ragflow/python/svr/parse_user_docs.py
KevinHuSh 249b27c1e0 go through upload, create kb, add doc to kb (#11)
* add field progress msg into docinfo; add file processing procedure

* go through upload, create kb, add doc to kb
2023-12-19 19:28:01 +08:00

172 lines
4.7 KiB
Python

import json, re, sys, os, hashlib, copy, glob, util, time, random
from util.es_conn import HuEs, Postgres
from util import rmSpace, findMaxDt
from FlagEmbedding import FlagModel
from nlp import huchunk, huqie
import base64, hashlib
from io import BytesIO
from elasticsearch_dsl import Q
from parser import (
PdfParser,
DocxParser,
ExcelParser
)
from nlp.huchunk import (
PdfChunker,
DocxChunker,
ExcelChunker,
PptChunker,
TextChunker
)
ES = HuEs("infiniflow")
BATCH_SIZE = 64
PG = Postgres("infiniflow", "docgpt")
PDF = PdfChunker(PdfParser())
DOC = DocxChunker(DocxParser())
EXC = ExcelChunker(ExcelParser())
PPT = PptChunker()
def chuck_doc(name):
name = os.path.split(name)[-1].lower().split(".")[-1]
if name.find("pdf") >= 0: return PDF(name)
if name.find("doc") >= 0: return DOC(name)
if name.find("xlsx") >= 0: return EXC(name)
if name.find("ppt") >= 0: return PDF(name)
if name.find("pdf") >= 0: return PPT(name)
if re.match(r"(txt|csv)", name): return TextChunker(name)
def collect(comm, mod, tm):
sql = f"""
select
did,
uid,
doc_name,
location,
updated_at
from docinfo
where
updated_at >= '{tm}'
and kb_progress = 0
and type = 'doc'
and MOD(uid, {comm}) = {mod}
order by updated_at asc
limit 1000
"""
df = PG.select(sql)
df = df.fillna("")
mtm = str(df["updated_at"].max())[:19]
print("TOTAL:", len(df), "To: ", mtm)
return df, mtm
def set_progress(did, prog, msg):
sql = f"""
update docinfo set kb_progress={prog}, kb_progress_msg='{msg}' where did={did}
"""
PG.update(sql)
def build(row):
if row["size"] > 256000000:
set_progress(row["did"], -1, "File size exceeds( <= 256Mb )")
return []
doc = {
"doc_id": row["did"],
"title_tks": huqie.qie(os.path.split(row["location"])[-1]),
"updated_at": row["updated_at"]
}
random.seed(time.time())
set_progress(row["did"], random.randint(0, 20)/100., "Finished preparing! Start to slice file!")
obj = chuck_doc(row["location"])
if not obj:
set_progress(row["did"], -1, "Unsuported file type.")
return []
set_progress(row["did"], random.randint(20, 60)/100.)
output_buffer = BytesIO()
docs = []
md5 = hashlib.md5()
for txt, img in obj.text_chunks:
d = copy.deepcopy(doc)
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["content_ltks"] = huqie.qie(txt)
d["docnm_kwd"] = rmSpace(d["docnm_tks"])
if not img:
docs.append(d)
continue
img.save(output_buffer, format='JPEG')
d["img_bin"] = base64.b64encode(output_buffer.getvalue())
docs.append(d)
for arr, img in obj.table_chunks:
for i, txt in enumerate(arr):
d = copy.deepcopy(doc)
d["content_ltks"] = huqie.qie(txt)
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
if not img:
docs.append(d)
continue
img.save(output_buffer, format='JPEG')
d["img_bin"] = base64.b64encode(output_buffer.getvalue())
docs.append(d)
set_progress(row["did"], random.randint(60, 70)/100., "Finished slicing. Start to embedding the content.")
return docs
def index_name(uid):return f"docgpt_{uid}"
def init_kb(row):
idxnm = index_name(row["uid"])
if ES.indexExist(idxnm): return
return ES.createIdx(idxnm, json.load(open("res/mapping.json", "r")))
model = None
def embedding(docs):
global model
tts = model.encode([rmSpace(d["title_tks"]) for d in docs])
cnts = model.encode([rmSpace(d["content_ltks"]) for d in docs])
vects = 0.1 * tts + 0.9 * cnts
assert len(vects) == len(docs)
for i,d in enumerate(docs):d["q_vec"] = vects[i].tolist()
for d in docs:
set_progress(d["doc_id"], random.randint(70, 95)/100.,
"Finished embedding! Start to build index!")
def main(comm, mod):
tm_fnm = f"res/{comm}-{mod}.tm"
tmf = open(tm_fnm, "a+")
tm = findMaxDt(tm_fnm)
rows, tm = collect(comm, mod, tm)
for r in rows:
if r["is_deleted"]:
ES.deleteByQuery(Q("term", dock_id=r["did"]), index_name(r["uid"]))
continue
cks = build(r)
## TODO: exception handler
## set_progress(r["did"], -1, "ERROR: ")
embedding(cks)
if cks: init_kb(r)
ES.bulk(cks, index_name(r["uid"]))
tmf.write(str(r["updated_at"]) + "\n")
tmf.close()
if __name__ == "__main__":
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
main(comm, rank)