mirror of
https://git.mirrors.martin98.com/https://github.com/danielgatis/rembg
synced 2025-07-09 07:11:51 +08:00
refactoring
This commit is contained in:
parent
1e311331e6
commit
1ca14ce058
10
README.md
10
README.md
@ -146,6 +146,12 @@ Remove the background applying an alpha matting
|
||||
rembg i -a path/to/input.png path/to/output.png
|
||||
```
|
||||
|
||||
Passing extras parameters
|
||||
|
||||
```
|
||||
rembg i -m sam -x '{"input_labels": [1], "input_points": [[100,100]]}' path/to/input.png path/to/output.png
|
||||
```
|
||||
|
||||
### rembg `p`
|
||||
|
||||
Used when input and output are folders.
|
||||
@ -266,6 +272,7 @@ The available models are:
|
||||
- u2net_cloth_seg ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_cloth_seg.onnx), [source](https://github.com/levindabhi/cloth-segmentation)): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.
|
||||
- silueta ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/silueta.onnx), [source](https://github.com/xuebinqin/U-2-Net/issues/295)): Same as u2net but the size is reduced to 43Mb.
|
||||
- isnet-general-use ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-general-use.onnx), [source](https://github.com/xuebinqin/DIS)): A new pre-trained model for general use cases.
|
||||
- sam ([encoder](https://github.com/danielgatis/rembg/releases/download/v0.0.0/vit_b-encoder-quant.onnx), [decoder](https://github.com/danielgatis/rembg/releases/download/v0.0.0/vit_b-decoder-quant.onnx), [source](https://github.com/facebookresearch/segment-anything)): The Segment Anything Model (SAM).
|
||||
|
||||
### Some differences between the models result
|
||||
|
||||
@ -278,6 +285,7 @@ The available models are:
|
||||
<th>u2net_cloth_seg</th>
|
||||
<th>silueta</th>
|
||||
<th>isnet-general-use</th>
|
||||
<th>sam</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/fixtures/car-1.jpg" width="100" /></th>
|
||||
@ -287,6 +295,7 @@ The available models are:
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.u2net_cloth_seg.png" width="100" /></th>
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.silueta.png" width="100" /></th>
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.isnet-general-use.png" width="100" /></th>
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.sam.png" width="100" /></th>
|
||||
</tr>
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/fixtures/cloth-1.jpg" width="100" /></th>
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.u2net.png" width="100" /></th>
|
||||
@ -295,6 +304,7 @@ The available models are:
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.u2net_cloth_seg.png" width="100" /></th>
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.silueta.png" width="100" /></th>
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.isnet-general-use.png" width="100" /></th>
|
||||
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.sam.png" width="100" /></th>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
|
21
rembg/bg.py
21
rembg/bg.py
@ -1,6 +1,6 @@
|
||||
import io
|
||||
from enum import Enum
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Any, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
from cv2 import (
|
||||
@ -18,9 +18,8 @@ from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
||||
from pymatting.util.util import stack_images
|
||||
from scipy.ndimage import binary_erosion
|
||||
|
||||
from .session_base import BaseSession
|
||||
from .session_factory import new_session
|
||||
from .session_sam import SamSession
|
||||
from .sessions.base import BaseSession
|
||||
|
||||
kernel = getStructuringElement(MORPH_ELLIPSE, (3, 3))
|
||||
|
||||
@ -120,12 +119,12 @@ def remove(
|
||||
alpha_matting_foreground_threshold: int = 240,
|
||||
alpha_matting_background_threshold: int = 10,
|
||||
alpha_matting_erode_size: int = 10,
|
||||
session: Optional[Union[BaseSession, SamSession]] = None,
|
||||
session: Optional[BaseSession] = None,
|
||||
only_mask: bool = False,
|
||||
post_process_mask: bool = False,
|
||||
bgcolor: Optional[Tuple[int, int, int, int]] = None,
|
||||
input_point: Optional[np.ndarray] = None,
|
||||
input_label: Optional[np.ndarray] = None,
|
||||
*args: Optional[Any],
|
||||
**kwargs: Optional[Any]
|
||||
) -> Union[bytes, PILImage, np.ndarray]:
|
||||
if isinstance(data, PILImage):
|
||||
return_type = ReturnType.PILLOW
|
||||
@ -140,15 +139,9 @@ def remove(
|
||||
raise ValueError("Input type {} is not supported.".format(type(data)))
|
||||
|
||||
if session is None:
|
||||
session = new_session("u2net")
|
||||
|
||||
if isinstance(session, SamSession):
|
||||
if input_point is None or input_label is None:
|
||||
raise ValueError("Input point and label are required for SAM model.")
|
||||
masks = session.predict_sam(img, input_point, input_label)
|
||||
else:
|
||||
masks = session.predict(img)
|
||||
session = new_session("u2net", *args, **kwargs)
|
||||
|
||||
masks = session.predict(img, *args, **kwargs)
|
||||
cutouts = []
|
||||
|
||||
for mask in masks:
|
||||
|
476
rembg/cli.py
476
rembg/cli.py
@ -1,25 +1,7 @@
|
||||
import pathlib
|
||||
import sys
|
||||
import time
|
||||
from enum import Enum
|
||||
from typing import IO, Optional, Tuple, cast
|
||||
|
||||
import aiohttp
|
||||
import click
|
||||
import filetype
|
||||
import uvicorn
|
||||
from asyncer import asyncify
|
||||
from fastapi import Depends, FastAPI, File, Form, Query
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from starlette.responses import Response
|
||||
from tqdm import tqdm
|
||||
from watchdog.events import FileSystemEvent, FileSystemEventHandler
|
||||
from watchdog.observers import Observer
|
||||
|
||||
from . import _version
|
||||
from .bg import remove
|
||||
from .session_base import BaseSession
|
||||
from .session_factory import new_session
|
||||
from .commands import command_functions
|
||||
|
||||
|
||||
@click.group()
|
||||
@ -28,457 +10,5 @@ def main() -> None:
|
||||
pass
|
||||
|
||||
|
||||
@main.command(help="for a file as input")
|
||||
@click.option(
|
||||
"-m",
|
||||
"--model",
|
||||
default="u2net",
|
||||
type=click.Choice(
|
||||
[
|
||||
"u2net",
|
||||
"u2netp",
|
||||
"u2net_human_seg",
|
||||
"u2net_cloth_seg",
|
||||
"silueta",
|
||||
"isnet-general-use",
|
||||
]
|
||||
),
|
||||
show_default=True,
|
||||
show_choices=True,
|
||||
help="model name",
|
||||
)
|
||||
@click.option(
|
||||
"-a",
|
||||
"--alpha-matting",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="use alpha matting",
|
||||
)
|
||||
@click.option(
|
||||
"-af",
|
||||
"--alpha-matting-foreground-threshold",
|
||||
default=240,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="trimap fg threshold",
|
||||
)
|
||||
@click.option(
|
||||
"-ab",
|
||||
"--alpha-matting-background-threshold",
|
||||
default=10,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="trimap bg threshold",
|
||||
)
|
||||
@click.option(
|
||||
"-ae",
|
||||
"--alpha-matting-erode-size",
|
||||
default=10,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="erode size",
|
||||
)
|
||||
@click.option(
|
||||
"-om",
|
||||
"--only-mask",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="output only the mask",
|
||||
)
|
||||
@click.option(
|
||||
"-ppm",
|
||||
"--post-process-mask",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="post process the mask",
|
||||
)
|
||||
@click.option(
|
||||
"-bgc",
|
||||
"--bgcolor",
|
||||
default=None,
|
||||
type=(int, int, int, int),
