Slic3r/src/libslic3r/Fill/FillBase.cpp
supermerill 0d25f9b266 bridge_overlap fix & redesign
* now has a min setting.
 * the density can be chosen between the two values, with the highest density possible.
 * remove the hardcoded 87.5% density modifier. Replaced by a max of 90% and a min of 80%
 * try to place the bridge at the right position (only works if the shape is simple).

FIXME: bridge can be printed on top of the previous one (if began in the wrong direction, or it has a odd number and need to go back to the same side)
try to mitigate that.
2021-11-18 01:05:09 +01:00

2507 lines
126 KiB
C++

#include <stdio.h>
#include <numeric>
#include "../ClipperUtils.hpp"
#include "../EdgeGrid.hpp"
#include "../Geometry.hpp"
#include "../Point.hpp"
#include "../PrintConfig.hpp"
#include "../Surface.hpp"
#include "../ExtrusionEntityCollection.hpp"
#include "../libslic3r.h"
#include "FillBase.hpp"
#include "FillConcentric.hpp"
#include "FillHoneycomb.hpp"
#include "Fill3DHoneycomb.hpp"
#include "FillGyroid.hpp"
#include "FillPlanePath.hpp"
#include "FillLine.hpp"
#include "FillRectilinear.hpp"
#include "FillAdaptive.hpp"
#include "FillSmooth.hpp"
#include "../MedialAxis.hpp"
namespace Slic3r {
Fill* Fill::new_from_type(const InfillPattern type)
{
switch (type) {
case ipConcentric: return new FillConcentric();
case ipConcentricGapFill: return new FillConcentricWGapFill();
case ipHoneycomb: return new FillHoneycomb();
case ip3DHoneycomb: return new Fill3DHoneycomb();
case ipGyroid: return new FillGyroid();
case ipRectilinear: return new FillRectilinear();
case ipRectilinearWGapFill: return new FillRectilinearWGapFill();
case ipMonotonic: return new FillMonotonic();
case ipMonotonicWGapFill: return new FillMonotonicWGapFill();
case ipScatteredRectilinear:return new FillScatteredRectilinear();
case ipLine: return new FillLine();
case ipGrid: return new FillGrid();
case ipTriangles: return new FillTriangles();
case ipStars: return new FillStars();
case ipCubic: return new FillCubic();
case ipArchimedeanChords: return new FillArchimedeanChords();
case ipHilbertCurve: return new FillHilbertCurve();
case ipOctagramSpiral: return new FillOctagramSpiral();
case ipSmooth: return new FillSmooth();
case ipSmoothTriple: return new FillSmoothTriple();
case ipSmoothHilbert: return new FillSmoothHilbert();
case ipRectiWithPerimeter: return new FillRectilinearPeri();
case ipSawtooth: return new FillRectilinearSawtooth();
case ipAdaptiveCubic: return new FillAdaptive::Filler();
case ipSupportCubic: return new FillAdaptive::Filler();
default: throw std::invalid_argument("unknown type : "+type);
}
}
Fill* Fill::new_from_type(const std::string &type)
{
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<InfillPattern>::get_enum_values();
t_config_enum_values::const_iterator it = enum_keys_map.find(type);
return (it == enum_keys_map.end()) ? nullptr : new_from_type(InfillPattern(it->second));
}
Polylines Fill::fill_surface(const Surface *surface, const FillParams &params) const
{
// Perform offset.
Slic3r::ExPolygons expp = offset_ex(surface->expolygon, double(scale_(0 - 0.5 * this->get_spacing())));
// Create the infills for each of the regions.
Polylines polylines_out;
for (size_t i = 0; i < expp.size(); ++ i)
_fill_surface_single(
params,
surface->thickness_layers,
_infill_direction(surface),
std::move(expp[i]),
polylines_out);
return polylines_out;
}
// Calculate a new spacing to fill width with possibly integer number of lines,
// the first and last line being centered at the interval ends.
// This function possibly increases the spacing, never decreases,
// and for a narrow width the increase in spacing may become severe,
// therefore the adjustment is limited to 20% increase.
coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance, const double factor_max)
{
assert(width >= 0);
assert(distance > 0);
// floor(width / distance)
coord_t number_of_intervals = (coord_t)((width - EPSILON) / distance);
coord_t distance_new = (number_of_intervals == 0) ?
distance :
(coord_t)(((width - EPSILON) / number_of_intervals));
const double factor = coordf_t(distance_new) / coordf_t(distance);
assert(factor > 1. - 1e-5);
// How much could the extrusion width be increased? By 20%.
if (factor > factor_max)
distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5)));
return distance_new;
}
// Returns orientation of the infill and the reference point of the infill pattern.
// For a normal print, the reference point is the center of a bounding box of the STL.
std::pair<float, Point> Fill::_infill_direction(const Surface *surface) const
{
// set infill angle
float out_angle = this->angle;
if (out_angle == FLT_MAX) {
//FIXME Vojtech: Add a warning?
printf("Using undefined infill angle\n");
out_angle = 0.f;
}
// Bounding box is the bounding box of a perl object Slic3r::Print::Object (c++ object Slic3r::PrintObject)
// The bounding box is only undefined in unit tests.
Point out_shift = empty(this->bounding_box) ?
surface->expolygon.contour.bounding_box().center() :
this->bounding_box.center();
#if 0
if (empty(this->bounding_box)) {
printf("Fill::_infill_direction: empty bounding box!");
} else {
printf("Fill::_infill_direction: reference point %d, %d\n", out_shift.x, out_shift.y);
}
#endif
if (surface->bridge_angle >= 0) {
// use bridge angle
//FIXME Vojtech: Add a debugf?
// Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle);
#ifdef SLIC3R_DEBUG
printf("Filling bridge with angle %f\n", surface->bridge_angle);
#endif /* SLIC3R_DEBUG */
out_angle = float(surface->bridge_angle);
} else if (this->layer_id != size_t(-1)) {
// alternate fill direction
out_angle += this->_layer_angle(this->layer_id / surface->thickness_layers);
} else {
// printf("Layer_ID undefined!\n");
}
out_angle += float(M_PI/2.);
return std::pair<float, Point>(out_angle, out_shift);
}
double Fill::compute_unscaled_volume_to_fill(const Surface* surface, const FillParams& params) const {
double polyline_volume = 0;
for (const ExPolygon& poly : this->no_overlap_expolygons) {
polyline_volume += params.flow.height * unscaled(unscaled(poly.area()));
double perimeter_gap_usage = params.config->perimeter_overlap.get_abs_value(1);
// add external "perimeter gap"
double perimeter_round_gap = unscaled(poly.contour.length()) * params.flow.height * (1 - 0.25 * PI) * 0.5;
// add holes "perimeter gaps"
double holes_gaps = 0;
for (auto hole = poly.holes.begin(); hole != poly.holes.end(); ++hole) {
holes_gaps += unscaled(hole->length()) * params.flow.height * (1 - 0.25 * PI) * 0.5;
}
polyline_volume += (perimeter_round_gap + holes_gaps) * perimeter_gap_usage;
}
if (this->no_overlap_expolygons.empty()) {
polyline_volume = unscaled(unscaled(surface->area())) * params.flow.height;
}
return polyline_volume;
}
void Fill::fill_surface_extrusion(const Surface *surface, const FillParams &params, ExtrusionEntitiesPtr &out) const {
//add overlap & call fill_surface
Polylines polylines;
try {
polylines = this->fill_surface(surface, params);
} catch (InfillFailedException&) {
}
if (polylines.empty())
return;
// ensure it doesn't over or under-extrude
double mult_flow = 1;
if (!params.dont_adjust && params.full_infill() && !params.flow.bridge && params.fill_exactly){
// compute the path of the nozzle -> extruded volume
double length_tot = 0;
for (auto pline = polylines.begin(); pline != polylines.end(); ++pline){
Lines lines = pline->lines();
for (auto line = lines.begin(); line != lines.end(); ++line){
length_tot += unscaled(line->length());
}
}
//compute flow to remove spacing_ratio from the equation
double extruded_volume = 0;
if (params.flow.spacing_ratio < 1.f && !params.flow.bridge) {
// the spacing is larger than usual. get the flow from the current spacing
Flow test_flow = Flow::new_from_spacing(params.flow.spacing(), params.flow.nozzle_diameter, params.flow.height, 1, params.flow.bridge);
extruded_volume = test_flow.mm3_per_mm() * length_tot;
}else
extruded_volume = params.flow.mm3_per_mm() * length_tot;
// compute real volume
double polyline_volume = compute_unscaled_volume_to_fill(surface, params);
if (extruded_volume != 0 && polyline_volume != 0) mult_flow *= polyline_volume / extruded_volume;
//failsafe, it can happen
if (mult_flow > 1.3) mult_flow = 1.3;
if (mult_flow < 0.8) mult_flow = 0.8;
BOOST_LOG_TRIVIAL(info) << "Infill process extrude " << extruded_volume << " mm3 for a volume of " << polyline_volume << " mm3 : we mult the flow by " << mult_flow;
}
// Save into layer.
auto *eec = new ExtrusionEntityCollection();
/// pass the no_sort attribute to the extrusion path
eec->no_sort = this->no_sort();
/// add it into the collection
out.push_back(eec);
//get the role
ExtrusionRole good_role = getRoleFromSurfaceType(params, surface);
/// push the path
extrusion_entities_append_paths(
eec->entities, std::move(polylines),
good_role,
params.flow.mm3_per_mm() * params.flow_mult * mult_flow,
(float)(params.flow.width * params.flow_mult * mult_flow),
(float)params.flow.height);
}
coord_t Fill::_line_spacing_for_density(float density) const
{
return scale_t(this->get_spacing() / density);
}
//FIXME: add recent improvmeent from perimetergenerator: avoid thick gapfill
void
Fill::do_gap_fill(const ExPolygons& gapfill_areas, const FillParams& params, ExtrusionEntitiesPtr& coll_out) const {
ThickPolylines polylines_gapfill;
double min = 0.4 * scale_(params.flow.nozzle_diameter) * (1 - INSET_OVERLAP_TOLERANCE);
double max = 2. * params.flow.scaled_width();
// collapse
//be sure we don't gapfill where the perimeters are already touching each other (negative spacing).
min = std::max(min, double(Flow::new_from_spacing((float)EPSILON, (float)params.flow.nozzle_diameter, (float)params.flow.height, 1, false).scaled_width()));
//ExPolygons gapfill_areas_collapsed = diff_ex(
// offset2_ex(gapfill_areas, double(-min / 2), double(+min / 2)),
// offset2_ex(gapfill_areas, double(-max / 2), double(+max / 2)),
// true);
ExPolygons gapfill_areas_collapsed = offset2_ex(gapfill_areas, double(-min / 2), double(+min / 2));
double minarea = double(params.flow.scaled_width()) * double(params.flow.scaled_width());
if (params.config != nullptr) minarea = scale_d(params.config->gap_fill_min_area.get_abs_value(params.flow.width)) * double(params.flow.scaled_width());
for (const ExPolygon& ex : gapfill_areas_collapsed) {
//remove too small gaps that are too hard to fill.
