Port of 1a2ba70fcf59ed063668ba91cdd600cf0e729928 to OpenGL ES

This commit is contained in:
enricoturri1966 2022-04-21 14:13:01 +02:00
parent 5b11cb0de6
commit 30224e8ae5
6 changed files with 345 additions and 345 deletions

View File

@ -1,77 +1,77 @@
#version 100 #version 100
#define INTENSITY_CORRECTION 0.6 #define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0 #define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43) // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) //#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SHININESS 5.0 //#define LIGHT_FRONT_SHININESS 5.0
#define INTENSITY_AMBIENT 0.3 #define INTENSITY_AMBIENT 0.3
const vec3 ZERO = vec3(0.0, 0.0, 0.0); const vec3 ZERO = vec3(0.0, 0.0, 0.0);
struct SlopeDetection struct SlopeDetection
{ {
bool actived; bool actived;
float normal_z; float normal_z;
mat3 volume_world_normal_matrix; mat3 volume_world_normal_matrix;
}; };
uniform mat4 view_model_matrix; uniform mat4 view_model_matrix;
uniform mat4 projection_matrix; uniform mat4 projection_matrix;
uniform mat3 normal_matrix; uniform mat3 view_normal_matrix;
uniform mat4 volume_world_matrix; uniform mat4 volume_world_matrix;
uniform SlopeDetection slope; uniform SlopeDetection slope;
// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane. // Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
uniform vec2 z_range; uniform vec2 z_range;
// Clipping plane - general orientation. Used by the SLA gizmo. // Clipping plane - general orientation. Used by the SLA gizmo.
uniform vec4 clipping_plane; uniform vec4 clipping_plane;
attribute vec3 v_position; attribute vec3 v_position;
attribute vec3 v_normal; attribute vec3 v_normal;
// x = diffuse, y = specular; // x = diffuse, y = specular;
varying vec2 intensity; varying vec2 intensity;
varying vec3 clipping_planes_dots; varying vec3 clipping_planes_dots;
varying vec4 world_pos; varying vec4 world_pos;
varying float world_normal_z; varying float world_normal_z;
varying vec3 eye_normal; varying vec3 eye_normal;
void main() void main()
{ {
// First transform the normal into camera space and normalize the result. // First transform the normal into camera space and normalize the result.
eye_normal = normalize(normal_matrix * v_normal); eye_normal = normalize(view_normal_matrix * v_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec4 position = view_model_matrix * vec4(v_position, 1.0); vec4 position = view_model_matrix * vec4(v_position, 1.0);
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied). // Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// Point in homogenous coordinates. // Point in homogenous coordinates.
world_pos = volume_world_matrix * vec4(v_position, 1.0); world_pos = volume_world_matrix * vec4(v_position, 1.0);
// z component of normal vector in world coordinate used for slope shading // z component of normal vector in world coordinate used for slope shading
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0; world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * v_normal)).z : 0.0;
gl_Position = projection_matrix * position; gl_Position = projection_matrix * position;
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded. // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z); clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
} }

View File

@ -1,45 +1,45 @@
#version 100 #version 100
#define INTENSITY_CORRECTION 0.6 #define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0 #define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43) // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3 #define INTENSITY_AMBIENT 0.3
uniform mat4 view_model_matrix; uniform mat4 view_model_matrix;
uniform mat4 projection_matrix; uniform mat4 projection_matrix;
uniform mat3 normal_matrix; uniform mat3 view_normal_matrix;
attribute vec3 v_position; attribute vec3 v_position;
attribute vec3 v_normal; attribute vec3 v_normal;
// x = tainted, y = specular; // x = tainted, y = specular;
varying vec2 intensity; varying vec2 intensity;
void main() void main()
{ {
// First transform the normal into camera space and normalize the result. // First transform the normal into camera space and normalize the result.
vec3 normal = normalize(normal_matrix * v_normal); vec3 normal = normalize(view_normal_matrix * v_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec4 position = view_model_matrix * vec4(v_position, 1.0); vec4 position = view_model_matrix * vec4(v_position, 1.0);
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied). // Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_Position = projection_matrix * position; gl_Position = projection_matrix * position;
} }

View File

@ -1,50 +1,50 @@
#version 100 #version 100
#define INTENSITY_CORRECTION 0.6 #define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0 #define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43) // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3 #define INTENSITY_AMBIENT 0.3
uniform mat4 view_model_matrix; uniform mat4 view_model_matrix;
uniform mat4 projection_matrix; uniform mat4 projection_matrix;
uniform mat3 normal_matrix; uniform mat3 view_normal_matrix;
// vertex attributes // vertex attributes
attribute vec3 v_position; attribute vec3 v_position;
attribute vec3 v_normal; attribute vec3 v_normal;
// instance attributes // instance attributes
attribute vec3 i_offset; attribute vec3 i_offset;
attribute vec2 i_scales; attribute vec2 i_scales;
// x = tainted, y = specular; // x = tainted, y = specular;
varying vec2 intensity; varying vec2 intensity;
void main() void main()
{ {
// First transform the normal into camera space and normalize the result. // First transform the normal into camera space and normalize the result.
vec3 eye_normal = normalize(normal_matrix * v_normal); vec3 eye_normal = normalize(view_normal_matrix * v_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0); vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0);
vec4 eye_position = view_model_matrix * world_position; vec4 eye_position = view_model_matrix * world_position;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied). // Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_Position = projection_matrix * eye_position; gl_Position = projection_matrix * eye_position;
} }