|
||||
nargs=4,
|
||||
help="Background color (R G B A) to replace the removed background with",
|
||||
)
|
||||
@click.argument(
|
||||
"input", default=(None if sys.stdin.isatty() else "-"), type=click.File("rb")
|
||||
)
|
||||
@click.argument(
|
||||
"output",
|
||||
default=(None if sys.stdin.isatty() else "-"),
|
||||
type=click.File("wb", lazy=True),
|
||||
)
|
||||
def i(model: str, input: IO, output: IO, **kwargs) -> None:
|
||||
output.write(remove(input.read(), session=new_session(model), **kwargs))
|
||||
|
||||
|
||||
@main.command(help="for a folder as input")
|
||||
@click.option(
|
||||
"-m",
|
||||
"--model",
|
||||
default="u2net",
|
||||
type=click.Choice(
|
||||
[
|
||||
"u2net",
|
||||
"u2netp",
|
||||
"u2net_human_seg",
|
||||
"u2net_cloth_seg",
|
||||
"silueta",
|
||||
"isnet-general-use",
|
||||
]
|
||||
),
|
||||
show_default=True,
|
||||
show_choices=True,
|
||||
help="model name",
|
||||
)
|
||||
@click.option(
|
||||
"-a",
|
||||
"--alpha-matting",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="use alpha matting",
|
||||
)
|
||||
@click.option(
|
||||
"-af",
|
||||
"--alpha-matting-foreground-threshold",
|
||||
default=240,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="trimap fg threshold",
|
||||
)
|
||||
@click.option(
|
||||
"-ab",
|
||||
"--alpha-matting-background-threshold",
|
||||
default=10,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="trimap bg threshold",
|
||||
)
|
||||
@click.option(
|
||||
"-ae",
|
||||
"--alpha-matting-erode-size",
|
||||
default=10,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="erode size",
|
||||
)
|
||||
@click.option(
|
||||
"-om",
|
||||
"--only-mask",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="output only the mask",
|
||||
)
|
||||
@click.option(
|
||||
"-ppm",
|
||||
"--post-process-mask",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="post process the mask",
|
||||
)
|
||||
@click.option(
|
||||
"-w",
|
||||
"--watch",
|
||||
default=False,
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="watches a folder for changes",
|
||||
)
|
||||
@click.option(
|
||||
"-bgc",
|
||||
"--bgcolor",
|
||||
default=None,
|
||||
type=(int, int, int, int),
|
||||
nargs=4,
|
||||
help="Background color (R G B A) to replace the removed background with",
|
||||
)
|
||||
@click.argument(
|
||||
"input",
|
||||
type=click.Path(
|
||||
exists=True,
|
||||
path_type=pathlib.Path,
|
||||
file_okay=False,
|
||||
dir_okay=True,
|
||||
readable=True,
|
||||
),
|
||||
)
|
||||
@click.argument(
|
||||
"output",
|
||||
type=click.Path(
|
||||
exists=False,
|
||||
path_type=pathlib.Path,
|
||||
file_okay=False,
|
||||
dir_okay=True,
|
||||
writable=True,
|
||||
),
|
||||
)
|
||||
def p(
|
||||
model: str, input: pathlib.Path, output: pathlib.Path, watch: bool, **kwargs
|
||||
) -> None:
|
||||
session = new_session(model)
|
||||
|
||||
def process(each_input: pathlib.Path) -> None:
|
||||
try:
|
||||
mimetype = filetype.guess(each_input)
|
||||
if mimetype is None:
|
||||
return
|
||||
if mimetype.mime.find("image") < 0:
|
||||
return
|
||||
|
||||
each_output = (output / each_input.name).with_suffix(".png")
|
||||
each_output.parents[0].mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if not each_output.exists():
|
||||
each_output.write_bytes(
|
||||
cast(
|
||||
bytes,
|
||||
remove(each_input.read_bytes(), session=session, **kwargs),
|
||||
)
|
||||
)
|
||||
|
||||
if watch:
|
||||
print(
|
||||
f"processed: {each_input.absolute()} -> {each_output.absolute()}"
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
inputs = list(input.glob("**/*"))
|
||||
if not watch:
|
||||
inputs = tqdm(inputs)
|
||||
|
||||
for each_input in inputs:
|
||||
if not each_input.is_dir():
|
||||
process(each_input)
|
||||
|
||||
if watch:
|
||||
observer = Observer()
|
||||
|
||||
class EventHandler(FileSystemEventHandler):
|
||||
def on_any_event(self, event: FileSystemEvent) -> None:
|
||||
if not (
|
||||
event.is_directory or event.event_type in ["deleted", "closed"]
|
||||
):
|
||||
process(pathlib.Path(event.src_path))
|
||||
|
||||
event_handler = EventHandler()
|
||||
observer.schedule(event_handler, input, recursive=False)
|
||||
observer.start()
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(1)
|
||||
|
||||
finally:
|
||||
observer.stop()
|
||||
observer.join()
|
||||
|
||||
|
||||
@main.command(help="for a http server")
|
||||
@click.option(
|
||||
"-p",
|
||||
"--port",
|
||||
default=5000,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="port",
|
||||
)
|
||||
@click.option(
|
||||
"-l",
|
||||
"--log_level",
|
||||
default="info",
|
||||
type=str,
|
||||
show_default=True,
|
||||
help="log level",
|
||||
)
|
||||
@click.option(
|
||||
"-t",
|
||||
"--threads",
|
||||
default=None,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="number of worker threads",
|
||||
)
|
||||
def s(port: int, log_level: str, threads: int) -> None:
|
||||
sessions: dict[str, BaseSession] = {}
|
||||
tags_metadata = [
|
||||
{
|
||||
"name": "Background Removal",
|
||||
"description": "Endpoints that perform background removal with different image sources.",
|
||||
"externalDocs": {
|
||||
"description": "GitHub Source",
|
||||
"url": "https://github.com/danielgatis/rembg",
|
||||
},
|
||||
},
|
||||
]
|
||||
app = FastAPI(
|
||||
title="Rembg",
|
||||
description="Rembg is a tool to remove images background. That is it.",
|
||||
version=_version.get_versions()["version"],
|
||||
contact={
|
||||
"name": "Daniel Gatis",
|
||||
"url": "https://github.com/danielgatis",
|
||||
"email": "danielgatis@gmail.com",
|
||||
},
|
||||
license_info={
|
||||
"name": "MIT License",
|
||||
"url": "https://github.com/danielgatis/rembg/blob/main/LICENSE.txt",
|
||||
},
|
||||
openapi_tags=tags_metadata,
|
||||
)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_credentials=True,
|
||||
allow_origins=["*"],
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
class ModelType(str, Enum):
|
||||
u2net = "u2net"
|
||||
u2netp = "u2netp"
|
||||
u2net_human_seg = "u2net_human_seg"
|
||||
u2net_cloth_seg = "u2net_cloth_seg"
|
||||
silueta = "silueta"
|
||||
isnet_general_use = "isnet-general-use"
|
||||
|
||||
class CommonQueryParams:
|
||||
def __init__(
|
||||
self,
|
||||
model: ModelType = Query(
|
||||
default=ModelType.u2net,
|
||||
description="Model to use when processing image",
|
||||
),
|
||||
a: bool = Query(default=False, description="Enable Alpha Matting"),
|
||||
af: int = Query(
|
||||
default=240,
|
||||
ge=0,
|
||||
le=255,
|
||||
description="Alpha Matting (Foreground Threshold)",
|
||||
),
|
||||
ab: int = Query(
|
||||
default=10,
|
||||
ge=0,
|
||||
le=255,
|
||||
description="Alpha Matting (Background Threshold)",
|
||||
),
|
||||
ae: int = Query(
|
||||
default=10, ge=0, description="Alpha Matting (Erode Structure Size)"
|
||||
),
|
||||
om: bool = Query(default=False, description="Only Mask"),
|
||||
ppm: bool = Query(default=False, description="Post Process Mask"),
|
||||
bgc: Optional[str] = Query(default=None, description="Background Color"),
|
||||
):
|
||||
self.model = model
|
||||
self.a = a
|
||||
self.af = af
|
||||
self.ab = ab
|
||||
self.ae = ae
|
||||
self.om = om
|
||||
self.ppm = ppm
|
||||
self.bgc = (
|
||||
cast(Tuple[int, int, int, int], tuple(map(int, bgc.split(","))))
|
||||
if bgc
|
||||
else None
|
||||
)
|
||||
|
||||
class CommonQueryPostParams:
|
||||
def __init__(
|
||||
self,
|
