mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-08-15 08:15:59 +08:00
Port of 1a2ba70fcf59ed063668ba91cdd600cf0e729928 to OpenGL ES
This commit is contained in:
parent
5b11cb0de6
commit
30224e8ae5
@ -1,77 +1,77 @@
|
|||||||
#version 100
|
#version 100
|
||||||
|
|
||||||
#define INTENSITY_CORRECTION 0.6
|
#define INTENSITY_CORRECTION 0.6
|
||||||
|
|
||||||
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
||||||
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
||||||
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SHININESS 20.0
|
#define LIGHT_TOP_SHININESS 20.0
|
||||||
|
|
||||||
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
||||||
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
||||||
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
||||||
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
|
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
|
||||||
//#define LIGHT_FRONT_SHININESS 5.0
|
//#define LIGHT_FRONT_SHININESS 5.0
|
||||||
|
|
||||||
#define INTENSITY_AMBIENT 0.3
|
#define INTENSITY_AMBIENT 0.3
|
||||||
|
|
||||||
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
|
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
|
||||||
|
|
||||||
struct SlopeDetection
|
struct SlopeDetection
|
||||||
{
|
{
|
||||||
bool actived;
|
bool actived;
|
||||||
float normal_z;
|
float normal_z;
|
||||||
mat3 volume_world_normal_matrix;
|
mat3 volume_world_normal_matrix;
|
||||||
};
|
};
|
||||||
|
|
||||||
uniform mat4 view_model_matrix;
|
uniform mat4 view_model_matrix;
|
||||||
uniform mat4 projection_matrix;
|
uniform mat4 projection_matrix;
|
||||||
uniform mat3 normal_matrix;
|
uniform mat3 view_normal_matrix;
|
||||||
uniform mat4 volume_world_matrix;
|
uniform mat4 volume_world_matrix;
|
||||||
uniform SlopeDetection slope;
|
uniform SlopeDetection slope;
|
||||||
|
|
||||||
// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
|
// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
|
||||||
uniform vec2 z_range;
|
uniform vec2 z_range;
|
||||||
// Clipping plane - general orientation. Used by the SLA gizmo.
|
// Clipping plane - general orientation. Used by the SLA gizmo.
|
||||||
uniform vec4 clipping_plane;
|
uniform vec4 clipping_plane;
|
||||||
|
|
||||||
attribute vec3 v_position;
|
attribute vec3 v_position;
|
||||||
attribute vec3 v_normal;
|
attribute vec3 v_normal;
|
||||||
|
|
||||||
// x = diffuse, y = specular;
|
// x = diffuse, y = specular;
|
||||||
varying vec2 intensity;
|
varying vec2 intensity;
|
||||||
|
|
||||||
varying vec3 clipping_planes_dots;
|
varying vec3 clipping_planes_dots;
|
||||||
|
|
||||||
varying vec4 world_pos;
|
varying vec4 world_pos;
|
||||||
varying float world_normal_z;
|
varying float world_normal_z;
|
||||||
varying vec3 eye_normal;
|
varying vec3 eye_normal;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
// First transform the normal into camera space and normalize the result.
|
// First transform the normal into camera space and normalize the result.
|
||||||
eye_normal = normalize(normal_matrix * v_normal);
|
eye_normal = normalize(view_normal_matrix * v_normal);
|
||||||
|
|
||||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||||
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||||
|
|
||||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||||
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
||||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||||
|
|
||||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||||
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||||
|
|
||||||
// Point in homogenous coordinates.
|
// Point in homogenous coordinates.
