|
|
doc = {
|
|
"doc_id": row["did"],
|
|
"title_tks": huqie.qie(os.path.split(row["location"])[-1]),
|
|
"updated_at": row["updated_at"]
|
|
}
|
|
random.seed(time.time())
|
|
set_progress(row["did"], random.randint(0, 20)/100., "Finished preparing! Start to slice file!")
|
|
obj = chuck_doc(row["location"])
|
|
if not obj:
|
|
set_progress(row["did"], -1, "Unsuported file type.")
|
|
return []
|
|
|
|
set_progress(row["did"], random.randint(20, 60)/100.)
|
|
|
|
output_buffer = BytesIO()
|
|
docs = []
|
|
md5 = hashlib.md5()
|
|
for txt, img in obj.text_chunks:
|
|
d = copy.deepcopy(doc)
|
|
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
|
d["_id"] = md5.hexdigest()
|
|
d["content_ltks"] = huqie.qie(txt)
|
|
d["docnm_kwd"] = rmSpace(d["docnm_tks"])
|
|
if not img:
|
|
docs.append(d)
|
|
continue
|
|
img.save(output_buffer, format='JPEG')
|
|
d["img_bin"] = base64.b64encode(output_buffer.getvalue())
|
|
docs.append(d)
|
|
|
|
for arr, img in obj.table_chunks:
|
|
for i, txt in enumerate(arr):
|
|
d = copy.deepcopy(doc)
|
|
d["content_ltks"] = huqie.qie(txt)
|
|
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
|
d["_id"] = md5.hexdigest()
|
|
if not img:
|
|
docs.append(d)
|
|
continue
|
|
img.save(output_buffer, format='JPEG')
|
|
d["img_bin"] = base64.b64encode(output_buffer.getvalue())
|
|
docs.append(d)
|
|
set_progress(row["did"], random.randint(60, 70)/100., "Finished slicing. Start to embedding the content.")
|
|
|
|
return docs
|
|
|
|
|
|
def index_name(uid):return f"docgpt_{uid}"
|
|
|
|
def init_kb(row):
|
|
idxnm = index_name(row["uid"])
|
|
if ES.indexExist(idxnm): return
|
|
return ES.createIdx(idxnm, json.load(open("res/mapping.json", "r")))
|
|
|
|
|
|
model = None
|
|
def embedding(docs):
|
|
global model
|
|
tts = model.encode([rmSpace(d["title_tks"]) for d in docs])
|
|
cnts = model.encode([rmSpace(d["content_ltks"]) for d in docs])
|
|
vects = 0.1 * tts + 0.9 * cnts
|
|
assert len(vects) == len(docs)
|
|
for i,d in enumerate(docs):d["q_vec"] = vects[i].tolist()
|
|
for d in docs:
|
|
set_progress(d["doc_id"], random.randint(70, 95)/100.,
|
|
"Finished embedding! Start to build index!")
|
|
|
|
|
|
def main(comm, mod):
|
|
tm_fnm = f"res/{comm}-{mod}.tm"
|
|
tmf = open(tm_fnm, "a+")
|
|
tm = findMaxDt(tm_fnm)
|
|
rows, tm = collect(comm, mod, tm)
|
|
for r in rows:
|
|
if r["is_deleted"]:
|
|
ES.deleteByQuery(Q("term", dock_id=r["did"]), index_name(r["uid"]))
|
|
continue
|
|
|
|
cks = build(r)
|
|
## TODO: exception handler
|
|
## set_progress(r["did"], -1, "ERROR: ")
|
|
embedding(cks)
|
|
if cks: init_kb(r)
|
|
ES.bulk(cks, index_name(r["uid"]))
|
|
tmf.write(str(r["updated_at"]) + "\n")
|
|
tmf.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from mpi4py import MPI
|
|
comm = MPI.COMM_WORLD
|
|
rank = comm.Get_rank()
|
|
main(comm, rank)
|
|
|