View File

@ -1,66 +1,66 @@
#version 100 #version 100
#extension GL_OES_standard_derivatives : enable #extension GL_OES_standard_derivatives : enable
precision highp float; precision highp float;
#define INTENSITY_CORRECTION 0.6 #define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0 #define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43) // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3 #define INTENSITY_AMBIENT 0.3
const vec3 ZERO = vec3(0.0, 0.0, 0.0); const vec3 ZERO = vec3(0.0, 0.0, 0.0);
const float EPSILON = 0.0001; const float EPSILON = 0.0001;
uniform vec4 uniform_color; uniform vec4 uniform_color;
uniform bool volume_mirrored; uniform bool volume_mirrored;
uniform mat4 view_model_matrix; uniform mat4 view_model_matrix;
uniform mat3 normal_matrix; uniform mat3 view_normal_matrix;
varying vec3 clipping_planes_dots; varying vec3 clipping_planes_dots;
varying vec4 model_pos; varying vec4 model_pos;
void main() void main()
{ {
if (any(lessThan(clipping_planes_dots, ZERO))) if (any(lessThan(clipping_planes_dots, ZERO)))
discard; discard;
vec3 color = uniform_color.rgb; vec3 color = uniform_color.rgb;
float alpha = uniform_color.a; float alpha = uniform_color.a;
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz))); vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
#ifdef FLIP_TRIANGLE_NORMALS #ifdef FLIP_TRIANGLE_NORMALS
triangle_normal = -triangle_normal; triangle_normal = -triangle_normal;
#endif #endif
if (volume_mirrored) if (volume_mirrored)
triangle_normal = -triangle_normal; triangle_normal = -triangle_normal;
// First transform the normal into camera space and normalize the result. // First transform the normal into camera space and normalize the result.
vec3 eye_normal = normalize(normal_matrix * triangle_normal); vec3 eye_normal = normalize(view_normal_matrix * triangle_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
// x = diffuse, y = specular; // x = diffuse, y = specular;
vec2 intensity = vec2(0.0); vec2 intensity = vec2(0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (view_model_matrix * model_pos).xyz; vec3 position = (view_model_matrix * model_pos).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied). // Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha); gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
} }

View File

@ -1,47 +1,47 @@
#version 100 #version 100
#define INTENSITY_CORRECTION 0.6 #define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0 #define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43) // normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3 #define INTENSITY_AMBIENT 0.3
uniform mat4 view_model_matrix; uniform mat4 view_model_matrix;
uniform mat4 projection_matrix; uniform mat4 projection_matrix;
uniform mat3 normal_matrix; uniform mat3 view_normal_matrix;
attribute vec3 v_position; attribute vec3 v_position;
attribute vec3 v_normal; attribute vec3 v_normal;
// x = tainted, y = specular; // x = tainted, y = specular;
varying vec2 intensity; varying vec2 intensity;
varying vec3 world_position; varying vec3 world_position;
void main() void main()
{ {
// First transform the normal into camera space and normalize the result. // First transform the normal into camera space and normalize the result.
vec3 normal = normalize(normal_matrix * v_normal); vec3 normal = normalize(view_normal_matrix * v_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec4 position = view_model_matrix * vec4(v_position, 1.0); vec4 position = view_model_matrix * vec4(v_position, 1.0);
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied). // Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
world_position = v_position; world_position = v_position;
gl_Position = projection_matrix * position; gl_Position = projection_matrix * position;
} }

View File

@ -1,60 +1,60 @@
#version 100 #version 100
#define INTENSITY_CORRECTION 0.6 #define INTENSITY_CORRECTION 0.6
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0 #define LIGHT_TOP_SHININESS 20.0
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) //#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
//#define LIGHT_FRONT_SHININESS 5.0 //#define LIGHT_FRONT_SHININESS 5.0
#define INTENSITY_AMBIENT 0.3 #define INTENSITY_AMBIENT 0.3
uniform mat4 view_model_matrix; uniform mat4 view_model_matrix;
uniform mat4 projection_matrix; uniform mat4 projection_matrix;
uniform mat3 normal_matrix; uniform mat3 view_normal_matrix;
uniform mat4 volume_world_matrix; uniform mat4 volume_world_matrix;
uniform float object_max_z; uniform float object_max_z;
attribute vec3 v_position; attribute vec3 v_position;
attribute vec3 v_normal; attribute vec3 v_normal;
attribute vec2 v_tex_coord; attribute vec2 v_tex_coord;
// x = tainted, y = specular; // x = tainted, y = specular;
varying vec2 intensity; varying vec2 intensity;
varying float object_z; varying float object_z;
void main() void main()
{ {
// ===================================================== // =====================================================
// NOTE: // NOTE:
// when object_max_z > 0.0 we are rendering the overlay // when object_max_z > 0.0 we are rendering the overlay
// when object_max_z == 0.0 we are rendering the volumes // when object_max_z == 0.0 we are rendering the volumes
// ===================================================== // =====================================================
// First transform the normal into camera space and normalize the result. // First transform the normal into camera space and normalize the result.
vec3 normal = (object_max_z > 0.0) ? vec3(0.0, 0.0, 1.0) : normalize(normal_matrix * v_normal); vec3 normal = (object_max_z > 0.0) ? vec3(0.0, 0.0, 1.0) : normalize(view_normal_matrix * v_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0); float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec4 position = view_model_matrix * vec4(v_position, 1.0); vec4 position = view_model_matrix * vec4(v_position, 1.0);
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS); intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position.xyz), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular) // Perform the same lighting calculation for the 2nd light source (no specular)
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0); NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// Scaled to widths of the Z texture. // Scaled to widths of the Z texture.
object_z = (object_max_z > 0.0) ? object_max_z * v_tex_coord.y : (volume_world_matrix * vec4(v_position, 1.0)).z; object_z = (object_max_z > 0.0) ? object_max_z * v_tex_coord.y : (volume_world_matrix * vec4(v_position, 1.0)).z;
gl_Position = projection_matrix * position; gl_Position = projection_matrix * position;
} }