||||
model: ModelType = Form(
|
||||
default=ModelType.u2net,
|
||||
description="Model to use when processing image",
|
||||
),
|
||||
a: bool = Form(default=False, description="Enable Alpha Matting"),
|
||||
af: int = Form(
|
||||
default=240,
|
||||
ge=0,
|
||||
le=255,
|
||||
description="Alpha Matting (Foreground Threshold)",
|
||||
),
|
||||
ab: int = Form(
|
||||
default=10,
|
||||
ge=0,
|
||||
le=255,
|
||||
description="Alpha Matting (Background Threshold)",
|
||||
),
|
||||
ae: int = Form(
|
||||
default=10, ge=0, description="Alpha Matting (Erode Structure Size)"
|
||||
),
|
||||
om: bool = Form(default=False, description="Only Mask"),
|
||||
ppm: bool = Form(default=False, description="Post Process Mask"),
|
||||
bgc: Optional[str] = Query(default=None, description="Background Color"),
|
||||
):
|
||||
self.model = model
|
||||
self.a = a
|
||||
self.af = af
|
||||
self.ab = ab
|
||||
self.ae = ae
|
||||
self.om = om
|
||||
self.ppm = ppm
|
||||
self.bgc = (
|
||||
cast(Tuple[int, int, int, int], tuple(map(int, bgc.split(","))))
|
||||
if bgc
|
||||
else None
|
||||
)
|
||||
|
||||
def im_without_bg(content: bytes, commons: CommonQueryParams) -> Response:
|
||||
return Response(
|
||||
remove(
|
||||
content,
|
||||
session=sessions.setdefault(
|
||||
commons.model.value, new_session(commons.model.value)
|
||||
),
|
||||
alpha_matting=commons.a,
|
||||
alpha_matting_foreground_threshold=commons.af,
|
||||
alpha_matting_background_threshold=commons.ab,
|
||||
alpha_matting_erode_size=commons.ae,
|
||||
only_mask=commons.om,
|
||||
post_process_mask=commons.ppm,
|
||||
bgcolor=commons.bgc,
|
||||
),
|
||||
media_type="image/png",
|
||||
)
|
||||
|
||||
@app.on_event("startup")
|
||||
def startup():
|
||||
if threads is not None:
|
||||
from anyio import CapacityLimiter
|
||||
from anyio.lowlevel import RunVar
|
||||
|
||||
RunVar("_default_thread_limiter").set(CapacityLimiter(threads))
|
||||
|
||||
@app.get(
|
||||
path="/",
|
||||
tags=["Background Removal"],
|
||||
summary="Remove from URL",
|
||||
description="Removes the background from an image obtained by retrieving an URL.",
|
||||
)
|
||||
async def get_index(
|
||||
url: str = Query(
|
||||
default=..., description="URL of the image that has to be processed."
|
||||
),
|
||||
commons: CommonQueryParams = Depends(),
|
||||
):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(url) as response:
|
||||
file = await response.read()
|
||||
return await asyncify(im_without_bg)(file, commons)
|
||||
|
||||
@app.post(
|
||||
path="/",
|
||||
tags=["Background Removal"],
|
||||
summary="Remove from Stream",
|
||||
description="Removes the background from an image sent within the request itself.",
|
||||
)
|
||||
async def post_index(
|
||||
file: bytes = File(
|
||||
default=...,
|
||||
description="Image file (byte stream) that has to be processed.",
|
||||
),
|
||||
commons: CommonQueryPostParams = Depends(),
|
||||
):
|
||||
return await asyncify(im_without_bg)(file, commons) # type: ignore
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=port, log_level=log_level)
|
||||
for command in command_functions:
|
||||
main.add_command(command)
|
||||
|
13
rembg/commands/__init__.py
Normal file
13
rembg/commands/__init__.py
Normal file
@ -0,0 +1,13 @@
|
||||
from importlib import import_module
|
||||
from pathlib import Path
|
||||
from pkgutil import iter_modules
|
||||
|
||||
command_functions = []
|
||||
|
||||
package_dir = Path(__file__).resolve().parent
|
||||
for _b, module_name, _p in iter_modules([str(package_dir)]):
|
||||
module = import_module(f"{__name__}.{module_name}")
|
||||
for attribute_name in dir(module):
|
||||
attribute = getattr(module, attribute_name)
|
||||
if attribute_name.endswith("_command"):
|
||||
command_functions.append(attribute)
|
93
rembg/commands/i_command.py
Normal file
93
rembg/commands/i_command.py
Normal file
@ -0,0 +1,93 @@
|
||||
import json
|
||||
import sys
|
||||
from typing import IO
|
||||
|
||||
import click
|
||||
|
||||
from ..bg import remove
|
||||
from ..session_factory import new_session
|
||||
from ..sessions import sessions_names
|
||||
|
||||
|
||||
@click.command(
|
||||
name="i",
|
||||
help="for a file as input",
|
||||
)
|
||||
@click.option(
|
||||
"-m",
|
||||
"--model",
|
||||
default="u2net",
|
||||
type=click.Choice(sessions_names),
|
||||
show_default=True,
|
||||
show_choices=True,
|
||||
help="model name",
|
||||
)
|
||||
@click.option(
|
||||
"-a",
|
||||
"--alpha-matting",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="use alpha matting",
|
||||
)
|
||||
@click.option(
|
||||
"-af",
|
||||
"--alpha-matting-foreground-threshold",
|
||||
default=240,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="trimap fg threshold",
|
||||
)
|
||||
@click.option(
|
||||
"-ab",
|
||||
"--alpha-matting-background-threshold",
|
||||
default=10,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="trimap bg threshold",
|
||||
)
|
||||
@click.option(
|
||||
"-ae",
|
||||
"--alpha-matting-erode-size",
|
||||
default=10,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="erode size",
|
||||
)
|
||||
@click.option(
|
||||
"-om",
|
||||
"--only-mask",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="output only the mask",
|
||||
)
|
||||
@click.option(
|
||||
"-ppm",
|
||||
"--post-process-mask",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="post process the mask",
|
||||
)
|
||||
@click.option(
|
||||
"-bgc",
|
||||
"--bgcolor",
|
||||
default=None,
|
||||
type=(int, int, int, int),
|
||||
nargs=4,
|
||||
help="Background color (R G B A) to replace the removed background with",
|
||||
)
|
||||
@click.option("-x", "--extras", type=str)
|
||||
@click.argument(
|
||||
"input", default=(None if sys.stdin.isatty() else "-"), type=click.File("rb")
|
||||
)
|
||||
@click.argument(
|
||||
"output",
|
||||
default=(None if sys.stdin.isatty() else "-"),
|
||||
type=click.File("wb", lazy=True),
|
||||
)
|
||||
def i_command(model: str, extras: str, input: IO, output: IO, **kwargs) -> None:
|
||||
try:
|
||||
kwargs.update(json.loads(extras))
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
output.write(remove(input.read(), session=new_session(model), **kwargs))
|
181
rembg/commands/p_command.py
Normal file
181
rembg/commands/p_command.py
Normal file
@ -0,0 +1,181 @@
|
||||
import json
|
||||
import pathlib
|
||||
import time
|
||||
from typing import cast
|
||||
|
||||
import click
|
||||
import filetype
|
||||
from tqdm import tqdm
|
||||
from watchdog.events import FileSystemEvent, FileSystemEventHandler
|
||||
from watchdog.observers import Observer
|
||||
|
||||
from ..bg import remove
|
||||
from ..session_factory import new_session
|
||||
from ..sessions import sessions_names
|
||||
|
||||
|
||||
@click.command(
|
||||
name="p",
|
||||
help="for a folder as input",
|
||||
)
|
||||
@click.option(
|
||||
"-m",
|
||||
"--model",
|
||||
default="u2net",
|
||||
type=click.Choice(sessions_names),
|
||||
show_default=True,
|
||||
show_choices=True,
|
||||
help="model name",
|
||||
)
|
||||
@click.option(
|
||||
"-a",
|
||||
"--alpha-matting",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="use alpha matting",
|
||||
)
|
||||
@click.option(
|
||||
"-af",
|
||||
"--alpha-matting-foreground-threshold",
|
||||
default=240,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="trimap fg threshold",
|
||||
)
|
||||
@click.option(
|
||||
"-ab",
|
||||
"--alpha-matting-background-threshold",
