mirror of
https://git.mirrors.martin98.com/https://github.com/danielgatis/rembg
synced 2025-08-05 20:26:10 +08:00
fix lint and refactored normalizing
This commit is contained in:
parent
bb3c58f411
commit
ff38b9a377
@ -88,12 +88,12 @@ def new_session(model_name: str = "u2net") -> BaseSession:
|
||||
ort.InferenceSession(
|
||||
str(path / fname_encoder),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts
|
||||
sess_options=sess_opts,
|
||||
),
|
||||
ort.InferenceSession(
|
||||
str(path / fname_decoder),
|
||||
providers=ort.get_available_providers(),
|
||||
sess_options=sess_opts
|
||||
sess_options=sess_opts,
|
||||
),
|
||||
)
|
||||
|
||||
|
@ -53,7 +53,7 @@ class SamSession(BaseSession):
|
||||
self,
|
||||
model_name: str,
|
||||
encoder: ort.InferenceSession,
|
||||
decoder: ort.InferenceSession
|
||||
decoder: ort.InferenceSession,
|
||||
):
|
||||
super().__init__(model_name, encoder)
|
||||
self.decoder = decoder
|
||||
@ -61,12 +61,12 @@ class SamSession(BaseSession):
|
||||
def normalize(
|
||||
self,
|
||||
img: numpy.ndarray,
|
||||
mean=(0.485, 0.456, 0.406),
|
||||
std=(0.229, 0.224, 0.225),
|
||||
size=(1024, 1024)
|
||||
mean=(123.675, 116.28, 103.53),
|
||||
std=(58.395, 57.12, 57.375),
|
||||
size=(1024, 1024),
|
||||
):
|
||||
pixel_mean = np.array([123.675, 116.28, 103.53]).reshape(1, 1, -1)
|
||||
pixel_std = np.array([58.395, 57.12, 57.375]).reshape(1, 1, -1)
|
||||
pixel_mean = np.array([*mean]).reshape(1, 1, -1)
|
||||
pixel_std = np.array([*std]).reshape(1, 1, -1)
|
||||
x = (img - pixel_mean) / pixel_std
|
||||
return x
|
||||
|
||||
@ -74,7 +74,7 @@ class SamSession(BaseSession):
|
||||
self,
|
||||
img: PILImage,
|
||||
input_point=np.array([[500, 375]]),
|
||||
input_label=np.array([1])
|
||||
input_label=np.array([1]),
|
||||
) -> List[PILImage]:
|
||||
# Preprocess image
|
||||
image = resize_longes_side(img)
|
||||
@ -90,10 +90,10 @@ class SamSession(BaseSession):
|
||||
|
||||
# Add a batch index, concatenate a padding point, and transform.
|
||||
onnx_coord = np.concatenate([input_point, np.array([[0.0, 0.0]])], axis=0)[
|
||||
None, :, :
|
||||
None, :, :
|
||||
]
|
||||
onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[
|
||||
None, :
|
||||
None, :
|
||||
].astype(np.float32)
|
||||
onnx_coord = apply_coords(onnx_coord, img.size[::1], 1024).astype(np.float32)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user