//ie one that are smaller than an extrusion with width of min and a length of max.
if (ex.area() > minarea) {
MedialAxis{ ex, params.flow.scaled_width() * 2, params.flow.scaled_width() / 5, coord_t(params.flow.height) }.build(polylines_gapfill);
}
}
if (!polylines_gapfill.empty() && !is_bridge(params.role)) {
//test
#ifdef _DEBUG
for (ThickPolyline poly : polylines_gapfill) {
for (coordf_t width : poly.width) {
if (width > params.flow.scaled_width() * 2.2) {
std::cerr << "ERRROR!!!! gapfill width = " << unscaled(width) << " > max_width = " << (params.flow.width * 2) << "\n";
}
}
}
#endif
ExtrusionEntityCollection gap_fill = thin_variable_width(polylines_gapfill, erGapFill, params.flow);
//set role if needed
/*if (params.role != erSolidInfill) {
ExtrusionSetRole set_good_role(params.role);
gap_fill.visit(set_good_role);
}*/
//move them into the collection
if (!gap_fill.entities.empty()) {
ExtrusionEntityCollection* coll_gapfill = new ExtrusionEntityCollection();
coll_gapfill->no_sort = this->no_sort();
coll_gapfill->append(std::move(gap_fill.entities));
coll_out.push_back(coll_gapfill);
}
}
}
namespace NaiveConnect {
/// cut poly between poly.point[idx_1] & poly.point[idx_1+1]
/// add p1+-width to one part and p2+-width to the other one.
/// add the "new" polyline to polylines (to part cut from poly)
/// p1 & p2 have to be between poly.point[idx_1] & poly.point[idx_1+1]
/// if idx_1 is ==0 or == size-1, then we don't need to create a new polyline.
void cut_polyline(Polyline& poly, Polylines& polylines, size_t idx_1, Point p1, Point p2) {
//reorder points
if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
Point temp = p2;
p2 = p1;
p1 = temp;
}
if (idx_1 == poly.points.size() - 1) {
//shouldn't be possible.
poly.points.erase(poly.points.end() - 1);
} else {
// create new polyline
Polyline new_poly;
//put points in new_poly
new_poly.points.push_back(p2);
new_poly.points.insert(new_poly.points.end(), poly.points.begin() + idx_1 + 1, poly.points.end());
//erase&put points in poly
poly.points.erase(poly.points.begin() + idx_1 + 1, poly.points.end());
poly.points.push_back(p1);
//safe test
if (poly.length() == 0)
poly.points = new_poly.points;
else
polylines.emplace_back(new_poly);
}
}
/// the poly is like a polygon but with first_point != last_point (already removed)
void cut_polygon(Polyline& poly, size_t idx_1, Point p1, Point p2) {
//reorder points
if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
Point temp = p2;
p2 = p1;
p1 = temp;
}
//check if we need to rotate before cutting
if (idx_1 != poly.size() - 1) {
//put points in new_poly
poly.points.insert(poly.points.end(), poly.points.begin(), poly.points.begin() + idx_1 + 1);
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_1 + 1);
}
//put points in poly
poly.points.push_back(p1);
poly.points.insert(poly.points.begin(), p2);
}
/// check if the polyline from pts_to_check may be at 'width' distance of a point in polylines_blocker
/// it use equally_spaced_points with width/2 precision, so don't worry with pts_to_check number of points.
/// it use the given polylines_blocker points, be sure to put enough of them to be reliable.
/// complexity : N(pts_to_check.equally_spaced_points(width / 2)) x N(polylines_blocker.points)
bool collision(const Points& pts_to_check, const Polylines& polylines_blocker, const coord_t width) {
//check if it's not too close to a polyline
//convert to double to allow ² operation
double min_dist_square = (double)width * (double)width * 0.9 - SCALED_EPSILON;
Polyline better_polylines(pts_to_check);
Points better_pts = better_polylines.equally_spaced_points(double(width / 2));
for (const Point& p : better_pts) {
for (const Polyline& poly2 : polylines_blocker) {
for (const Point& p2 : poly2.points) {
if (p.distance_to_square(p2) < min_dist_square) {
return true;
}
}
}
}
return false;
}
/// Try to find a path inside polylines that allow to go from p1 to p2.
/// width if the width of the extrusion
/// polylines_blockers are the array of polylines to check if the path isn't blocked by something.
/// complexity: N(polylines.points) + a collision check after that if we finded a path: N(2(p2-p1)/width) x N(polylines_blocker.points)
/// @param width is scaled
/// @param max_size is scaled
Points getFrontier(Polylines& polylines, const Point& p1, const Point& p2, const coord_t width, const Polylines& polylines_blockers, coord_t max_size = -1) {
for (size_t idx_poly = 0; idx_poly < polylines.size(); ++idx_poly) {
Polyline& poly = polylines[idx_poly];
if (poly.size() <= 1) continue;
//loop?
if (poly.first_point() == poly.last_point()) {
//polygon : try to find a line for p1 & p2.
size_t idx_11, idx_12, idx_21, idx_22;
idx_11 = poly.closest_point_index(p1);
idx_12 = idx_11;
if (Line(poly.points[idx_11], poly.points[(idx_11 + 1) % (poly.points.size() - 1)]).distance_to(p1) < SCALED_EPSILON) {
idx_12 = (idx_11 + 1) % (poly.points.size() - 1);
} else if (Line(poly.points[(idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2)], poly.points[idx_11]).distance_to(p1) < SCALED_EPSILON) {
idx_11 = (idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2);
} else {
continue;
}
idx_21 = poly.closest_point_index(p2);
idx_22 = idx_21;
if (Line(poly.points[idx_21], poly.points[(idx_21 + 1) % (poly.points.size() - 1)]).distance_to(p2) < SCALED_EPSILON) {
idx_22 = (idx_21 + 1) % (poly.points.size() - 1);
} else if (Line(poly.points[(idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2)], poly.points[idx_21]).distance_to(p2) < SCALED_EPSILON) {
idx_21 = (idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2);
} else {
continue;
}
//edge case: on the same line
if (idx_11 == idx_21 && idx_12 == idx_22) {
if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
//break loop
poly.points.erase(poly.points.end() - 1);
cut_polygon(poly, idx_11, p1, p2);
return Points() = { Line(p1, p2).midpoint() };
}
//compute distance & array for the ++ path
Points ret_1_to_2;
double dist_1_to_2 = p1.distance_to(poly.points[idx_12]);
ret_1_to_2.push_back(poly.points[idx_12]);
size_t max = idx_12 <= idx_21 ? idx_21 + 1 : poly.points.size();
for (size_t i = idx_12 + 1; i < max; i++) {
dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
ret_1_to_2.push_back(poly.points[i]);
}
if (idx_12 > idx_21) {
dist_1_to_2 += poly.points.back().distance_to(poly.points.front());
ret_1_to_2.push_back(poly.points[0]);
for (size_t i = 1; i <= idx_21; i++) {
dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
ret_1_to_2.push_back(poly.points[i]);
}
}
dist_1_to_2 += p2.distance_to(poly.points[idx_21]);
//compute distance & array for the -- path
Points ret_2_to_1;
double dist_2_to_1 = p1.distance_to(poly.points[idx_11]);
ret_2_to_1.push_back(poly.points[idx_11]);
size_t min = idx_22 <= idx_11 ? idx_22 : 0;
for (size_t i = idx_11; i > min; i--) {
dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
ret_2_to_1.push_back(poly.points[i - 1]);
}
if (idx_22 > idx_11) {
dist_2_to_1 += poly.points.back().distance_to(poly.points.front());
ret_2_to_1.push_back(poly.points[poly.points.size() - 1]);
for (size_t i = poly.points.size() - 1; i > idx_22; i--) {
dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
ret_2_to_1.push_back(poly.points[i - 1]);
}
}
dist_2_to_1 += p2.distance_to(poly.points[idx_22]);
if (max_size < dist_2_to_1 && max_size < dist_1_to_2) {
return Points();
}
//choose between the two direction (keep the short one)
if (dist_1_to_2 < dist_2_to_1) {
if (collision(ret_1_to_2, polylines_blockers, width)) return Points();
//break loop
poly.points.erase(poly.points.end() - 1);
//remove points
if (idx_12 <= idx_21) {
poly.points.erase(poly.points.begin() + idx_12, poly.points.begin() + idx_21 + 1);
if (idx_12 != 0) {
cut_polygon(poly, idx_11, p1, p2);
} //else : already cut at the good place
} else {
poly.points.erase(poly.points.begin() + idx_12, poly.points.end());
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_21);
cut_polygon(poly, poly.points.size() - 1, p1, p2);
}
return ret_1_to_2;
} else {
if (collision(ret_2_to_1, polylines_blockers, width)) return Points();
//break loop
poly.points.erase(poly.points.end() - 1);
//remove points
if (idx_22 <= idx_11) {
poly.points.erase(poly.points.begin() + idx_22, poly.points.begin() + idx_11 + 1);
if (idx_22 != 0) {
cut_polygon(poly, idx_21, p1, p2);
} //else : already cut at the good place
} else {
poly.points.erase(poly.points.begin() + idx_22, poly.points.end());
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_11);
cut_polygon(poly, poly.points.size() - 1, p1, p2);
}
return ret_2_to_1;
}
} else {
//polyline : try to find a line for p1 & p2.
size_t idx_1, idx_2;
idx_1 = poly.closest_point_index(p1);
if (idx_1 < poly.points.size() - 1 && Line(poly.points[idx_1], poly.points[idx_1 + 1]).distance_to(p1) < SCALED_EPSILON) {
} else if (idx_1 > 0 && Line(poly.points[idx_1 - 1], poly.points[idx_1]).distance_to(p1) < SCALED_EPSILON) {
idx_1 = idx_1 - 1;
} else {
continue;
}
idx_2 = poly.closest_point_index(p2);
if (idx_2 < poly.points.size() - 1 && Line(poly.points[idx_2], poly.points[idx_2 + 1]).distance_to(p2) < SCALED_EPSILON) {
} else if (idx_2 > 0 && Line(poly.points[idx_2 - 1], poly.points[idx_2]).distance_to(p2) < SCALED_EPSILON) {
idx_2 = idx_2 - 1;
} else {
continue;
}
//edge case: on the same line
if (idx_1 == idx_2) {
if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
cut_polyline(poly, polylines, idx_1, p1, p2);
return Points() = { Line(p1, p2).midpoint() };
}
//create ret array
size_t first_idx = idx_1;
size_t last_idx = idx_2 + 1;
if (idx_1 > idx_2) {
first_idx = idx_2;
last_idx = idx_1 + 1;
}
Points p_ret;
p_ret.insert(p_ret.end(), poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);
coordf_t length = 0;
for (size_t i = 1; i < p_ret.size(); i++) length += p_ret[i - 1].distance_to(p_ret[i]);
if (max_size < length) {
return Points();
}
if (collision(p_ret, polylines_blockers, width)) return Points();
//cut polyline
poly.points.erase(poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);
cut_polyline(poly, polylines, first_idx, p1, p2);
//order the returned array to be p1->p2
if (idx_1 > idx_2) {
std::reverse(p_ret.begin(), p_ret.end());
}
return p_ret;
}
}
return Points();
}
/// Connect the infill_ordered polylines, in this order, from the back point to the next front point.
/// It uses only the boundary polygons to do so, and can't pass two times at the same place.
/// It avoid passing over the infill_ordered's polylines (preventing local over-extrusion).
/// return the connected polylines in polylines_out. Can output polygons (stored as polylines with first_point = last_point).
/// complexity: worst: N(infill_ordered.points) x N(boundary.points)
/// typical: N(infill_ordered) x ( N(boundary.points) + N(infill_ordered.points) )
void connect_infill(const Polylines& infill_ordered, const ExPolygon& boundary, Polylines& polylines_out, const double spacing, const FillParams& params) {
//TODO: fallback to the quick & dirty old algorithm when n(points) is too high.