|
||||
default=10,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="trimap bg threshold",
|
||||
)
|
||||
@click.option(
|
||||
"-ae",
|
||||
"--alpha-matting-erode-size",
|
||||
default=10,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="erode size",
|
||||
)
|
||||
@click.option(
|
||||
"-om",
|
||||
"--only-mask",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="output only the mask",
|
||||
)
|
||||
@click.option(
|
||||
"-ppm",
|
||||
"--post-process-mask",
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="post process the mask",
|
||||
)
|
||||
@click.option(
|
||||
"-w",
|
||||
"--watch",
|
||||
default=False,
|
||||
is_flag=True,
|
||||
show_default=True,
|
||||
help="watches a folder for changes",
|
||||
)
|
||||
@click.option(
|
||||
"-bgc",
|
||||
"--bgcolor",
|
||||
default=None,
|
||||
type=(int, int, int, int),
|
||||
nargs=4,
|
||||
help="Background color (R G B A) to replace the removed background with",
|
||||
)
|
||||
@click.option("-x", "--extras", type=str)
|
||||
@click.argument(
|
||||
"input",
|
||||
type=click.Path(
|
||||
exists=True,
|
||||
path_type=pathlib.Path,
|
||||
file_okay=False,
|
||||
dir_okay=True,
|
||||
readable=True,
|
||||
),
|
||||
)
|
||||
@click.argument(
|
||||
"output",
|
||||
type=click.Path(
|
||||
exists=False,
|
||||
path_type=pathlib.Path,
|
||||
file_okay=False,
|
||||
dir_okay=True,
|
||||
writable=True,
|
||||
),
|
||||
)
|
||||
def p_command(
|
||||
model: str,
|
||||
extras: str,
|
||||
input: pathlib.Path,
|
||||
output: pathlib.Path,
|
||||
watch: bool,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
try:
|
||||
kwargs.update(json.loads(extras))
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
session = new_session(model)
|
||||
|
||||
def process(each_input: pathlib.Path) -> None:
|
||||
try:
|
||||
mimetype = filetype.guess(each_input)
|
||||
if mimetype is None:
|
||||
return
|
||||
if mimetype.mime.find("image") < 0:
|
||||
return
|
||||
|
||||
each_output = (output / each_input.name).with_suffix(".png")
|
||||
each_output.parents[0].mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if not each_output.exists():
|
||||
each_output.write_bytes(
|
||||
cast(
|
||||
bytes,
|
||||
remove(each_input.read_bytes(), session=session, **kwargs),
|
||||
)
|
||||
)
|
||||
|
||||
if watch:
|
||||
print(
|
||||
f"processed: {each_input.absolute()} -> {each_output.absolute()}"
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
inputs = list(input.glob("**/*"))
|
||||
if not watch:
|
||||
inputs = tqdm(inputs)
|
||||
|
||||
for each_input in inputs:
|
||||
if not each_input.is_dir():
|
||||
process(each_input)
|
||||
|
||||
if watch:
|
||||
observer = Observer()
|
||||
|
||||
class EventHandler(FileSystemEventHandler):
|
||||
def on_any_event(self, event: FileSystemEvent) -> None:
|
||||
if not (
|
||||
event.is_directory or event.event_type in ["deleted", "closed"]
|
||||
):
|
||||
process(pathlib.Path(event.src_path))
|
||||
|
||||
event_handler = EventHandler()
|
||||
observer.schedule(event_handler, input, recursive=False)
|
||||
observer.start()
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(1)
|
||||
|
||||
finally:
|
||||
observer.stop()
|
||||
observer.join()
|
239
rembg/commands/s_command.py
Normal file
239
rembg/commands/s_command.py
Normal file
@ -0,0 +1,239 @@
|
||||
import json
|
||||
from typing import Annotated, Optional, Tuple, cast
|
||||
|
||||
import aiohttp
|
||||
import click
|
||||
import uvicorn
|
||||
from asyncer import asyncify
|
||||
from fastapi import Depends, FastAPI, File, Form, Query
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from starlette.responses import Response
|
||||
|
||||
from .._version import get_versions
|
||||
from ..bg import remove
|
||||
from ..session_factory import new_session
|
||||
from ..sessions import sessions_names
|
||||
from ..sessions.base import BaseSession
|
||||
|
||||
|
||||
@click.command(
|
||||
name="s",
|
||||
help="for a http server",
|
||||
)
|
||||
@click.option(
|
||||
"-p",
|
||||
"--port",
|
||||
default=5000,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="port",
|
||||
)
|
||||
@click.option(
|
||||
"-l",
|
||||
"--log_level",
|
||||
default="info",
|
||||
type=str,
|
||||
show_default=True,
|
||||
help="log level",
|
||||
)
|
||||
@click.option(
|
||||
"-t",
|
||||
"--threads",
|
||||
default=None,
|
||||
type=int,
|
||||
show_default=True,
|
||||
help="number of worker threads",
|
||||
)
|
||||
def s_command(port: int, log_level: str, threads: int) -> None:
|
||||
sessions: dict[str, BaseSession] = {}
|
||||
tags_metadata = [
|
||||
{
|
||||
"name": "Background Removal",
|
||||
"description": "Endpoints that perform background removal with different image sources.",
|
||||
"externalDocs": {
|
||||
"description": "GitHub Source",
|
||||
"url": "https://github.com/danielgatis/rembg",
|
||||
},
|
||||
},
|
||||
]
|
||||
app = FastAPI(
|
||||
title="Rembg",
|
||||
description="Rembg is a tool to remove images background. That is it.",
|
||||
version=get_versions()["version"],
|
||||
contact={
|
||||
"name": "Daniel Gatis",
|
||||
"url": "https://github.com/danielgatis",
|
||||
"email": "danielgatis@gmail.com",
|
||||
},
|
||||
license_info={
|
||||
"name": "MIT License",
|
||||
"url": "https://github.com/danielgatis/rembg/blob/main/LICENSE.txt",
|
||||
},
|
||||
openapi_tags=tags_metadata,
|
||||
)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_credentials=True,
|
||||
allow_origins=["*"],
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
class CommonQueryParams:
|
||||
def __init__(
|
||||
self,
|
||||
model: Annotated[
|
||||
str, Query(regex=r"(" + "|".join(sessions_names) + ")")
|
||||
] = Query(
|
||||
default="u2net",
|
||||
description="Model to use when processing image",
|
||||
),
|
||||
a: bool = Query(default=False, description="Enable Alpha Matting"),
|
||||
af: int = Query(
|
||||
default=240,
|
||||
ge=0,
|
||||
le=255,
|
||||
description="Alpha Matting (Foreground Threshold)",
|
||||
),
|
||||
ab: int = Query(
|
||||
default=10,
|
||||
ge=0,
|
||||
le=255,
|
||||
description="Alpha Matting (Background Threshold)",
|
||||
),
|
||||
ae: int = Query(
|
||||
default=10, ge=0, description="Alpha Matting (Erode Structure Size)"
|
||||
),
|
||||
om: bool = Query(default=False, description="Only Mask"),
|
||||
ppm: bool = Query(default=False, description="Post Process Mask"),
|
||||
bgc: Optional[str] = Query(default=None, description="Background Color"),
|
||||
extras: Optional[str] = Query(
|
||||
default=None, description="Extra parameters as JSON"
|
||||
),
|
||||
):
|
||||
self.model = model
|
||||
self.a = a
|
||||
self.af = af
|
||||
self.ab = ab
|
||||
self.ae = ae
|
||||
self.om = om
|
||||
self.ppm = ppm
|
||||
self.extras = extras
|
||||
self.bgc = (
|
||||
cast(Tuple[int, int, int, int], tuple(map(int, bgc.split(","))))
|
||||
if bgc
|
||||
else None
|
||||
)
|
||||
|
||||
class CommonQueryPostParams:
|
||||
def __init__(
|
||||
self,
|
||||
model: Annotated[
|
||||
str, Form(regex=r"(" + "|".join(sessions_names) + ")")
|
||||
] = Form(
|
||||
default="u2net",
|
||||
description="Model to use when processing image",
|
||||
),
|
||||
a: bool = Form(default=False, description="Enable Alpha Matting"),
|
||||
af: int = Form(
|
||||
default=240,
|
||||
ge=0,
|
||||
le=255,
|
||||
description="Alpha Matting (Foreground Threshold)",
|
||||
),
|
||||
ab: int = Form(
|
||||
default=10,
|
||||