|
||||||
world_pos = volume_world_matrix * vec4(v_position, 1.0);
|
world_pos = volume_world_matrix * vec4(v_position, 1.0);
|
||||||
|
|
||||||
// z component of normal vector in world coordinate used for slope shading
|
// z component of normal vector in world coordinate used for slope shading
|
||||||
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0;
|
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0;
|
||||||
|
|
||||||
gl_Position = projection_matrix * position;
|
gl_Position = projection_matrix * position;
|
||||||
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
|
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
|
||||||
clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
|
clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
|
||||||
}
|
}
|
||||||
|
@ -1,45 +1,45 @@
|
|||||||
#version 100
|
#version 100
|
||||||
|
|
||||||
#define INTENSITY_CORRECTION 0.6
|
#define INTENSITY_CORRECTION 0.6
|
||||||
|
|
||||||
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
||||||
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
||||||
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SHININESS 20.0
|
#define LIGHT_TOP_SHININESS 20.0
|
||||||
|
|
||||||
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
||||||
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
||||||
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
||||||
|
|
||||||
#define INTENSITY_AMBIENT 0.3
|
#define INTENSITY_AMBIENT 0.3
|
||||||
|
|
||||||
uniform mat4 view_model_matrix;
|
uniform mat4 view_model_matrix;
|
||||||
uniform mat4 projection_matrix;
|
uniform mat4 projection_matrix;
|
||||||
uniform mat3 normal_matrix;
|
uniform mat3 view_normal_matrix;
|
||||||
|
|
||||||
attribute vec3 v_position;
|
attribute vec3 v_position;
|
||||||
attribute vec3 v_normal;
|
attribute vec3 v_normal;
|
||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
varying vec2 intensity;
|
varying vec2 intensity;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
// First transform the normal into camera space and normalize the result.
|
// First transform the normal into camera space and normalize the result.
|
||||||
vec3 normal = normalize(normal_matrix * v_normal);
|
vec3 normal = normalize(view_normal_matrix * v_normal);
|
||||||
|
|
||||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||||
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
||||||
|
|
||||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||||
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
||||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||||
|
|
||||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||||
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
||||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||||
|
|
||||||
gl_Position = projection_matrix * position;
|
gl_Position = projection_matrix * position;
|
||||||
}
|
}
|
||||||
|
@ -1,50 +1,50 @@
|
|||||||
#version 100
|
#version 100
|
||||||
|
|
||||||
#define INTENSITY_CORRECTION 0.6
|
#define INTENSITY_CORRECTION 0.6
|
||||||
|
|
||||||
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
||||||
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
||||||
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SHININESS 20.0
|
#define LIGHT_TOP_SHININESS 20.0
|
||||||
|
|
||||||
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
||||||
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
||||||
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
||||||
|
|
||||||
#define INTENSITY_AMBIENT 0.3
|
#define INTENSITY_AMBIENT 0.3
|
||||||
|
|
||||||
uniform mat4 view_model_matrix;
|
uniform mat4 view_model_matrix;
|
||||||
uniform mat4 projection_matrix;
|
uniform mat4 projection_matrix;
|
||||||
uniform mat3 normal_matrix;
|
uniform mat3 view_normal_matrix;
|
||||||
|
|
||||||
// vertex attributes
|
// vertex attributes
|
||||||
attribute vec3 v_position;
|
attribute vec3 v_position;
|
||||||
attribute vec3 v_normal;
|
attribute vec3 v_normal;
|
||||||
// instance attributes
|
// instance attributes
|
||||||
attribute vec3 i_offset;
|
attribute vec3 i_offset;
|
||||||
attribute vec2 i_scales;
|
attribute vec2 i_scales;
|
||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
varying vec2 intensity;
|
varying vec2 intensity;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
// First transform the normal into camera space and normalize the result.
|
// First transform the normal into camera space and normalize the result.