Polylines polylines_frontier = to_polylines(((Polygons)boundary));
Polylines polylines_blocker;
coord_t clip_size = scale_(spacing) * 2;
for (const Polyline& polyline : infill_ordered) {
if (polyline.length() > 2.01 * clip_size) {
polylines_blocker.push_back(polyline);
polylines_blocker.back().clip_end((double)clip_size);
polylines_blocker.back().clip_start((double)clip_size);
}
}
//length between two lines
coordf_t ideal_length = (1 / params.density) * spacing;
Polylines polylines_connected_first;
bool first = true;
for (const Polyline& polyline : infill_ordered) {
if (!first) {
// Try to connect the lines.
Points& pts_end = polylines_connected_first.back().points;
const Point& last_point = pts_end.back();
const Point& first_point = polyline.points.front();
if (last_point.distance_to(first_point) < scale_(spacing) * 10) {
Points pts_frontier = getFrontier(polylines_frontier, last_point, first_point, scale_(spacing), polylines_blocker, scale_(ideal_length) * 2);
if (!pts_frontier.empty()) {
// The lines can be connected.
pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
continue;
}
}
}
// The lines cannot be connected.
polylines_connected_first.emplace_back(std::move(polyline));
first = false;
}
Polylines polylines_connected;
first = true;
for (const Polyline& polyline : polylines_connected_first) {
if (!first) {
// Try to connect the lines.
Points& pts_end = polylines_connected.back().points;
const Point& last_point = pts_end.back();
const Point& first_point = polyline.points.front();
Polylines before = polylines_frontier;
Points pts_frontier = getFrontier(polylines_frontier, last_point, first_point, scale_(spacing), polylines_blocker);
if (!pts_frontier.empty()) {
// The lines can be connected.
pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
continue;
}
}
// The lines cannot be connected.
polylines_connected.emplace_back(std::move(polyline));
first = false;
}
//try to link to nearest point if possible
for (size_t idx1 = 0; idx1 < polylines_connected.size(); idx1++) {
size_t min_idx = 0;
coordf_t min_length = 0;
bool switch_id1 = false;
bool switch_id2 = false;
for (size_t idx2 = idx1 + 1; idx2 < polylines_connected.size(); idx2++) {
double last_first = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].first_point());
double first_first = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].first_point());
double first_last = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].last_point());
double last_last = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].last_point());
double min = std::min(std::min(last_first, last_last), std::min(first_first, first_last));
if (min < min_length || min_length == 0) {
min_idx = idx2;
switch_id1 = (std::min(last_first, last_last) > std::min(first_first, first_last));
switch_id2 = (std::min(last_first, first_first) > std::min(last_last, first_last));
min_length = min;
}
}
if (min_idx > idx1&& min_idx < polylines_connected.size()) {
Points pts_frontier = getFrontier(polylines_frontier,
switch_id1 ? polylines_connected[idx1].first_point() : polylines_connected[idx1].last_point(),
switch_id2 ? polylines_connected[min_idx].last_point() : polylines_connected[min_idx].first_point(),
scale_(spacing), polylines_blocker);
if (!pts_frontier.empty()) {
if (switch_id1) polylines_connected[idx1].reverse();
if (switch_id2) polylines_connected[min_idx].reverse();
Points& pts_end = polylines_connected[idx1].points;
pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
pts_end.insert(pts_end.end(), polylines_connected[min_idx].points.begin(), polylines_connected[min_idx].points.end());
polylines_connected.erase(polylines_connected.begin() + min_idx);
}
}
}
//try to create some loops if possible
for (Polyline& polyline : polylines_connected) {
Points pts_frontier = getFrontier(polylines_frontier, polyline.last_point(), polyline.first_point(), scale_(spacing), polylines_blocker);
if (!pts_frontier.empty()) {
polyline.points.insert(polyline.points.end(), pts_frontier.begin(), pts_frontier.end());
polyline.points.insert(polyline.points.begin(), polyline.points.back());
}
polylines_out.emplace_back(polyline);
}
}
}
namespace PrusaSimpleConnect {
struct ContourPointData {
ContourPointData(float param) : param(param) {}
// Eucleidean position of the contour point along the contour.
float param = 0.f;
// Was the segment starting with this contour point extruded?
bool segment_consumed = false;
// Was this point extruded over?
bool point_consumed = false;
};
// Verify whether the contour from point idx_start to point idx_end could be taken (whether all segments along the contour were not yet extruded).
static bool could_take(const std::vector<ContourPointData>& contour_data, size_t idx_start, size_t idx_end)
{
assert(idx_start != idx_end);
for (size_t i = idx_start; i != idx_end; ) {
if (contour_data[i].segment_consumed || contour_data[i].point_consumed)
return false;
if (++i == contour_data.size())
i = 0;
}
return !contour_data[idx_end].point_consumed;
}
// Connect end of pl1 to the start of pl2 using the perimeter contour.
// The idx_start and idx_end are ordered so that the connecting polyline points will be taken with increasing indices.
static void take(Polyline& pl1, Polyline&& pl2, const Points& contour, std::vector<ContourPointData>& contour_data, size_t idx_start, size_t idx_end, bool reversed)
{
#ifndef NDEBUG
size_t num_points_initial = pl1.points.size();
assert(idx_start != idx_end);
#endif /* NDEBUG */
{
// Reserve memory at pl1 for the connecting contour and pl2.
int new_points = int(idx_end) - int(idx_start) - 1;
if (new_points < 0)
new_points += int(contour.size());
pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size());
}
contour_data[idx_start].point_consumed = true;
contour_data[idx_start].segment_consumed = true;
contour_data[idx_end].point_consumed = true;
if (reversed) {
size_t i = (idx_end == 0) ? contour_data.size() - 1 : idx_end - 1;
while (i != idx_start) {
contour_data[i].point_consumed = true;
contour_data[i].segment_consumed = true;
pl1.points.emplace_back(contour[i]);
if (i == 0)
i = contour_data.size();
--i;
}
} else {
size_t i = idx_start;
if (++i == contour_data.size())
i = 0;
while (i != idx_end) {
contour_data[i].point_consumed = true;
contour_data[i].segment_consumed = true;
pl1.points.emplace_back(contour[i]);
if (++i == contour_data.size())
i = 0;
}
}
append(pl1.points, std::move(pl2.points));
}
// Return an index of start of a segment and a point of the clipping point at distance from the end of polyline.
struct SegmentPoint {
// Segment index, defining a line <idx_segment, idx_segment + 1).
size_t idx_segment = std::numeric_limits<size_t>::max();
// Parameter of point in <0, 1) along the line <idx_segment, idx_segment + 1)
double t;
Vec2d point;
bool valid() const { return idx_segment != std::numeric_limits<size_t>::max(); }
};
static inline SegmentPoint clip_start_segment_and_point(const Points& polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
Vec2d pt_prev = polyline.front().cast<double>();
for (size_t i = 1; i < polyline.size(); ++i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_prev;
double l2 = v.squaredNorm();
if (l2 > distance* distance) {
out.idx_segment = i;
out.t = distance / sqrt(l2);
out.point = pt_prev + out.t * v;
break;
}
distance -= sqrt(l2);
pt_prev = pt;
}
}
return out;
}
static inline SegmentPoint clip_end_segment_and_point(const Points& polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
Vec2d pt_next = polyline.back().cast<double>();
for (int i = int(polyline.size()) - 2; i >= 0; --i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_next;
double l2 = v.squaredNorm();
if (l2 > distance* distance) {
out.idx_segment = i;
out.t = distance / sqrt(l2);
out.point = pt_next + out.t * v;
// Store the parameter referenced to the starting point of a segment.
out.t = 1. - out.t;
break;
}
distance -= sqrt(l2);
pt_next = pt;
}
}
return out;
}
// Optimized version with the precalculated v1 = p1b - p1a and l1_2 = v1.squaredNorm().
// Assumption: l1_2 < EPSILON.
static inline double segment_point_distance_squared(const Vec2d& p1a, const Vec2d& p1b, const Vec2d& v1, const double l1_2, const Vec2d& p2)
{
assert(l1_2 > EPSILON);
Vec2d v12 = p2 - p1a;
double t = v12.dot(v1);
return (t <= 0.) ? v12.squaredNorm() :
(t >= l1_2) ? (p2 - p1a).squaredNorm() :
((t / l1_2) * v1 - v12).squaredNorm();
}
static inline double segment_point_distance_squared(const Vec2d& p1a, const Vec2d& p1b, const Vec2d& p2)
{
const Vec2d v = p1b - p1a;
const double l2 = v.squaredNorm();
if (l2 < EPSILON)
// p1a == p1b
return (p2 - p1a).squaredNorm();
return segment_point_distance_squared(p1a, p1b, v, v.squaredNorm(), p2);
}
// Distance to the closest point of line.
static inline double min_distance_of_segments(const Vec2d& p1a, const Vec2d& p1b, const Vec2d& p2a, const Vec2d& p2b)
{
Vec2d v1 = p1b - p1a;
double l1_2 = v1.squaredNorm();
if (l1_2 < EPSILON)
// p1a == p1b: Return distance of p1a from the (p2a, p2b) segment.
return segment_point_distance_squared(p2a, p2b, p1a);
Vec2d v2 = p2b - p2a;
double l2_2 = v2.squaredNorm();
if (l2_2 < EPSILON)
// p2a == p2b: Return distance of p2a from the (p1a, p1b) segment.
return segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a);
return std::min(
std::min(segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a), segment_point_distance_squared(p1a, p1b, v1, l1_2, p2b)),
std::min(segment_point_distance_squared(p2a, p2b, v2, l2_2, p1a), segment_point_distance_squared(p2a, p2b, v2, l2_2, p1b)));
}
// Mark the segments of split boundary as consumed if they are very close to some of the infill line.
void mark_boundary_segments_touching_infill(
const std::vector<Points>& boundary,
std::vector<std::vector<ContourPointData>>& boundary_data,
const BoundingBox& boundary_bbox,
const Polylines& infill,
const double clip_distance,
const double distance_colliding)
{
EdgeGrid::Grid grid;
grid.set_bbox(boundary_bbox.inflated(distance_colliding * 1.43));
// Inflate the bounding box by a thick line width.
grid.create(boundary, coord_t(clip_distance + scale_(10.)));
struct Visitor {
Visitor(const EdgeGrid::Grid& grid, const std::vector<Points>& boundary, std::vector<std::vector<ContourPointData>>& boundary_data, const double dist2_max) :
grid(grid), boundary(boundary), boundary_data(boundary_data), dist2_max(dist2_max) {}
void init(const Vec2d& pt1, const Vec2d& pt2) {
this->pt1 = &pt1;
this->pt2 = &pt2;
}
bool operator()(coord_t iy, coord_t ix) {
// Called with a row and colum of the grid cell, which is intersected by a line.
auto cell_data_range = this->grid.cell_data_range(iy, ix);
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
// End points of the line segment and their vector.
auto segment = this->grid.segment(*it_contour_and_segment);
const Vec2d seg_pt1 = segment.first.cast<double>();
const Vec2d seg_pt2 = segment.second.cast<double>();
if (min_distance_of_segments(seg_pt1, seg_pt2, *this->pt1, *this->pt2) < this->dist2_max) {
// Mark this boundary segment as touching the infill line.