ge=0,
|
||||
le=255,
|
||||
description="Alpha Matting (Background Threshold)",
|
||||
),
|
||||
ae: int = Form(
|
||||
default=10, ge=0, description="Alpha Matting (Erode Structure Size)"
|
||||
),
|
||||
om: bool = Form(default=False, description="Only Mask"),
|
||||
ppm: bool = Form(default=False, description="Post Process Mask"),
|
||||
bgc: Optional[str] = Query(default=None, description="Background Color"),
|
||||
extras: Optional[str] = Query(
|
||||
default=None, description="Extra parameters as JSON"
|
||||
),
|
||||
):
|
||||
self.model = model
|
||||
self.a = a
|
||||
self.af = af
|
||||
self.ab = ab
|
||||
self.ae = ae
|
||||
self.om = om
|
||||
self.ppm = ppm
|
||||
self.extras = extras
|
||||
self.bgc = (
|
||||
cast(Tuple[int, int, int, int], tuple(map(int, bgc.split(","))))
|
||||
if bgc
|
||||
else None
|
||||
)
|
||||
|
||||
def im_without_bg(content: bytes, commons: CommonQueryParams) -> Response:
|
||||
kwargs = dict()
|
||||
|
||||
try:
|
||||
kwargs.update(json.loads(commons.extras))
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return Response(
|
||||
remove(
|
||||
content,
|
||||
session=sessions.setdefault(commons.model, new_session(commons.model)),
|
||||
alpha_matting=commons.a,
|
||||
alpha_matting_foreground_threshold=commons.af,
|
||||
alpha_matting_background_threshold=commons.ab,
|
||||
alpha_matting_erode_size=commons.ae,
|
||||
only_mask=commons.om,
|
||||
post_process_mask=commons.ppm,
|
||||
bgcolor=commons.bgc,
|
||||
**kwargs
|
||||
),
|
||||
media_type="image/png",
|
||||
)
|
||||
|
||||
@app.on_event("startup")
|
||||
def startup():
|
||||
if threads is not None:
|
||||
from anyio import CapacityLimiter
|
||||
from anyio.lowlevel import RunVar
|
||||
|
||||
RunVar("_default_thread_limiter").set(CapacityLimiter(threads))
|
||||
|
||||
@app.get(
|
||||
path="/",
|
||||
tags=["Background Removal"],
|
||||
summary="Remove from URL",
|
||||
description="Removes the background from an image obtained by retrieving an URL.",
|
||||
)
|
||||
async def get_index(
|
||||
url: str = Query(
|
||||
default=..., description="URL of the image that has to be processed."
|
||||
),
|
||||
commons: CommonQueryParams = Depends(),
|
||||
):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(url) as response:
|
||||
file = await response.read()
|
||||
return await asyncify(im_without_bg)(file, commons)
|
||||
|
||||
@app.post(
|
||||
path="/",
|
||||
tags=["Background Removal"],
|
||||
summary="Remove from Stream",
|
||||
description="Removes the background from an image sent within the request itself.",
|
||||
)
|
||||
async def post_index(
|
||||
file: bytes = File(
|
||||
default=...,
|
||||
description="Image file (byte stream) that has to be processed.",
|
||||
),
|
||||
commons: CommonQueryPostParams = Depends(),
|
||||
):
|
||||
return await asyncify(im_without_bg)(file, commons) # type: ignore
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=port, log_level=log_level)
|
@ -1,28 +0,0 @@
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
|
||||
from .session_base import BaseSession
|
||||
|
||||
|
||||
class DisSession(BaseSession):
|
||||
def predict(self, img: PILImage) -> List[PILImage]:
|
||||
ort_outs = self.inner_session.run(
|
||||
None,
|
||||
self.normalize(img, (0.485, 0.456, 0.406), (1.0, 1.0, 1.0), (1024, 1024)),
|
||||
)
|
||||
|
||||
pred = ort_outs[0][:, 0, :, :]
|
||||
|
||||
ma = np.max(pred)
|
||||
mi = np.min(pred)
|
||||
|
||||
pred = (pred - mi) / (ma - mi)
|
||||
pred = np.squeeze(pred)
|
||||
|
||||
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L")
|
||||
mask = mask.resize(img.size, Image.LANCZOS)
|
||||
|
||||
return [mask]
|
@ -1,114 +1,24 @@
|
||||
import hashlib
|
||||
import os
|
||||
import sys
|
||||
from contextlib import redirect_stdout
|
||||
from pathlib import Path
|
||||
from typing import Type
|
||||
|
||||
import onnxruntime as ort
|
||||
import pooch
|
||||
|
||||
from .session_base import BaseSession
|
||||
from .session_cloth import ClothSession
|
||||
from .session_dis import DisSession
|
||||
from .session_sam import SamSession
|
||||
from .session_simple import SimpleSession
|
||||
from .sessions import sessions_class
|
||||
from .sessions.base import BaseSession
|
||||
from .sessions.u2net import U2netSession
|
||||
|
||||
|
||||
def download_model(url: str, md5: str, fname: str, path: Path):
|
||||
pooch.retrieve(
|
||||
url,
|
||||
f"md5:{md5}",
|
||||
fname=fname,
|
||||
path=path,
|
||||
progressbar=True,
|
||||
)
|
||||
def new_session(model_name: str = "u2net", *args, **kwargs) -> BaseSession:
|
||||
session_class: Type[BaseSession] = U2netSession
|
||||
|
||||
|
||||
def new_session(model_name: str = "u2net") -> BaseSession:
|
||||
# Define the model path
|
||||
u2net_home = os.getenv(
|
||||
"U2NET_HOME", os.path.join(os.getenv("XDG_DATA_HOME", "~"), ".u2net")
|
||||
)
|
||||
|
||||
fname = f"{model_name}.onnx"
|
||||
path = Path(u2net_home).expanduser()
|
||||
full_path = Path(u2net_home).expanduser() / fname
|
||||
|
||||
session_class: Type[BaseSession]
|
||||
md5 = "60024c5c889badc19c04ad937298a77b"
|
||||
url = "https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx"
|
||||
session_class = SimpleSession
|
||||
|
||||
if model_name == "u2netp":
|
||||
md5 = "8e83ca70e441ab06c318d82300c84806"
|
||||
url = (
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2netp.onnx"
|
||||
)
|
||||
session_class = SimpleSession
|
||||
elif model_name == "u2net_human_seg":
|
||||
md5 = "c09ddc2e0104f800e3e1bb4652583d1f"
|
||||
url = "https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_human_seg.onnx"
|
||||
session_class = SimpleSession
|
||||
elif model_name == "u2net_cloth_seg":
|
||||
md5 = "2434d1f3cb744e0e49386c906e5a08bb"
|
||||
url = "https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_cloth_seg.onnx"
|
||||
session_class = ClothSession
|
||||
elif model_name == "silueta":
|
||||
md5 = "55e59e0d8062d2f5d013f4725ee84782"
|
||||
url = (
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/silueta.onnx"
|
||||
)
|
||||
session_class = SimpleSession
|
||||
elif model_name == "isnet-general-use":
|
||||
md5 = "fc16ebd8b0c10d971d3513d564d01e29"
|
||||
url = "https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-general-use.onnx"
|
||||
session_class = DisSession
|
||||
elif model_name == "sam":
|
||||
path = Path(u2net_home).expanduser()
|
||||
|
||||
fname_encoder = f"{model_name}_encoder.onnx"
|
||||
encoder_md5 = "13d97c5c79ab13ef86d67cbde5f1b250"
|
||||
encoder_url = "https://github.com/Flippchen/rembg/releases/download/test/vit_b-encoder-quant.onnx"
|
||||
|
||||
fname_decoder = f"{model_name}_decoder.onnx"
|
||||
decoder_md5 = "fa3d1c36a3187d3de1c8deebf33dd127"
|
||||
decoder_url = "https://github.com/Flippchen/rembg/releases/download/test/vit_b-decoder-quant.onnx"
|
||||
|
||||
download_model(encoder_url, encoder_md5, fname_encoder, path)
|
||||
download_model(decoder_url, decoder_md5, fname_decoder, path)
|
||||
|
||||
sess_opts = ort.SessionOptions()
|
||||
|
||||
if "OMP_NUM_THREADS" in os.environ:
|
||||
sess_opts.inter_op_num_threads = int(os.environ["OMP_NUM_THREADS"])
|
||||
|
||||
return SamSession(
|
||||
model_name,
|
||||
ort.InferenceSession(
|
||||
str(path / fname_encoder),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts,
|
||||
),
|
||||
ort.InferenceSession(
|
||||
str(path / fname_decoder),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts,
|
||||
),
|
||||