|
||||||
vec3 eye_normal = normalize(normal_matrix * v_normal);
|
vec3 eye_normal = normalize(view_normal_matrix * v_normal);
|
||||||
|
|
||||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||||
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||||
|
|
||||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||||
vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0);
|
vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0);
|
||||||
vec4 eye_position = view_model_matrix * world_position;
|
vec4 eye_position = view_model_matrix * world_position;
|
||||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||||
|
|
||||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||||
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||||
|
|
||||||
gl_Position = projection_matrix * eye_position;
|
gl_Position = projection_matrix * eye_position;
|
||||||
}
|
}
|
||||||
|
@ -1,66 +1,66 @@
|
|||||||
#version 100
|
#version 100
|
||||||
#extension GL_OES_standard_derivatives : enable
|
#extension GL_OES_standard_derivatives : enable
|
||||||
|
|
||||||
precision highp float;
|
precision highp float;
|
||||||
|
|
||||||
#define INTENSITY_CORRECTION 0.6
|
#define INTENSITY_CORRECTION 0.6
|
||||||
|
|
||||||
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
||||||
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
||||||
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SHININESS 20.0
|
#define LIGHT_TOP_SHININESS 20.0
|
||||||
|
|
||||||
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
||||||
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
||||||
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
||||||
|
|
||||||
#define INTENSITY_AMBIENT 0.3
|
#define INTENSITY_AMBIENT 0.3
|
||||||
|
|
||||||
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
|
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
|
||||||
const float EPSILON = 0.0001;
|
const float EPSILON = 0.0001;
|
||||||
|
|
||||||
uniform vec4 uniform_color;
|
uniform vec4 uniform_color;
|
||||||
|
|
||||||
uniform bool volume_mirrored;
|
uniform bool volume_mirrored;
|
||||||
|
|
||||||
uniform mat4 view_model_matrix;
|
uniform mat4 view_model_matrix;
|
||||||
uniform mat3 normal_matrix;
|
uniform mat3 view_normal_matrix;
|
||||||
|
|
||||||
varying vec3 clipping_planes_dots;
|
varying vec3 clipping_planes_dots;
|
||||||
varying vec4 model_pos;
|
varying vec4 model_pos;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
if (any(lessThan(clipping_planes_dots, ZERO)))
|
if (any(lessThan(clipping_planes_dots, ZERO)))
|
||||||
discard;
|
discard;
|
||||||
vec3 color = uniform_color.rgb;
|
vec3 color = uniform_color.rgb;
|
||||||
float alpha = uniform_color.a;
|
float alpha = uniform_color.a;
|
||||||
|
|
||||||
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
|
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
|
||||||
#ifdef FLIP_TRIANGLE_NORMALS
|
#ifdef FLIP_TRIANGLE_NORMALS
|
||||||
triangle_normal = -triangle_normal;
|
triangle_normal = -triangle_normal;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
if (volume_mirrored)
|
if (volume_mirrored)
|
||||||
triangle_normal = -triangle_normal;
|
triangle_normal = -triangle_normal;
|
||||||
|
|
||||||
// First transform the normal into camera space and normalize the result.
|
// First transform the normal into camera space and normalize the result.
|
||||||
vec3 eye_normal = normalize(normal_matrix * triangle_normal);
|
vec3 eye_normal = normalize(view_normal_matrix * triangle_normal);
|
||||||
|
|
||||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||||
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||||
|
|
||||||
// x = diffuse, y = specular;
|
// x = diffuse, y = specular;
|
||||||
vec2 intensity = vec2(0.0);
|
vec2 intensity = vec2(0.0);
|
||||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||||
vec3 position = (view_model_matrix * model_pos).xyz;
|
vec3 position = (view_model_matrix * model_pos).xyz;
|
||||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||||
|
|
||||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||||
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||||
|
|
||||||
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
|
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
|
||||||
}
|
}
|
||||||
|
@ -1,47 +1,47 @@
|
|||||||
#version 100
|
#version 100
|
||||||
|
|
||||||
#define INTENSITY_CORRECTION 0.6
|
#define INTENSITY_CORRECTION 0.6
|
||||||
|
|
||||||
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
||||||
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
||||||
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SHININESS 20.0
|
#define LIGHT_TOP_SHININESS 20.0
|
||||||
|
|
||||||
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
||||||
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
||||||
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
||||||
|
|
||||||
#define INTENSITY_AMBIENT 0.3
|
#define INTENSITY_AMBIENT 0.3
|
||||||
|
|
||||||
uniform mat4 view_model_matrix;
|
uniform mat4 view_model_matrix;
|
||||||
uniform mat4 projection_matrix;
|
uniform mat4 projection_matrix;
|
||||||
uniform mat3 normal_matrix;
|
uniform mat3 view_normal_matrix;
|
||||||
|
|
||||||
attribute vec3 v_position;
|
attribute vec3 v_position;
|
||||||
attribute vec3 v_normal;
|
attribute vec3 v_normal;
|
||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
varying vec2 intensity;
|
varying vec2 intensity;
|
||||||
varying vec3 world_position;
|
varying vec3 world_position;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
// First transform the normal into camera space and normalize the result.