ContourPointData& bdp = boundary_data[it_contour_and_segment->first][it_contour_and_segment->second];
bdp.segment_consumed = true;
// There is no need for checking seg_pt2 as it will be checked the next time.
bool point_touching = false;
if (segment_point_distance_squared(*this->pt1, *this->pt2, seg_pt1) < this->dist2_max) {
point_touching = true;
bdp.point_consumed = true;
}
#if 0
{
static size_t iRun = 0;
ExPolygon expoly(Polygon(*grid.contours().front()));
for (size_t i = 1; i < grid.contours().size(); ++i)
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun++).c_str(), get_extents(expoly));
svg.draw(expoly, "green");
svg.draw(Line(segment.first, segment.second), "red");
svg.draw(Line(this->pt1->cast<coord_t>(), this->pt2->cast<coord_t>()), "magenta");
}
#endif
}
}
// Continue traversing the grid along the edge.
return true;
}
const EdgeGrid::Grid& grid;
const std::vector<Points>& boundary;
std::vector<std::vector<ContourPointData>>& boundary_data;
// Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line.
const double dist2_max;
const Vec2d* pt1;
const Vec2d* pt2;
} visitor(grid, boundary, boundary_data, distance_colliding * distance_colliding);
BoundingBoxf bboxf(boundary_bbox.min.cast<double>(), boundary_bbox.max.cast<double>());
bboxf.offset(coordf_t(-SCALED_EPSILON));
for (const Polyline& polyline : infill) {
// Clip the infill polyline by the Eucledian distance along the polyline.
SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance);
SegmentPoint end_point = clip_end_segment_and_point(polyline.points, clip_distance);
if (start_point.valid() && end_point.valid() &&
(start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) {
// The clipped polyline is non-empty.
for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++point_idx) {
//FIXME extend the EdgeGrid to suport tracing a thick line.
#if 0
Point pt1, pt2;
Vec2d pt1d, pt2d;
if (point_idx == start_point.idx_segment) {
pt1d = start_point.point;
pt1 = pt1d.cast<coord_t>();
} else {
pt1 = polyline.points[point_idx];
pt1d = pt1.cast<double>();
}
if (point_idx == start_point.idx_segment) {
pt2d = end_point.point;
pt2 = pt1d.cast<coord_t>();
} else {
pt2 = polyline.points[point_idx];
pt2d = pt2.cast<double>();
}
visitor.init(pt1d, pt2d);
grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor);
#else
Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx].cast<double>();
Vec2d pt2 = (point_idx == end_point.idx_segment) ? end_point.point : polyline.points[point_idx + 1].cast<double>();
#if 0
{
static size_t iRun = 0;
ExPolygon expoly(Polygon(*grid.contours().front()));
for (size_t i = 1; i < grid.contours().size(); ++i)
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun++).c_str(), get_extents(expoly));
svg.draw(expoly, "green");
svg.draw(polyline, "blue");
svg.draw(Line(pt1.cast<coord_t>(), pt2.cast<coord_t>()), "magenta", scale_(0.1));
}
#endif
visitor.init(pt1, pt2);
// Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size.
Vec2d v = (pt2 - pt1).normalized() * distance_colliding;
Vec2d vperp(-v.y(), v.x());
Vec2d a = pt1 - v - vperp;
Vec2d b = pt1 + v - vperp;
if (Geometry::liang_barsky_line_clipping(a, b, bboxf))
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
a = pt1 - v + vperp;
b = pt1 + v + vperp;
if (Geometry::liang_barsky_line_clipping(a, b, bboxf))
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
#endif
}
}
}
}
void connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const double spacing, const FillParams &params)
{
assert(!infill_ordered.empty());
assert(!boundary_src.contour.points.empty());
BoundingBox bbox = get_extents(boundary_src.contour);
bbox.offset(coordf_t(SCALED_EPSILON));
// 1) Add the end points of infill_ordered to boundary_src.
std::vector<Points> boundary;
std::vector<std::vector<ContourPointData>> boundary_data;
boundary.assign(boundary_src.holes.size() + 1, Points());
boundary_data.assign(boundary_src.holes.size() + 1, std::vector<ContourPointData>());
// Mapping the infill_ordered end point to a (contour, point) of boundary.
std::vector<std::pair<size_t, size_t>> map_infill_end_point_to_boundary;
static constexpr auto boundary_idx_unconnected = std::numeric_limits<size_t>::max();
map_infill_end_point_to_boundary.assign(infill_ordered.size() * 2, std::pair<size_t, size_t>(boundary_idx_unconnected, boundary_idx_unconnected));
{
// Project the infill_ordered end points onto boundary_src.
std::vector<std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>> intersection_points;
{
EdgeGrid::Grid grid;
grid.set_bbox(bbox);
grid.create(boundary_src, scale_(10.));
intersection_points.reserve(infill_ordered.size() * 2);
for (const Polyline& pl : infill_ordered)
for (const Point* pt : { &pl.points.front(), &pl.points.back() }) {
EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, SCALED_EPSILON);
if (cp.valid()) {
// The infill end point shall lie on the contour.
//assert(cp.distance < 2.); //triggered with simple cube with gyroid. Is it dangerous?
intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1));
}
}
std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>& cp1, const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>& cp2) {
return cp1.first.contour_idx < cp2.first.contour_idx ||
(cp1.first.contour_idx == cp2.first.contour_idx &&
(cp1.first.start_point_idx < cp2.first.start_point_idx ||
(cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t)));
});
}
auto it = intersection_points.begin();
auto it_end = intersection_points.end();
for (size_t idx_contour = 0; idx_contour <= boundary_src.holes.size(); ++idx_contour) {
const Polygon& contour_src = (idx_contour == 0) ? boundary_src.contour : boundary_src.holes[idx_contour - 1];
Points& contour_dst = boundary[idx_contour];
for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++idx_point) {
contour_dst.emplace_back(contour_src.points[idx_point]);
for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++it) {
// Add these points to the destination contour.
const Vec2d pt1 = contour_src[idx_point].cast<double>();
const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast<double>();
const Vec2d pt = lerp(pt1, pt2, it->first.t);
map_infill_end_point_to_boundary[it->second] = std::make_pair(idx_contour, contour_dst.size());
contour_dst.emplace_back(pt.cast<coord_t>());
}
}
// Parametrize the curve.
std::vector<ContourPointData>& contour_data = boundary_data[idx_contour];
contour_data.reserve(contour_dst.size());
contour_data.emplace_back(ContourPointData(0.f));
for (size_t i = 1; i < contour_dst.size(); ++i)
contour_data.emplace_back(contour_data.back().param + (contour_dst[i].cast<float>() - contour_dst[i - 1].cast<float>()).norm());
contour_data.front().param = contour_data.back().param + (contour_dst.back().cast<float>() - contour_dst.front().cast<float>()).norm();
}
assert(boundary.size() == boundary_src.num_contours());
#if 0
// Adaptive Cubic Infill produces infill lines, which not always end at the outer boundary.
assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(),
[&boundary](const std::pair<size_t, size_t>& contour_point) {
return contour_point.first < boundary.size() && contour_point.second < boundary[contour_point.first].size();
}));
assert(boundary_data.size() == boundary_src.holes.size() + 1);
#endif
}
// Mark the points and segments of split boundary as consumed if they are very close to some of the infill line.
{
// @supermerill used 2. * scale_(spacing)
const double clip_distance = 3. * scale_(spacing);
const double distance_colliding = 1.1 * scale_(spacing);
mark_boundary_segments_touching_infill(boundary, boundary_data, bbox, infill_ordered, clip_distance, distance_colliding);
}
// Connection from end of one infill line to the start of another infill line.
//const float length_max = scale_(spacing);
// const float length_max = scale_((2. / params.density) * spacing);
const coord_t length_max = scale_((1000. / params.density) * spacing);
std::vector<size_t> merged_with(infill_ordered.size());
for (size_t i = 0; i < merged_with.size(); ++i)
merged_with[i] = i;
struct ConnectionCost {
ConnectionCost(size_t idx_first, double cost, bool reversed) : idx_first(idx_first), cost(cost), reversed(reversed) {}
size_t idx_first;
double cost;
bool reversed;
};
std::vector<ConnectionCost> connections_sorted;
connections_sorted.reserve(infill_ordered.size() * 2 - 2);
for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++idx_chain) {
const Polyline& pl1 = infill_ordered[idx_chain - 1];
const Polyline& pl2 = infill_ordered[idx_chain];
const std::pair<size_t, size_t>* cp1 = &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1];
const std::pair<size_t, size_t>* cp2 = &map_infill_end_point_to_boundary[idx_chain * 2];
if (cp1->first != boundary_idx_unconnected && cp1->first == cp2->first) {
// End points on the same contour. Try to connect them.
const std::vector<ContourPointData>& contour_data = boundary_data[cp1->first];
float param_lo = (cp1->second == 0) ? 0.f : contour_data[cp1->second].param;
float param_hi = (cp2->second == 0) ? 0.f : contour_data[cp2->second].param;
float param_end = contour_data.front().param;
bool reversed = false;
if (param_lo > param_hi) {
std::swap(param_lo, param_hi);
reversed = true;
}
assert(param_lo >= 0.f && param_lo <= param_end);
assert(param_hi >= 0.f && param_hi <= param_end);
coord_t len = coord_t(param_hi - param_lo);
if (len < length_max)
connections_sorted.emplace_back(idx_chain - 1, len, reversed);
len = coord_t(param_lo + param_end - param_hi);
if (len < length_max)
connections_sorted.emplace_back(idx_chain - 1, len, !reversed);
}
}
std::sort(connections_sorted.begin(), connections_sorted.end(), [](const ConnectionCost& l, const ConnectionCost& r) { return l.cost < r.cost; });
//mark point as used depends of connection parameter
if (params.connection == icOuterShell) {
for (auto it = boundary_data.begin() + 1; it != boundary_data.end(); ++it) {
for (ContourPointData& pt : *it) {
pt.point_consumed = true;
}
}
} else if (params.connection == icHoles) {
for (ContourPointData& pt : boundary_data[0]) {
pt.point_consumed = true;
}
}
assert(boundary_data.size() == boundary_src.holes.size() + 1);
size_t idx_chain_last = 0;
for (ConnectionCost& connection_cost : connections_sorted) {
const std::pair<size_t, size_t>* cp1 = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1];
const std::pair<size_t, size_t>* cp1prev = cp1 - 1;
const std::pair<size_t, size_t>* cp2 = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2];
const std::pair<size_t, size_t>* cp2next = cp2 + 1;
assert(cp1->first == cp2->first && cp1->first != boundary_idx_unconnected);
std::vector<ContourPointData>& contour_data = boundary_data[cp1->first];
if (connection_cost.reversed)
std::swap(cp1, cp2);
// Mark the the other end points of the segments to be taken as consumed temporarily, so they will not be crossed
// by the new connection line.
bool prev_marked = false;
bool next_marked = false;
if (cp1prev->first == cp1->first && !contour_data[cp1prev->second].point_consumed) {
contour_data[cp1prev->second].point_consumed = true;
prev_marked = true;
}
if (cp2next->first == cp1->first && !contour_data[cp2next->second].point_consumed) {
contour_data[cp2next->second].point_consumed = true;
next_marked = true;
}
if (could_take(contour_data, cp1->second, cp2->second)) {
// Indices of the polygons to be connected.
size_t idx_first = connection_cost.idx_first;
size_t idx_second = idx_first + 1;
for (size_t last = idx_first;;) {
size_t lower = merged_with[last];
if (lower == last) {
merged_with[idx_first] = lower;
idx_first = lower;
break;
}
last = lower;
}
// Connect the two polygons using the boundary contour.
take(infill_ordered[idx_first], std::move(infill_ordered[idx_second]), boundary[cp1->first], contour_data, cp1->second, cp2->second, connection_cost.reversed);
// Mark the second polygon as merged with the first one.
merged_with[idx_second] = merged_with[idx_first];
}
if (prev_marked)
contour_data[cp1prev->second].point_consumed = false;
if (next_marked)
contour_data[cp2next->second].point_consumed = false;
}
polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline& pl) { return !pl.empty(); }));
for (Polyline& pl : infill_ordered)
if (!pl.empty())
polylines_out.emplace_back(std::move(pl));
}
}
namespace FakePerimeterConnect {
// A single T joint of an infill line to a closed contour or one of its holes.
struct ContourIntersectionPoint {
// Contour and point on a contour where an infill line is connected to.
size_t contour_idx;
size_t point_idx;
// Eucleidean parameter of point_idx along its contour.
double param;
// Other intersection points along the same contour. If there is only a single T-joint on a contour
// with an intersection line, then the prev_on_contour and next_on_contour remain nulls.