)
|
||||
|
||||
download_model(url, md5, fname, path)
|
||||
for sc in sessions_class:
|
||||
if sc.name() == model_name:
|
||||
session_class = sc
|
||||
break
|
||||
|
||||
sess_opts = ort.SessionOptions()
|
||||
|
||||
if "OMP_NUM_THREADS" in os.environ:
|
||||
sess_opts.inter_op_num_threads = int(os.environ["OMP_NUM_THREADS"])
|
||||
|
||||
return session_class(
|
||||
model_name,
|
||||
ort.InferenceSession(
|
||||
str(full_path),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts,
|
||||
),
|
||||
)
|
||||
return session_class(model_name, sess_opts, *args, **kwargs)
|
||||
|
@ -1,30 +0,0 @@
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
|
||||
from .session_base import BaseSession
|
||||
|
||||
|
||||
class SimpleSession(BaseSession):
|
||||
def predict(self, img: PILImage) -> List[PILImage]:
|
||||
ort_outs = self.inner_session.run(
|
||||
None,
|
||||
self.normalize(
|
||||
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320)
|
||||
),
|
||||
)
|
||||
|
||||
pred = ort_outs[0][:, 0, :, :]
|
||||
|
||||
ma = np.max(pred)
|
||||
mi = np.min(pred)
|
||||
|
||||
pred = (pred - mi) / (ma - mi)
|
||||
pred = np.squeeze(pred)
|
||||
|
||||
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L")
|
||||
mask = mask.resize(img.size, Image.LANCZOS)
|
||||
|
||||
return [mask]
|
22
rembg/sessions/__init__.py
Normal file
22
rembg/sessions/__init__.py
Normal file
@ -0,0 +1,22 @@
|
||||
from importlib import import_module
|
||||
from inspect import isclass
|
||||
from pathlib import Path
|
||||
from pkgutil import iter_modules
|
||||
|
||||
from .base import BaseSession
|
||||
|
||||
sessions_class = []
|
||||
sessions_names = []
|
||||
|
||||
package_dir = Path(__file__).resolve().parent
|
||||
for _b, module_name, _p in iter_modules([str(package_dir)]):
|
||||
module = import_module(f"{__name__}.{module_name}")
|
||||
for attribute_name in dir(module):
|
||||
attribute = getattr(module, attribute_name)
|
||||
if (
|
||||
isclass(attribute)
|
||||
and issubclass(attribute, BaseSession)
|
||||
and attribute != BaseSession
|
||||
):
|
||||
sessions_class.append(attribute)
|
||||
sessions_names.append(attribute.name())
|
@ -1,3 +1,4 @@
|
||||
import os
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
@ -7,9 +8,13 @@ from PIL.Image import Image as PILImage
|
||||
|
||||
|
||||
class BaseSession:
|
||||
def __init__(self, model_name: str, inner_session: ort.InferenceSession):
|
||||
def __init__(self, model_name: str, sess_opts: ort.SessionOptions, *args, **kwargs):
|
||||
self.model_name = model_name
|
||||
self.inner_session = inner_session
|
||||
self.inner_session = ort.InferenceSession(
|
||||
str(self.__class__.download_models()),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts,
|
||||
)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
@ -17,6 +22,8 @@ class BaseSession:
|
||||
mean: Tuple[float, float, float],
|
||||
std: Tuple[float, float, float],
|
||||
size: Tuple[int, int],
|
||||
*args,
|
||||
**kwargs
|
||||
) -> Dict[str, np.ndarray]:
|
||||
im = img.convert("RGB").resize(size, Image.LANCZOS)
|
||||
|
||||
@ -36,5 +43,21 @@ class BaseSession:
|
||||
.astype(np.float32)
|
||||
}
|
||||
|
||||
def predict(self, img: PILImage) -> List[PILImage]:
|
||||
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def u2net_home(cls, *args, **kwargs):
|
||||
return os.path.expanduser(
|
||||
os.getenv(
|
||||
"U2NET_HOME", os.path.join(os.getenv("XDG_DATA_HOME", "~"), ".u2net")
|
||||
)
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def download_models(cls, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def name(cls, *args, **kwargs):
|
||||
raise NotImplementedError
|
47
rembg/sessions/dis.py
Normal file
47
rembg/sessions/dis.py
Normal file
@ -0,0 +1,47 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pooch
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
|
||||
from .base import BaseSession
|
||||
|
||||
|
||||
class DisSession(BaseSession):
|
||||
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
|
||||
ort_outs = self.inner_session.run(
|
||||
None,
|
||||
self.normalize(img, (0.485, 0.456, 0.406), (1.0, 1.0, 1.0), (1024, 1024)),
|
||||
)
|
||||
|
||||
pred = ort_outs[0][:, 0, :, :]
|
||||
|
||||
ma = np.max(pred)
|
||||
mi = np.min(pred)
|
||||
|
||||
pred = (pred - mi) / (ma - mi)
|
||||
pred = np.squeeze(pred)
|
||||
|
||||
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L")
|
||||
mask = mask.resize(img.size, Image.LANCZOS)
|
||||
|
||||
return [mask]
|
||||
|
||||
@classmethod
|
||||
def download_models(cls, *args, **kwargs):
|
||||
fname = f"{cls.name()}.onnx"
|
||||
pooch.retrieve(
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-general-use.onnx",
|
||||
f"md5:fc16ebd8b0c10d971d3513d564d01e29",
|
||||
fname=fname,
|
||||
path=cls.u2net_home(),
|
||||
progressbar=True,
|
||||
)
|
||||
|
||||
return os.path.join(cls.u2net_home(), fname)
|
||||
|
||||
@classmethod
|
||||
def name(cls, *args, **kwargs):
|
||||
return "isnet-general-use"
|
@ -1,11 +1,13 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import pooch
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
|
||||
from .session_base import BaseSession
|
||||
from .base import BaseSession
|
||||
|
||||
|
||||
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int):
|
||||
@ -47,14 +49,19 @@ def pad_to_square(img: np.ndarray, size=1024):
|
||||
|
||||
|
||||
class SamSession(BaseSession):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
encoder: ort.InferenceSession,
|
||||
decoder: ort.InferenceSession,
|
||||
):
|
||||
super().__init__(model_name, encoder)
|
||||
self.decoder = decoder
|
||||
def __init__(self, model_name: str, sess_opts: ort.SessionOptions, *args, **kwargs):
|
||||
self.model_name = model_name
|
||||
paths = self.__class__.download_models()
|
||||
self.encoder = ort.InferenceSession(
|
||||
str(paths[0]),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts,
|
||||
)
|
||||
self.decoder = ort.InferenceSession(
|
||||
str(paths[1]),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts,
|
||||
)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
@ -62,17 +69,19 @@ class SamSession(BaseSession):
|
||||
mean=(123.675, 116.28, 103.53),
|
||||
std=(58.395, 57.12, 57.375),
|
||||
size=(1024, 1024),
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
pixel_mean = np.array([*mean]).reshape(1, 1, -1)
|
||||
pixel_std = np.array([*std]).reshape(1, 1, -1)
|
||||
x = (img - pixel_mean) / pixel_std
|
||||
return x
|
||||
|
||||
def predict_sam(
|
||||
def predict(
|
||||
self,
|
||||
img: PILImage,
|
||||
input_point: np.ndarray,
|
||||
input_label: np.ndarray,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> List[PILImage]:
|
||||
# Preprocess image
|
||||
image = resize_longes_side(img)
|
||||
@ -80,17 +89,25 @@ class SamSession(BaseSession):
|
||||
image = self.normalize(image)
|
||||
image = pad_to_square(image)
|
||||
|
||||
input_labels = kwargs.get("input_labels")
|
||||
input_points = kwargs.get("input_points")
|
||||
|
||||
if input_labels is None:
|
||||
raise ValueError("input_labels is required")
|
||||
if input_points is None:
|
||||
raise ValueError("input_points is required")
|
||||
|
||||
# Transpose
|
||||
image = image.transpose(2, 0, 1)[None, :, :, :]
|
||||
# Run encoder (Image embedding)
|
||||
encoded = self.inner_session.run(None, {"x": image})
|
||||
encoded = self.encoder.run(None, {"x": image})
|
||||
image_embedding = encoded[0]