|
// First transform the normal into camera space and normalize the result.
|
||||||
vec3 normal = normalize(normal_matrix * v_normal);
|
vec3 normal = normalize(view_normal_matrix * v_normal);
|
||||||
|
|
||||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||||
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
||||||
|
|
||||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||||
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
||||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||||
|
|
||||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||||
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
||||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||||
|
|
||||||
world_position = v_position;
|
world_position = v_position;
|
||||||
gl_Position = projection_matrix * position;
|
gl_Position = projection_matrix * position;
|
||||||
}
|
}
|
||||||
|
@ -1,60 +1,60 @@
|
|||||||
#version 100
|
#version 100
|
||||||
|
|
||||||
#define INTENSITY_CORRECTION 0.6
|
#define INTENSITY_CORRECTION 0.6
|
||||||
|
|
||||||
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
||||||
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
||||||
#define LIGHT_TOP_SHININESS 20.0
|
#define LIGHT_TOP_SHININESS 20.0
|
||||||
|
|
||||||
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
||||||
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
||||||
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
|
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
|
||||||
//#define LIGHT_FRONT_SHININESS 5.0
|
//#define LIGHT_FRONT_SHININESS 5.0
|
||||||
|
|
||||||
#define INTENSITY_AMBIENT 0.3
|
#define INTENSITY_AMBIENT 0.3
|
||||||
|
|
||||||
uniform mat4 view_model_matrix;
|
uniform mat4 view_model_matrix;
|
||||||
uniform mat4 projection_matrix;
|
uniform mat4 projection_matrix;
|
||||||
uniform mat3 normal_matrix;
|
uniform mat3 view_normal_matrix;
|
||||||
uniform mat4 volume_world_matrix;
|
uniform mat4 volume_world_matrix;
|
||||||
uniform float object_max_z;
|
uniform float object_max_z;
|
||||||
|
|
||||||
attribute vec3 v_position;
|
attribute vec3 v_position;
|
||||||
attribute vec3 v_normal;
|
attribute vec3 v_normal;
|
||||||
attribute vec2 v_tex_coord;
|
attribute vec2 v_tex_coord;
|
||||||
|
|
||||||
// x = tainted, y = specular;
|
// x = tainted, y = specular;
|
||||||
varying vec2 intensity;
|
varying vec2 intensity;
|
||||||
|
|
||||||
varying float object_z;
|
varying float object_z;
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
// =====================================================
|
// =====================================================
|
||||||
// NOTE:
|
// NOTE:
|
||||||
// when object_max_z > 0.0 we are rendering the overlay
|
// when object_max_z > 0.0 we are rendering the overlay
|
||||||
// when object_max_z == 0.0 we are rendering the volumes
|
// when object_max_z == 0.0 we are rendering the volumes
|
||||||
// =====================================================
|
// =====================================================
|
||||||
|
|
||||||
// First transform the normal into camera space and normalize the result.
|
// First transform the normal into camera space and normalize the result.
|
||||||
vec3 normal = (object_max_z > 0.0) ? vec3(0.0, 0.0, 1.0) : normalize(normal_matrix * v_normal);
|
vec3 normal = (object_max_z > 0.0) ? vec3(0.0, 0.0, 1.0) : normalize(view_normal_matrix * v_normal);
|
||||||
|
|
||||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||||
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
||||||
|
|
||||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||||
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
vec4 position = view_model_matrix * vec4(v_position, 1.0);
|
||||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||||
|
|
||||||
// Perform the same lighting calculation for the 2nd light source (no specular)
|
// Perform the same lighting calculation for the 2nd light source (no specular)
|
||||||
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
||||||
|
|
||||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||||
|
|
||||||
// Scaled to widths of the Z texture.
|
// Scaled to widths of the Z texture.
|
||||||
object_z = (object_max_z > 0.0) ? object_max_z * v_tex_coord.y : (volume_world_matrix * vec4(v_position, 1.0)).z;
|
object_z = (object_max_z > 0.0) ? object_max_z * v_tex_coord.y : (volume_world_matrix * vec4(v_position, 1.0)).z;
|
||||||
|
|
||||||
gl_Position = projection_matrix * position;
|
gl_Position = projection_matrix * position;
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user