ContourIntersectionPoint* prev_on_contour{ nullptr };
ContourIntersectionPoint* next_on_contour{ nullptr };
// Length of the contour not yet allocated to some extrusion path going back (clockwise), or masked out by some overlapping infill line.
double contour_not_taken_length_prev { std::numeric_limits<double>::max() };
// Length of the contour not yet allocated to some extrusion path going forward (counter-clockwise), or masked out by some overlapping infill line.
double contour_not_taken_length_next { std::numeric_limits<double>::max() };
// End point is consumed if an infill line connected to this T-joint was already connected left or right along the contour,
// or if the infill line was processed, but it was not possible to connect it left or right along the contour.
bool consumed{ false };
// Whether the contour was trimmed by an overlapping infill line, or whether part of this contour was connected to some infill line.
bool prev_trimmed{ false };
bool next_trimmed{ false };
void consume_prev() { this->contour_not_taken_length_prev = 0.; this->prev_trimmed = true; this->consumed = true; }
void consume_next() { this->contour_not_taken_length_next = 0.; this->next_trimmed = true; this->consumed = true; }
void trim_prev(const double new_len) {
if (new_len < this->contour_not_taken_length_prev) {
this->contour_not_taken_length_prev = new_len;
this->prev_trimmed = true;
}
}
void trim_next(const double new_len) {
if (new_len < this->contour_not_taken_length_next) {
this->contour_not_taken_length_next = new_len;
this->next_trimmed = true;
}
}
// The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going backwards.
bool could_take_prev() const throw() { return !this->consumed && this->contour_not_taken_length_prev > SCALED_EPSILON; }
// The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going forward.
bool could_take_next() const throw() { return !this->consumed && this->contour_not_taken_length_next > SCALED_EPSILON; }
// Could extrude a complete segment from this to this->prev_on_contour.
bool could_connect_prev() const throw()
{ return ! this->consumed && this->prev_on_contour != this && ! this->prev_on_contour->consumed && ! this->prev_trimmed && ! this->prev_on_contour->next_trimmed; }
// Could extrude a complete segment from this to this->next_on_contour.
bool could_connect_next() const throw()
{ return ! this->consumed && this->next_on_contour != this && ! this->next_on_contour->consumed && ! this->next_trimmed && ! this->next_on_contour->prev_trimmed; }
};
// Distance from param1 to param2 when going counter-clockwise.
static inline double closed_contour_distance_ccw(double param1, double param2, double contour_length)
{
assert(param1 >= 0. && param1 <= contour_length);
assert(param2 >= 0. && param2 <= contour_length);
double d = param2 - param1;
if (d < 0.)
d += contour_length;
return d;
}
// Distance from param1 to param2 when going clockwise.
static inline double closed_contour_distance_cw(double param1, double param2, double contour_length)
{
return closed_contour_distance_ccw(param2, param1, contour_length);
}
// Length along the contour from cp1 to cp2 going counter-clockwise.
double path_length_along_contour_ccw(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, double contour_length)
{
assert(cp1 != nullptr);
assert(cp2 != nullptr);
assert(cp1->contour_idx == cp2->contour_idx);
assert(cp1 != cp2);
return closed_contour_distance_ccw(cp1->param, cp2->param, contour_length);
}
// Lengths along the contour from cp1 to cp2 going CCW and going CW.
std::pair<double, double> path_lengths_along_contour(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, double contour_length)
{
// Zero'th param is the length of the contour.
double param_lo = cp1->param;
double param_hi = cp2->param;
assert(param_lo >= 0. && param_lo <= contour_length);
assert(param_hi >= 0. && param_hi <= contour_length);
bool reversed = false;
if (param_lo > param_hi) {
std::swap(param_lo, param_hi);
reversed = true;
}
auto out = std::make_pair(param_hi - param_lo, param_lo + contour_length - param_hi);
if (reversed)
std::swap(out.first, out.second);
return out;
}
// Add contour points from interval (idx_start, idx_end> to polyline.
static inline void take_cw_full(Polyline& pl, const Points& contour, size_t idx_start, size_t idx_end)
{
assert(!pl.empty() && pl.points.back() == contour[idx_start]);
size_t i = (idx_end == 0) ? contour.size() - 1 : idx_start - 1;
while (i != idx_end) {
pl.points.emplace_back(contour[i]);
if (i == 0)
i = contour.size();
--i;
}
pl.points.emplace_back(contour[i]);
}
// Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken.
static inline double take_cw_limited(Polyline &pl, const Points &contour, const std::vector<double> &params, size_t idx_start, size_t idx_end, double length_to_take)
{
// If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line.
assert(pl.empty() || pl.points.back() == contour[idx_start]);
assert(contour.size() + 1 == params.size());
assert(length_to_take > SCALED_EPSILON);
// Length of the contour.
double length = params.back();
// Parameter (length from contour.front()) for the first point.
double p0 = params[idx_start];
// Current (2nd) point of the contour.
size_t i = (idx_start == 0) ? contour.size() - 1 : idx_start - 1;
// Previous point of the contour.
size_t iprev = idx_start;
// Length of the contour curve taken for iprev.
double lprev = 0.;
for (;;) {
double l = closed_contour_distance_cw(p0, params[i], length);
if (l >= length_to_take) {
// Trim the last segment.
double t = double(length_to_take - lprev) / (l - lprev);
pl.points.emplace_back(lerp(contour[iprev], contour[i], t));
return length_to_take;
}
// Continue with the other segments.
pl.points.emplace_back(contour[i]);
if (i == idx_end)
return l;
iprev = i;
lprev = l;
if (i == 0)
i = contour.size();
--i;
}
assert(false);
return 0;
}
// Add contour points from interval (idx_start, idx_end> to polyline.
static inline void take_ccw_full(Polyline& pl, const Points& contour, size_t idx_start, size_t idx_end)
{
assert(!pl.empty() && pl.points.back() == contour[idx_start]);
size_t i = idx_start;
if (++i == contour.size())
i = 0;
while (i != idx_end) {
pl.points.emplace_back(contour[i]);
if (++i == contour.size())
i = 0;
}
pl.points.emplace_back(contour[i]);
}
// Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken.
// Returns length of the contour taken.
static inline double take_ccw_limited(Polyline &pl, const Points &contour, const std::vector<double> &params, size_t idx_start, size_t idx_end, double length_to_take)
{
// If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line.
assert(pl.empty() || pl.points.back() == contour[idx_start]);
assert(contour.size() + 1 == params.size());
assert(length_to_take > SCALED_EPSILON);
// Length of the contour.
double length = params.back();
// Parameter (length from contour.front()) for the first point.
double p0 = params[idx_start];
// Current (2nd) point of the contour.
size_t i = idx_start;
if (++i == contour.size())
i = 0;
// Previous point of the contour.
size_t iprev = idx_start;
// Length of the contour curve taken at iprev.
double lprev = 0;
for (;;) {
double l = closed_contour_distance_ccw(p0, params[i], length);
if (l >= length_to_take) {
// Trim the last segment.
double t = double(length_to_take - lprev) / (l - lprev);
pl.points.emplace_back(lerp(contour[iprev], contour[i], t));
return length_to_take;
}
// Continue with the other segments.
pl.points.emplace_back(contour[i]);
if (i == idx_end)
return l;
iprev = i;
lprev = l;
if (++i == contour.size())
i = 0;
}
assert(false);
return 0;
}
// Connect end of pl1 to the start of pl2 using the perimeter contour.
// If clockwise, then a clockwise segment from idx_start to idx_end is taken, otherwise a counter-clockwise segment is being taken.
static void take(Polyline& pl1, const Polyline& pl2, const Points& contour, size_t idx_start, size_t idx_end, bool clockwise)
{
#ifndef NDEBUG
assert(idx_start != idx_end);
assert(pl1.size() >= 2);
assert(pl2.size() >= 2);
#endif /* NDEBUG */
{
// Reserve memory at pl1 for the connecting contour and pl2.
int new_points = int(idx_end) - int(idx_start) - 1;
if (new_points < 0)
new_points += int(contour.size());
pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size());
}
if (clockwise)
take_cw_full(pl1, contour, idx_start, idx_end);
else
take_ccw_full(pl1, contour, idx_start, idx_end);
pl1.points.insert(pl1.points.end(), pl2.points.begin() + 1, pl2.points.end());
}
static void take(Polyline& pl1, const Polyline& pl2, const Points& contour, ContourIntersectionPoint* cp_start, ContourIntersectionPoint* cp_end, bool clockwise)
{
assert(cp_start->prev_on_contour != nullptr);
assert(cp_start->next_on_contour != nullptr);
assert(cp_end ->prev_on_contour != nullptr);
assert(cp_end ->next_on_contour != nullptr);
assert(cp_start != cp_end);
take(pl1, pl2, contour, cp_start->point_idx, cp_end->point_idx, clockwise);
// Mark the contour segments in between cp_start and cp_end as consumed.
if (clockwise)
std::swap(cp_start, cp_end);
if (cp_start->next_on_contour != cp_end)
for (auto* cp = cp_start->next_on_contour; cp->next_on_contour != cp_end; cp = cp->next_on_contour) {
cp->consume_prev();
cp->consume_next();
}
cp_start->consume_next();
cp_end->consume_prev();
}
static void take_limited(
Polyline &pl1, const Points &contour, const std::vector<double> &params,
ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise, double take_max_length, double line_half_width)
{
#ifndef NDEBUG
// This is a valid case, where a single infill line connect to two different contours (outer contour + hole or two holes).
// assert(cp_start != cp_end);
assert(cp_start->prev_on_contour != nullptr);
assert(cp_start->next_on_contour != nullptr);
assert(cp_end ->prev_on_contour != nullptr);
assert(cp_end ->next_on_contour != nullptr);
assert(pl1.size() >= 2);
assert(contour.size() + 1 == params.size());
#endif /* NDEBUG */
if (!(clockwise ? cp_start->could_take_prev() : cp_start->could_take_next()))
return;
assert(pl1.points.front() == contour[cp_start->point_idx] || pl1.points.back() == contour[cp_start->point_idx]);
bool add_at_start = pl1.points.front() == contour[cp_start->point_idx];
Points pl_tmp;
if (add_at_start) {
pl_tmp = std::move(pl1.points);
pl1.points.clear();
}
{
// Reserve memory at pl1 for the perimeter segment.