|
||||
|
||||
# Add a batch index, concatenate a padding point, and transform.
|
||||
onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[
|
||||
onnx_coord = np.concatenate([input_points, np.array([[0.0, 0.0]])], axis=0)[
|
||||
None, :, :
|
||||
]
|
||||
onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[
|
||||
onnx_label = np.concatenate([input_labels, np.array([-1])], axis=0)[
|
||||
None, :
|
||||
].astype(np.float32)
|
||||
onnx_coord = apply_coords(onnx_coord, img.size[::1], 1024).astype(np.float32)
|
||||
@ -116,3 +133,33 @@ class SamSession(BaseSession):
|
||||
]
|
||||
|
||||
return masks
|
||||
|
||||
@classmethod
|
||||
def download_models(cls, *args, **kwargs):
|
||||
fname_encoder = f"{cls.name()}_encoder.onnx"
|
||||
fname_decoder = f"{cls.name()}_decoder.onnx"
|
||||
|
||||
pooch.retrieve(
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/vit_b-encoder-quant.onnx",
|
||||
f"md5:13d97c5c79ab13ef86d67cbde5f1b250",
|
||||
fname=fname_encoder,
|
||||
path=cls.u2net_home(),
|
||||
progressbar=True,
|
||||
)
|
||||
|
||||
pooch.retrieve(
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/vit_b-decoder-quant.onnx",
|
||||
f"md5:fa3d1c36a3187d3de1c8deebf33dd127",
|
||||
fname=fname_decoder,
|
||||
path=cls.u2net_home(),
|
||||
progressbar=True,
|
||||
)
|
||||
|
||||
return (
|
||||
os.path.join(cls.u2net_home(), fname_encoder),
|
||||
os.path.join(cls.u2net_home(), fname_decoder),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def name(cls, *args, **kwargs):
|
||||
return "sam"
|
49
rembg/sessions/silueta.py
Normal file
49
rembg/sessions/silueta.py
Normal file
@ -0,0 +1,49 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pooch
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
|
||||
from .base import BaseSession
|
||||
|
||||
|
||||
class SiluetaSession(BaseSession):
|
||||
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
|
||||
ort_outs = self.inner_session.run(
|
||||
None,
|
||||
self.normalize(
|
||||
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320)
|
||||
),
|
||||
)
|
||||
|
||||
pred = ort_outs[0][:, 0, :, :]
|
||||
|
||||
ma = np.max(pred)
|
||||
mi = np.min(pred)
|
||||
|
||||
pred = (pred - mi) / (ma - mi)
|
||||
pred = np.squeeze(pred)
|
||||
|
||||
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L")
|
||||
mask = mask.resize(img.size, Image.LANCZOS)
|
||||
|
||||
return [mask]
|
||||
|
||||
@classmethod
|
||||
def download_models(cls, *args, **kwargs):
|
||||
fname = f"{cls.name()}.onnx"
|
||||
pooch.retrieve(
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/silueta.onnx",
|
||||
f"md5:55e59e0d8062d2f5d013f4725ee84782",
|
||||
fname=fname,
|
||||
path=cls.u2net_home(),
|
||||
progressbar=True,
|
||||
)
|
||||
|
||||
return os.path.join(cls.u2net_home(), fname)
|
||||
|
||||
@classmethod
|
||||
def name(cls, *args, **kwargs):
|
||||
return "silueta"
|
49
rembg/sessions/u2net.py
Normal file
49
rembg/sessions/u2net.py
Normal file
@ -0,0 +1,49 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pooch
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
|
||||
from .base import BaseSession
|
||||
|
||||
|
||||
class U2netSession(BaseSession):
|
||||
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
|
||||
ort_outs = self.inner_session.run(
|
||||
None,
|
||||
self.normalize(
|
||||
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320)
|
||||
),
|
||||
)
|
||||
|
||||
pred = ort_outs[0][:, 0, :, :]
|
||||
|
||||
ma = np.max(pred)
|
||||
mi = np.min(pred)
|
||||
|
||||
pred = (pred - mi) / (ma - mi)
|
||||
pred = np.squeeze(pred)
|
||||
|
||||
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L")
|
||||
mask = mask.resize(img.size, Image.LANCZOS)
|
||||
|
||||
return [mask]
|
||||
|
||||
@classmethod
|
||||
def download_models(cls, *args, **kwargs):
|
||||
fname = f"{cls.name()}.onnx"
|
||||
pooch.retrieve(
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx",
|
||||
f"md5:60024c5c889badc19c04ad937298a77b",
|
||||
fname=fname,
|
||||
path=cls.u2net_home(),
|
||||
progressbar=True,
|
||||
)
|
||||
|
||||
return os.path.join(cls.u2net_home(), fname)
|
||||
|
||||
@classmethod
|
||||
def name(cls, *args, **kwargs):
|
||||
return "u2net"
|
@ -1,11 +1,13 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pooch
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
from scipy.special import log_softmax
|
||||
|
||||
from .session_base import BaseSession
|
||||
from .base import BaseSession
|
||||
|
||||
pallete1 = [
|
||||
0,
|
||||
@ -53,8 +55,8 @@ pallete3 = [
|
||||
]
|
||||
|
||||
|
||||
class ClothSession(BaseSession):
|
||||
def predict(self, img: PILImage) -> List[PILImage]:
|
||||
class Unet2ClothSession(BaseSession):
|
||||
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
|
||||
ort_outs = self.inner_session.run(
|
||||
None,
|
||||
self.normalize(
|
||||
@ -89,3 +91,20 @@ class ClothSession(BaseSession):
|
||||
masks.append(mask3)
|
||||
|
||||
return masks
|
||||
|
||||
@classmethod
|
||||
def download_models(cls, *args, **kwargs):
|
||||
fname = f"{cls.name()}.onnx"
|
||||
pooch.retrieve(
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_cloth_seg.onnx",
|
||||
f"md5:2434d1f3cb744e0e49386c906e5a08bb",
|
||||
fname=fname,
|
||||
path=cls.u2net_home(),
|
||||
progressbar=True,
|
||||
)
|
||||
|
||||
return os.path.join(cls.u2net_home(), fname)
|
||||
|
||||
@classmethod
|
||||
def name(cls, *args, **kwargs):
|
||||
return "u2net_cloth_seg"
|
49
rembg/sessions/u2net_human_seg.py
Normal file
49
rembg/sessions/u2net_human_seg.py
Normal file
@ -0,0 +1,49 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pooch
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
|
||||
from .base import BaseSession
|
||||
|
||||
|
||||
class U2netHumanSegSession(BaseSession):
|
||||