// Pessimizing - take the complete segment.
int new_points = int(cp_end->point_idx) - int(cp_start->point_idx) - 1;
if (new_points < 0)
new_points += int(contour.size());
pl1.points.reserve(pl1.points.size() + pl_tmp.size() + size_t(new_points));
}
double length = params.back();
double length_to_go = take_max_length;
cp_start->consumed = true;
if (cp_start == cp_end) {
length_to_go = std::max(0., std::min(length_to_go, length - line_half_width));
length_to_go = std::min(length_to_go, clockwise ? cp_start->contour_not_taken_length_prev : cp_start->contour_not_taken_length_next);
cp_start->consume_prev();
cp_start->consume_next();
if (length_to_go > SCALED_EPSILON)
clockwise ?
take_cw_limited (pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go) :
take_ccw_limited(pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go);
} else if (clockwise) {
// Going clockwise from cp_start to cp_end.
assert(cp_start != cp_end);
for (ContourIntersectionPoint* cp = cp_start; cp != cp_end; cp = cp->prev_on_contour) {
// Length of the segment from cp to cp->prev_on_contour.
double l = closed_contour_distance_cw(cp->param, cp->prev_on_contour->param, length);
length_to_go = std::min(length_to_go, cp->contour_not_taken_length_prev);
//if (cp->prev_on_contour->consumed)
// Don't overlap with an already extruded infill line.
length_to_go = std::max(0., std::min(length_to_go, l - line_half_width));
cp->consume_prev();
if (l >= length_to_go) {
if (length_to_go > SCALED_EPSILON) {
cp->prev_on_contour->trim_next(l - length_to_go);
take_cw_limited(pl1, contour, params, cp->point_idx, cp->prev_on_contour->point_idx, length_to_go);
}
break;
} else {
cp->prev_on_contour->trim_next(0.);
take_cw_full(pl1, contour, cp->point_idx, cp->prev_on_contour->point_idx);
length_to_go -= l;
}
}
} else {
assert(cp_start != cp_end);
for (ContourIntersectionPoint* cp = cp_start; cp != cp_end; cp = cp->next_on_contour) {
double l = closed_contour_distance_ccw(cp->param, cp->next_on_contour->param, length);
length_to_go = std::min(length_to_go, cp->contour_not_taken_length_next);
//if (cp->next_on_contour->consumed)
// Don't overlap with an already extruded infill line.
length_to_go = std::max(0., std::min(length_to_go, l - line_half_width));
cp->consume_next();
if (l >= length_to_go) {
if (length_to_go > SCALED_EPSILON) {
cp->next_on_contour->trim_prev(l - length_to_go);
take_ccw_limited(pl1, contour, params, cp->point_idx, cp->next_on_contour->point_idx, length_to_go);
}
break;
} else {
cp->next_on_contour->trim_prev(0.);
take_ccw_full(pl1, contour, cp->point_idx, cp->next_on_contour->point_idx);
length_to_go -= l;
}
}
}
if (add_at_start) {
pl1.reverse();
append(pl1.points, pl_tmp);
}
}
// Return an index of start of a segment and a point of the clipping point at distance from the end of polyline.
struct SegmentPoint {
// Segment index, defining a line <idx_segment, idx_segment + 1).
size_t idx_segment = std::numeric_limits<size_t>::max();
// Parameter of point in <0, 1) along the line <idx_segment, idx_segment + 1)
double t;
Vec2d point;
bool valid() const { return idx_segment != std::numeric_limits<size_t>::max(); }
};
static inline SegmentPoint clip_start_segment_and_point(const Points& polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
Vec2d pt_prev = polyline.front().cast<double>();
for (size_t i = 1; i < polyline.size(); ++i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_prev;
double l = v.norm();
if (l > distance) {
out.idx_segment = i - 1;
out.t = distance / l;
out.point = pt_prev + out.t * v;
break;
}
distance -= l;
pt_prev = pt;
}
}
return out;
}
static inline SegmentPoint clip_end_segment_and_point(const Points& polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
Vec2d pt_next = polyline.back().cast<double>();
for (int i = int(polyline.size()) - 2; i >= 0; --i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_next;
double l = v.norm();
if (l > distance) {
out.idx_segment = i;
out.t = distance / l;
out.point = pt_next + out.t * v;
// Store the parameter referenced to the starting point of a segment.
out.t = 1. - out.t;
break;
}
distance -= l;
pt_next = pt;
}
}
return out;
}
// Calculate intersection of a line with a thick segment.
// Returns Eucledian parameters of the line / thick segment overlap.
static inline bool line_rounded_thick_segment_collision(
const Vec2d& line_a, const Vec2d& line_b,
const Vec2d& segment_a, const Vec2d& segment_b, const double offset,
std::pair<double, double>& out_interval)
{
const Vec2d line_v0 = line_b - line_a;
double lv = line_v0.squaredNorm();
const Vec2d segment_v = segment_b - segment_a;
const double segment_l = segment_v.norm();
const double offset2 = offset * offset;
bool intersects = false;
if (lv < SCALED_EPSILON * SCALED_EPSILON)
{
// Very short line vector. Just test whether the center point is inside the offset line.
Vec2d lpt = 0.5 * (line_a + line_b);
if (segment_l > SCALED_EPSILON) {
struct Linef { Vec2d a, b; };
intersects = line_alg::distance_to_squared(Linef{ segment_a, segment_b }, lpt) < offset2;
} else
intersects = (0.5 * (segment_a + segment_b) - lpt).squaredNorm() < offset2;
if (intersects) {
out_interval.first = 0.;
out_interval.second = sqrt(lv);
}
} else
{
// Output interval.
double tmin = std::numeric_limits<double>::max();
double tmax = -tmin;
auto extend_interval = [&tmin, &tmax](double atmin, double atmax) {
tmin = std::min(tmin, atmin);
tmax = std::max(tmax, atmax);
};
// Intersections with the inflated segment end points.
auto ray_circle_intersection_interval_extend = [&extend_interval, &line_v0](const Vec2d& segment_pt, const double offset2, const Vec2d& line_pt, const Vec2d& line_vec) {
std::pair<Vec2d, Vec2d> pts;
Vec2d p0 = line_pt - segment_pt;
double c = -line_pt.dot(p0);
if (Geometry::ray_circle_intersections_r2_lv2_c(offset2, line_vec.x(), line_vec.y(), line_vec.squaredNorm(), c, pts)) {
double tmin = (pts.first - p0).dot(line_v0);
double tmax = (pts.second - p0).dot(line_v0);
if (tmin > tmax)
std::swap(tmin, tmax);
tmin = std::max(tmin, 0.);
tmax = std::min(tmax, 1.);
if (tmin <= tmax)
extend_interval(tmin, tmax);
}
};
// Intersections with the inflated segment.
if (segment_l > SCALED_EPSILON) {
ray_circle_intersection_interval_extend(segment_a, offset2, line_a, line_v0);
ray_circle_intersection_interval_extend(segment_b, offset2, line_a, line_v0);
// Clip the line segment transformed into a coordinate space of the segment,
// where the segment spans (0, 0) to (segment_l, 0).
const Vec2d dir_x = segment_v / segment_l;
const Vec2d dir_y(-dir_x.y(), dir_x.x());
const Vec2d line_p0(line_a - segment_a);
std::pair<double, double> interval;
if (Geometry::liang_barsky_line_clipping_interval(
Vec2d(line_p0.dot(dir_x), line_p0.dot(dir_y)),
Vec2d(line_v0.dot(dir_x), line_v0.dot(dir_y)),
BoundingBoxf(Vec2d(0., -offset), Vec2d(segment_l, offset)),
interval))
extend_interval(interval.first, interval.second);
} else
ray_circle_intersection_interval_extend(0.5 * (segment_a + segment_b), offset, line_a, line_v0);
intersects = tmin <= tmax;
if (intersects) {
lv = sqrt(lv);
out_interval.first = tmin * lv;
out_interval.second = tmax * lv;
}
}
#if 0
{
BoundingBox bbox;
bbox.merge(line_a.cast<coord_t>());
bbox.merge(line_a.cast<coord_t>());
bbox.merge(segment_a.cast<coord_t>());
bbox.merge(segment_b.cast<coord_t>());
static int iRun = 0;
::Slic3r::SVG svg(debug_out_path("%s-%03d.svg", "line-thick-segment-intersect", iRun++), bbox);
svg.draw(Line(line_a.cast<coord_t>(), line_b.cast<coord_t>()), "black");
svg.draw(Line(segment_a.cast<coord_t>(), segment_b.cast<coord_t>()), "blue", offset * 2.);
svg.draw(segment_a.cast<coord_t>(), "blue", offset);
svg.draw(segment_b.cast<coord_t>(), "blue", offset);
svg.draw(Line(segment_a.cast<coord_t>(), segment_b.cast<coord_t>()), "black");
if (intersects)
svg.draw(Line((line_a + (line_b - line_a).normalized() * out_interval.first).cast<coord_t>(),
(line_a + (line_b - line_a).normalized() * out_interval.second).cast<coord_t>()), "red");
}
#endif
return intersects;
}
static inline bool inside_interval(double low, double high, double p)
{
return p >= low && p <= high;
}
static inline bool interval_inside_interval(double outer_low, double outer_high, double inner_low, double inner_high, double epsilon)
{
outer_low -= epsilon;
outer_high += epsilon;
return inside_interval(outer_low, outer_high, inner_low) && inside_interval(outer_low, outer_high, inner_high);
}
static inline bool cyclic_interval_inside_interval(double outer_low, double outer_high, double inner_low, double inner_high, double length)
{
if (outer_low > outer_high)
outer_high += length;
if (inner_low > inner_high)
inner_high += length;
else if (inner_high < outer_low) {
inner_low += length;
inner_high += length;
}
return interval_inside_interval(outer_low, outer_high, inner_low, inner_high, double(SCALED_EPSILON));
}
// #define INFILL_DEBUG_OUTPUT
#ifdef INFILL_DEBUG_OUTPUT
static void export_infill_to_svg(
// Boundary contour, along which the perimeter extrusions will be drawn.
const std::vector<Points>& boundary,
// Parametrization of boundary with Euclidian length.
const std::vector<std::vector<double>> &boundary_parameters,
// Intersections (T-joints) of the infill lines with the boundary.
std::vector<std::vector<ContourIntersectionPoint*>>& boundary_intersections,
// Infill lines, either completely inside the boundary, or touching the boundary.
const Polylines& infill,
const coord_t scaled_spacing,
const std::string& path,
const Polylines& overlap_lines = Polylines(),
const Polylines& polylines = Polylines(),
const Points& pts = Points())
{
Polygons polygons;
std::transform(boundary.begin(), boundary.end(), std::back_inserter(polygons), [](auto& pts) { return Polygon(pts); });
ExPolygons expolygons = union_ex(polygons);
BoundingBox bbox = get_extents(polygons);
bbox.offset(scale_(3.));
::Slic3r::SVG svg(path, bbox);
// Draw the filled infill polygons.
svg.draw(expolygons);
// Draw the pieces of boundary allowed to be used as anchors of infill lines, not yet consumed.