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
|
||||
ort_outs = self.inner_session.run(
|
||||
None,
|
||||
self.normalize(
|
||||
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320)
|
||||
),
|
||||
)
|
||||
|
||||
pred = ort_outs[0][:, 0, :, :]
|
||||
|
||||
ma = np.max(pred)
|
||||
mi = np.min(pred)
|
||||
|
||||
pred = (pred - mi) / (ma - mi)
|
||||
pred = np.squeeze(pred)
|
||||
|
||||
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L")
|
||||
mask = mask.resize(img.size, Image.LANCZOS)
|
||||
|
||||
return [mask]
|
||||
|
||||
@classmethod
|
||||
def download_models(cls, *args, **kwargs):
|
||||
fname = f"{cls.name()}.onnx"
|
||||
pooch.retrieve(
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_human_seg.onnx",
|
||||
f"md5:c09ddc2e0104f800e3e1bb4652583d1f",
|
||||
fname=fname,
|
||||
path=cls.u2net_home(),
|
||||
progressbar=True,
|
||||
)
|
||||
|
||||
return os.path.join(cls.u2net_home(), fname)
|
||||
|
||||
@classmethod
|
||||
def name(cls, *args, **kwargs):
|
||||
return "u2net_human_seg"
|
49
rembg/sessions/u2netp.py
Normal file
49
rembg/sessions/u2netp.py
Normal file
@ -0,0 +1,49 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import pooch
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImage
|
||||
|
||||
from .base import BaseSession
|
||||
|
||||
|
||||
class U2netpSession(BaseSession):
|
||||
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
|
||||
ort_outs = self.inner_session.run(
|
||||
None,
|
||||
self.normalize(
|
||||
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320)
|
||||
),
|
||||
)
|
||||
|
||||
pred = ort_outs[0][:, 0, :, :]
|
||||
|
||||
ma = np.max(pred)
|
||||
mi = np.min(pred)
|
||||
|
||||
pred = (pred - mi) / (ma - mi)
|
||||
pred = np.squeeze(pred)
|
||||
|
||||
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L")
|
||||
mask = mask.resize(img.size, Image.LANCZOS)
|
||||
|
||||
return [mask]
|
||||
|
||||
@classmethod
|
||||
def download_models(cls, *args, **kwargs):
|
||||
fname = f"{cls.name()}.onnx"
|
||||
pooch.retrieve(
|
||||
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2netp.onnx",
|
||||
f"md5:8e83ca70e441ab06c318d82300c84806",
|
||||
fname=fname,
|
||||
path=cls.u2net_home(),
|
||||
progressbar=True,
|
||||
)
|
||||
|
||||
return os.path.join(cls.u2net_home(), fname)
|
||||
|
||||
@classmethod
|
||||
def name(cls, *args, **kwargs):
|
||||
return "u2netp"
|
@ -1 +1 @@
|
||||
onnxruntime-gpu==1.13.1
|
||||
onnxruntime-gpu==1.14.1
|
||||
|
@ -1,14 +1,14 @@
|
||||
aiohttp==3.8.1
|
||||
asyncer==0.0.2
|
||||
click==8.1.3
|
||||
fastapi==0.87.0
|
||||
fastapi==0.92.0
|
||||
filetype==1.2.0
|
||||
pooch==1.6.0
|
||||
imagehash==4.3.1
|
||||
numpy==1.23.5
|
||||
onnxruntime==1.14.1
|
||||
opencv-python-headless==4.6.0.66
|
||||
pillow==9.3.0
|
||||
pooch==1.6.0
|
||||
pymatting==1.1.8
|
||||
python-multipart==0.0.5
|
||||
scikit-image==0.19.3
|
||||
|
6
setup.py
6
setup.py
@ -42,12 +42,12 @@ setup(
|
||||
"click>=8.1.3",
|
||||
"fastapi>=0.92.0",
|
||||
"filetype>=1.2.0",
|
||||
"pooch>=1.6.0",
|
||||
"imagehash>=4.3.1",
|
||||
"numpy>=1.23.5",
|
||||
"onnxruntime>=1.13.1",
|
||||
"onnxruntime>=1.14.1",
|
||||
"opencv-python-headless>=4.6.0.66",
|
||||
"pillow>=9.3.0",
|
||||
"pooch>=1.6.0",
|
||||
"pymatting>=1.1.8",
|
||||
"python-multipart>=0.0.5",
|
||||
"scikit-image>=0.19.3",
|
||||
@ -62,7 +62,7 @@ setup(
|
||||
],
|
||||
},
|
||||
extras_require={
|
||||
"gpu": ["onnxruntime-gpu>=1.13.1"],
|
||||
"gpu": ["onnxruntime-gpu>=1.14.1"],
|
||||
},
|
||||
version=versioneer.get_version(),
|
||||
cmdclass=versioneer.get_cmdclass(),
|
||||
|
BIN
tests/results/car-1.sam.png
Normal file
BIN
tests/results/car-1.sam.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 78 KiB |
BIN
tests/results/cloth-1.sam.png
Normal file
BIN
tests/results/cloth-1.sam.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 104 KiB |
@ -4,28 +4,48 @@ from pathlib import Path
|
||||
from imagehash import phash as hash_img
|
||||
from PIL import Image
|
||||
|
||||
from rembg import remove
|
||||
from rembg import new_session
|
||||
from rembg import new_session, remove
|
||||
|
||||
here = Path(__file__).parent.resolve()
|
||||
|
||||
def test_remove():
|
||||
for model in ["u2net", "u2netp", "u2net_human_seg", "u2net_cloth_seg", "silueta", "isnet-general-use"]:
|
||||
kwargs = {
|
||||
"sam": {
|
||||
"car-1" : {
|
||||
"input_points": [[250, 200]],
|
||||
"input_labels": [1],
|
||||
},
|
||||
|
||||
"cloth-1" : {
|
||||
"input_points": [[370, 495]],
|
||||
"input_labels": [1],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for model in [
|
||||
"u2net",
|
||||
"u2netp",
|
||||
"u2net_human_seg",
|
||||
"u2net_cloth_seg",
|
||||
"silueta",
|
||||
"isnet-general-use",
|
||||
"sam"
|
||||
]:
|
||||
for picture in ["car-1", "cloth-1"]:
|
||||
image_path = Path(here / "fixtures" / f"{picture}.jpg")
|
||||
expected_path = Path(here / "results" / f"{picture}.{model}.png")
|
||||
|
||||
image_path = Path(here / "fixtures" / f"{picture}.jpg")
|
||||
image = image_path.read_bytes()
|
||||
expected = expected_path.read_bytes()
|
||||
|
||||
actual = remove(image, session=new_session(model))
|
||||
actual = remove(image, session=new_session(model), **kwargs.get(model, {}).get(picture, {}))
|
||||
actual_hash = hash_img(Image.open(BytesIO(actual)))
|
||||
|
||||
expected_path = Path(here / "results" / f"{picture}.{model}.png")
|
||||
# Uncomment to update the expected results
|
||||
# f = open(expected_path, "ab")
|
||||
# f.write(actual)
|
||||
# f.close()
|
||||
|
||||
actual_hash = hash_img(Image.open(BytesIO(actual)))
|
||||
expected = expected_path.read_bytes()
|
||||
expected_hash = hash_img(Image.open(BytesIO(expected)))
|
||||
|
||||
print(f"image_path: {image_path}")
|
||||
|
Loading…
x
Reference in New Issue
Block a user