const std::string color_boundary_trimmed = "blue";
const std::string color_boundary_not_trimmed = "yellow";
const coordf_t boundary_line_width = scaled_spacing;
svg.draw_outline(polygons, "red", boundary_line_width);
for (const std::vector<ContourIntersectionPoint*> &intersections : boundary_intersections) {
const size_t boundary_idx = &intersections - boundary_intersections.data();
const Points &contour = boundary[boundary_idx];
const std::vector<double> &contour_param = boundary_parameters[boundary_idx];
for (const ContourIntersectionPoint *ip : intersections) {
assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed);
assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed);
{
Polyline pl{ contour[ip->point_idx] };
if (ip->next_trimmed) {
if (ip->contour_not_taken_length_next > SCALED_EPSILON) {
take_ccw_limited(pl, contour, contour_param, ip->point_idx, ip->next_on_contour->point_idx, ip->contour_not_taken_length_next);
svg.draw(pl, color_boundary_trimmed, boundary_line_width);
}
} else {
take_ccw_full(pl, contour, ip->point_idx, ip->next_on_contour->point_idx);
svg.draw(pl, color_boundary_not_trimmed, boundary_line_width);
}
}
{
Polyline pl{ contour[ip->point_idx] };
if (ip->prev_trimmed) {
if (ip->contour_not_taken_length_prev > SCALED_EPSILON) {
take_cw_limited(pl, contour, contour_param, ip->point_idx, ip->prev_on_contour->point_idx, ip->contour_not_taken_length_prev);
svg.draw(pl, color_boundary_trimmed, boundary_line_width);
}
} else {
take_cw_full(pl, contour, ip->point_idx, ip->prev_on_contour->point_idx);
svg.draw(pl, color_boundary_not_trimmed, boundary_line_width);
}
}
}
}
// Draw the full infill polygon boundary.
svg.draw_outline(polygons, "green");
// Draw the infill lines, first the full length with red color, then a slightly shortened length with black color.
svg.draw(infill, "brown");
static constexpr double trim_length = scale_(0.15);
for (Polyline polyline : infill)
if (!polyline.empty()) {
Vec2d a = polyline.points.front().cast<double>();
Vec2d d = polyline.points.back().cast<double>();
if (polyline.size() == 2) {
Vec2d v = d - a;
double l = v.norm();
if (l > 2. * trim_length) {
a += v * trim_length / l;
d -= v * trim_length / l;
polyline.points.front() = a.cast<coord_t>();
polyline.points.back() = d.cast<coord_t>();
} else
polyline.points.clear();
} else if (polyline.size() > 2) {
Vec2d b = polyline.points[1].cast<double>();
Vec2d c = polyline.points[polyline.points.size() - 2].cast<double>();
Vec2d v = b - a;
double l = v.norm();
if (l > trim_length) {
a += v * trim_length / l;
polyline.points.front() = a.cast<coord_t>();
} else
polyline.points.erase(polyline.points.begin());
v = d - c;
l = v.norm();
if (l > trim_length)
polyline.points.back() = (d - v * trim_length / l).cast<coord_t>();
else
polyline.points.pop_back();
}
svg.draw(polyline, "black");
}
svg.draw(overlap_lines, "red", scale_(0.05));
svg.draw(polylines, "magenta", scale_(0.05));
svg.draw(pts, "magenta");
}
#endif // INFILL_DEBUG_OUTPUT
#ifndef NDEBUG
bool validate_boundary_intersections(const std::vector<std::vector<ContourIntersectionPoint*>>& boundary_intersections)
{
for (const std::vector<ContourIntersectionPoint*>& contour : boundary_intersections) {
for (ContourIntersectionPoint* ip : contour) {
assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed);
assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed);
}
}
return true;
}
#endif // NDEBUG
// Mark the segments of split boundary as consumed if they are very close to some of the infill line.
void mark_boundary_segments_touching_infill(
// Boundary contour, along which the perimeter extrusions will be drawn.
const std::vector<Points>& boundary,
// Parametrization of boundary with Euclidian length.
const std::vector<std::vector<double>> &boundary_parameters,
// Intersections (T-joints) of the infill lines with the boundary.
std::vector<std::vector<ContourIntersectionPoint*>>& boundary_intersections,
// Bounding box around the boundary.
const BoundingBox& boundary_bbox,
// Infill lines, either completely inside the boundary, or touching the boundary.
const Polylines& infill,
// How much of the infill ends should be ignored when marking the boundary segments?
const double clip_distance,
// Roughly width of the infill line.
const double distance_colliding)
{
assert(boundary.size() == boundary_parameters.size());
#ifndef NDEBUG
for (size_t i = 0; i < boundary.size(); ++i)
assert(boundary[i].size() + 1 == boundary_parameters[i].size());
assert(validate_boundary_intersections(boundary_intersections));
#endif
#ifdef INFILL_DEBUG_OUTPUT
static int iRun = 0;
++iRun;
int iStep = 0;
export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-start", iRun));
Polylines perimeter_overlaps;
#endif // INFILL_DEBUG_OUTPUT
EdgeGrid::Grid grid;
// Make sure that the the grid is big enough for queries against the thick segment.
grid.set_bbox(boundary_bbox.inflated(distance_colliding * 1.43));
// Inflate the bounding box by a thick line width.
grid.create(boundary, coord_t(std::max(clip_distance, distance_colliding) + scale_(10.)));
// Visitor for the EdgeGrid to trim boundary_intersections with existing infill lines.
struct Visitor {
Visitor(const EdgeGrid::Grid &grid,
const std::vector<Points> &boundary, const std::vector<std::vector<double>> &boundary_parameters, std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections,
const double radius) :
grid(grid), boundary(boundary), boundary_parameters(boundary_parameters), boundary_intersections(boundary_intersections), radius(radius), trim_l_threshold(0.5 * radius) {}
// Init with a segment of an infill line.
void init(const Vec2d& infill_pt1, const Vec2d& infill_pt2) {
this->infill_pt1 = &infill_pt1;
this->infill_pt2 = &infill_pt2;
this->infill_bbox.reset();
this->infill_bbox.merge(infill_pt1);
this->infill_bbox.merge(infill_pt2);
this->infill_bbox.offset(this->radius + SCALED_EPSILON);
}
bool operator()(coord_t iy, coord_t ix) {
// Called with a row and colum of the grid cell, which is intersected by a line.
auto cell_data_range = this->grid.cell_data_range(iy, ix);
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
// End points of the line segment and their vector.
auto segment = this->grid.segment(*it_contour_and_segment);
std::vector<ContourIntersectionPoint*> &intersections = boundary_intersections[it_contour_and_segment->first];
if (intersections.empty())
// There is no infil line touching this contour, thus effort will be saved to calculate overlap with other infill lines.
continue;
const Vec2d seg_pt1 = segment.first.cast<double>();
const Vec2d seg_pt2 = segment.second.cast<double>();
std::pair<double, double> interval;
BoundingBoxf bbox_seg;
bbox_seg.merge(seg_pt1);
bbox_seg.merge(seg_pt2);
#ifdef INFILL_DEBUG_OUTPUT
//if (this->infill_bbox.overlap(bbox_seg)) this->perimeter_overlaps.push_back({ segment.first, segment.second });
#endif // INFILL_DEBUG_OUTPUT
if (this->infill_bbox.overlap(bbox_seg) && line_rounded_thick_segment_collision(seg_pt1, seg_pt2, *this->infill_pt1, *this->infill_pt2, this->radius, interval)) {
// The boundary segment intersects with the infill segment thickened by radius.
// Interval is specified in Euclidian length from seg_pt1 to seg_pt2.
// 1) Find the Euclidian parameters of seg_pt1 and seg_pt2 on its boundary contour.
const std::vector<double> &contour_parameters = boundary_parameters[it_contour_and_segment->first];
const double contour_length = contour_parameters.back();
const double param_seg_pt1 = contour_parameters[it_contour_and_segment->second];
const double param_seg_pt2 = contour_parameters[it_contour_and_segment->second + 1];
#ifdef INFILL_DEBUG_OUTPUT
this->perimeter_overlaps.push_back({ Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.first).cast<coord_t>()),
Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.second).cast<coord_t>()) });
#endif // INFILL_DEBUG_OUTPUT
assert(interval.first >= 0.);
assert(interval.second >= 0.);
assert(interval.first <= interval.second);
const auto param_overlap1 = std::min(param_seg_pt2, param_seg_pt1 + interval.first);
const auto param_overlap2 = std::min(param_seg_pt2, param_seg_pt1 + interval.second);
// 2) Find the ContourIntersectionPoints before param_overlap1 and after param_overlap2.
// Find the span of ContourIntersectionPoints, that is trimmed by the interval (param_overlap1, param_overlap2).
ContourIntersectionPoint* ip_low, * ip_high;
if (intersections.size() == 1) {
// Only a single infill line touches this contour.
ip_low = ip_high = intersections.front();
} else {
assert(intersections.size() > 1);
auto it_low = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap1](const ContourIntersectionPoint* l) { return l->param < param_overlap1; });
auto it_high = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap2](const ContourIntersectionPoint* l) { return l->param < param_overlap2; });
ip_low = it_low == intersections.end() ? intersections.front() : *it_low;
ip_high = it_high == intersections.end() ? intersections.front() : *it_high;
if (ip_low->param != param_overlap1)
ip_low = ip_low->prev_on_contour;
assert(ip_low != ip_high);
// Verify that the interval (param_overlap1, param_overlap2) is inside the interval (ip_low->param, ip_high->param).
assert(cyclic_interval_inside_interval(ip_low->param, ip_high->param, param_overlap1, param_overlap2, contour_length));
}
assert(validate_boundary_intersections(boundary_intersections));
// Mark all ContourIntersectionPoints between ip_low and ip_high as consumed.
if (ip_low->next_on_contour != ip_high)
for (ContourIntersectionPoint* ip = ip_low->next_on_contour; ip != ip_high; ip = ip->next_on_contour) {
ip->consume_prev();
ip->consume_next();
}
// Subtract the interval from the first and last segments.
double trim_l = closed_contour_distance_ccw(ip_low->param, param_overlap1, contour_length);
//if (trim_l > trim_l_threshold)
ip_low->trim_next(trim_l);
trim_l = closed_contour_distance_ccw(param_overlap2, ip_high->param, contour_length);
//if (trim_l > trim_l_threshold)
ip_high->trim_prev(trim_l);
assert(ip_low->next_trimmed == ip_high->prev_trimmed);
assert(validate_boundary_intersections(boundary_intersections));
//FIXME mark point as consumed?
//FIXME verify the sequence between prev and next?
#ifdef INFILL_DEBUG_OUTPUT
{
#if 0
static size_t iRun = 0;
ExPolygon expoly(Polygon(*grid.contours().front()));
for (size_t i = 1; i < grid.contours().size(); ++i)
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun++).c_str(), get_extents(expoly));
svg.draw(expoly, "green");
svg.draw(Line(segment.first, segment.second), "red");
svg.draw(Line(this->infill_pt1->cast<coord_t>(), this->infill_pt2->cast<coord_t>()), "magenta");
#endif
}
#endif // INFILL_DEBUG_OUTPUT
}
}
// Continue traversing the grid along the edge.
return true;
}
const EdgeGrid::Grid &grid;
const std::vector<Points> &boundary;
const std::vector<std::vector<double>> &boundary_parameters;
std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections;
// Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line.
const double radius;
// Region around the contour / infill line intersection point, where the intersections are ignored.
const double trim_l_threshold;
const Vec2d* infill_pt1;
const Vec2d* infill_pt2;
BoundingBoxf infill_bbox;
#ifdef INFILL_DEBUG_OUTPUT
Polylines perimeter_overlaps;
#endif // INFILL_DEBUG_OUTPUT
} visitor(grid, boundary, boundary_parameters, boundary_intersections, distance_colliding);
for (const Polyline& polyline : infill) {
#ifdef INFILL_DEBUG_OUTPUT
++ iStep;
#endif // INFILL_DEBUG_OUTPUT
// Clip the infill polyline by the Eucledian distance along the polyline.
SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance);
SegmentPoint end_point = clip_end_segment_and_point(polyline.points, clip_distance);
if (start_point.valid() && end_point.valid() &&
(start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) {
// The clipped polyline is non-empty.
#ifdef INFILL_DEBUG_OUTPUT
visitor.perimeter_overlaps.clear();
#endif // INFILL_DEBUG_OUTPUT
for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++point_idx) {
//FIXME extend the EdgeGrid to suport tracing a thick line.
#if 0
Point pt1, pt2;
Vec2d pt1d, pt2d;
if (point_idx == start_point.idx_segment) {
pt1d = start_point.point;
pt1 = pt1d.cast<coord_t>();
} else {
pt1 = polyline.points[point_idx];
pt1d = pt1.cast<double>();
}
if (point_idx == start_point.idx_segment) {
pt2d = end_point.point;
pt2 = pt1d.cast<coord_t>();
} else {
pt2 = polyline.points[point_idx];
pt2d = pt2.cast<double>();
}
visitor.init(pt1d, pt2d);
grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor);
#else
Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx].cast<double>();
Vec2d pt2 = (point_idx == end_point.idx_segment) ? end_point.point : polyline.points[point_idx + 1].cast<double>();
#if 0
{
static size_t iRun = 0;
ExPolygon expoly(Polygon(*grid.contours().front()));
for (size_t i = 1; i < grid.contours().size(); ++i)
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun++).c_str(), get_extents(expoly));
svg.draw(expoly, "green");
svg.draw(polyline, "blue");
svg.draw(Line(pt1.cast<coord_t>(), pt2.cast<coord_t>()), "magenta", scale_(0.1));
}
#endif
visitor.init(pt1, pt2);
// Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size.
Vec2d v = (pt2 - pt1).normalized() * distance_colliding;
Vec2d vperp = perp(v);
Vec2d a = pt1 - v - vperp;
Vec2d b = pt2 + v - vperp;
assert(grid.bbox().contains(a.cast<coord_t>()));
assert(grid.bbox().contains(b.cast<coord_t>()));
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
a = pt1 - v + vperp;
b = pt2 + v + vperp;
assert(grid.bbox().contains(a.cast<coord_t>()));
assert(grid.bbox().contains(b.cast<coord_t>()));
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
#endif
#ifdef INFILL_DEBUG_OUTPUT
// export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep, int(point_idx)), { polyline });
#endif // INFILL_DEBUG_OUTPUT
}
#ifdef INFILL_DEBUG_OUTPUT
Polylines perimeter_overlaps;
export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep), visitor.perimeter_overlaps, { polyline });
append(perimeter_overlaps, std::move(visitor.perimeter_overlaps));
perimeter_overlaps.clear();
#endif // INFILL_DEBUG_OUTPUT
}
}
#ifdef INFILL_DEBUG_OUTPUT
export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-end", iRun), perimeter_overlaps);
#endif // INFILL_DEBUG_OUTPUT
assert(validate_boundary_intersections(boundary_intersections));
}
void connect_infill(Polylines&& infill_ordered, const ExPolygon& boundary_src, Polylines& polylines_out, const double spacing, const FillParams& params)
{
assert(!boundary_src.contour.points.empty());
auto polygons_src = reserve_vector<const Polygon*>(boundary_src.holes.size() + 1);
if (icOuterShell == params.connection || icConnected == params.connection)
polygons_src.emplace_back(&boundary_src.contour);
if (icHoles == params.connection || icConnected == params.connection)
for (const Polygon& polygon : boundary_src.holes)
polygons_src.emplace_back(&polygon);
connect_infill(std::move(infill_ordered), polygons_src, get_extents(boundary_src.contour), polylines_out, spacing, params);
}
void connect_infill(Polylines&& infill_ordered, const Polygons& boundary_src, const BoundingBox& bbox, Polylines& polylines_out, const double spacing, const FillParams& params)
{
auto polygons_src = reserve_vector<const Polygon*>(boundary_src.size());
for (const Polygon& polygon : boundary_src)
polygons_src.emplace_back(&polygon);
connect_infill(std::move(infill_ordered), polygons_src, bbox, polylines_out, spacing, params);
}
void connect_infill(Polylines&& infill_ordered, const std::vector<const Polygon*>& boundary_src, const BoundingBox& bbox, Polylines& polylines_out, const double spacing, const FillParams& params)
{
assert(!infill_ordered.empty());
assert(params.anchor_length >= 0.);
assert(params.anchor_length_max >= 0.01f);
assert(params.anchor_length_max >= params.anchor_length);
const coordf_t anchor_length = scale_d(params.anchor_length);
const coordf_t anchor_length_max = scale_d(params.anchor_length_max);
#if 0
append(polylines_out, infill_ordered);
return;
#endif
// 1) Add the end points of infill_ordered to boundary_src.
std::vector<Points> boundary;
std::vector<std::vector<double>> boundary_params;
boundary.assign(boundary_src.size(), Points());
boundary_params.assign(boundary_src.size(), std::vector<double>());
// Mapping the infill_ordered end point to a (contour, point) of boundary.
static constexpr auto boundary_idx_unconnected = std::numeric_limits<size_t>::max();
std::vector<ContourIntersectionPoint> map_infill_end_point_to_boundary(infill_ordered.size() * 2, ContourIntersectionPoint{ boundary_idx_unconnected, boundary_idx_unconnected });
{
// Project the infill_ordered end points onto boundary_src.
std::vector<std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>> intersection_points;
{
EdgeGrid::Grid grid;
grid.set_bbox(bbox.inflated(SCALED_EPSILON));
grid.create(boundary_src, coord_t(scale_(10.)));
intersection_points.reserve(infill_ordered.size() * 2);
for (const Polyline &pl : infill_ordered)
for (const Point *pt : { &pl.points.front(), &pl.points.back() }) {
EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, SCALED_EPSILON);
if (cp.valid()) {
// The infill end point shall lie on the contour.
//assert(cp.distance <= 3.);
intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1));
}
}
std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>& cp1, const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>& cp2) {
return cp1.first.contour_idx < cp2.first.contour_idx ||
(cp1.first.contour_idx == cp2.first.contour_idx &&
(cp1.first.start_point_idx < cp2.first.start_point_idx ||
(cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t)));
});
}
auto it = intersection_points.begin();
auto it_end = intersection_points.end();
std::vector<std::vector<ContourIntersectionPoint*>> boundary_intersection_points(boundary.size(), std::vector<ContourIntersectionPoint*>());
for (size_t idx_contour = 0; idx_contour < boundary_src.size(); ++idx_contour) {
// Copy contour_src to contour_dst while adding intersection points.
// Map infill end points map_infill_end_point_to_boundary to the newly inserted boundary points of contour_dst.
// chain the points of map_infill_end_point_to_boundary along their respective contours.
const Polygon& contour_src = *boundary_src[idx_contour];
Points& contour_dst = boundary[idx_contour];
std::vector<ContourIntersectionPoint*>& contour_intersection_points = boundary_intersection_points[idx_contour];
ContourIntersectionPoint* pfirst = nullptr;
ContourIntersectionPoint* pprev = nullptr;
{
// Reserve intersection points.
size_t n_intersection_points = 0;
for (auto itx = it; itx != it_end && itx->first.contour_idx == idx_contour; ++itx)
++n_intersection_points;
contour_intersection_points.reserve(n_intersection_points);
}
for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++ idx_point) {
const Point &ipt = contour_src.points[idx_point];
if (contour_dst.empty() || contour_dst.back() != ipt)
contour_dst.emplace_back(ipt);
for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++ it) {
// Add these points to the destination contour.
const Polyline &infill_line = infill_ordered[it->second / 2];
const Point &pt = (it->second & 1) ? infill_line.points.back() : infill_line.points.front();
#ifndef NDEBUG
{
const Vec2d pt1 = ipt.cast<double>();
const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast<double>();
const Vec2d ptx = lerp(pt1, pt2, it->first.t);
assert(std::abs(pt.x() - pt.x()) < SCALED_EPSILON);
assert(std::abs(pt.y() - pt.y()) < SCALED_EPSILON);
}
#endif // NDEBUG
size_t idx_tjoint_pt = 0;
if (idx_point + 1 < contour_src.size() || pt != contour_dst.front()) {
if (pt != contour_dst.back())
contour_dst.emplace_back(pt);
idx_tjoint_pt = contour_dst.size() - 1;
}
map_infill_end_point_to_boundary[it->second] = ContourIntersectionPoint{ idx_contour, idx_tjoint_pt };
ContourIntersectionPoint *pthis = &map_infill_end_point_to_boundary[it->second];
if (pprev) {
pprev->next_on_contour = pthis;
pthis->prev_on_contour = pprev;
} else
pfirst = pthis;
contour_intersection_points.emplace_back(pthis);
pprev = pthis;
}
if (pfirst) {
pprev->next_on_contour = pfirst;
pfirst->prev_on_contour = pprev;
}
}
// Parametrize the new boundary with the intersection points inserted.
std::vector<double> &contour_params = boundary_params[idx_contour];
contour_params.assign(contour_dst.size() + 1, 0.);
for (size_t i = 1; i < contour_dst.size(); ++i) {
contour_params[i] = contour_params[i - 1] + (contour_dst[i].cast<double>() - contour_dst[i - 1].cast<double>()).norm();
assert(contour_params[i] > contour_params[i - 1]);
}
contour_params.back() = contour_params[contour_params.size() - 2] + (contour_dst.back().cast<double>() - contour_dst.front().cast<double>()).norm();
assert(contour_params.back() > contour_params[contour_params.size() - 2]);
// Map parameters from contour_params to boundary_intersection_points.
for (ContourIntersectionPoint* ip : contour_intersection_points)
ip->param = contour_params[ip->point_idx];
// and measure distance to the previous and next intersection point.
const double contour_length = contour_params.back();
for (ContourIntersectionPoint *ip : contour_intersection_points)
if (ip->next_on_contour == ip) {
assert(ip->prev_on_contour == ip);
ip->contour_not_taken_length_prev = ip->contour_not_taken_length_next = contour_length;
} else {
assert(ip->prev_on_contour != ip);
ip->contour_not_taken_length_prev = closed_contour_distance_ccw(ip->prev_on_contour->param, ip->param, contour_length);
ip->contour_not_taken_length_next = closed_contour_distance_ccw(ip->param, ip->next_on_contour->param, contour_length);
}
}
assert(boundary.size() == boundary_src.size());
#if 0
// Adaptive Cubic Infill produces infill lines, which not always end at the outer boundary.
assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(),
[&boundary](const ContourIntersectionPoint& contour_point) {
return contour_point.contour_idx < boundary.size() && contour_point.point_idx < boundary[contour_point.contour_idx].size();
}));
#endif
// Mark the points and segments of split boundary as consumed if they are very close to some of the infill line.
{
// @supermerill used 2. * scale_(spacing)
const double clip_distance = 1.7 * scale_(spacing);
// Allow a bit of overlap. This value must be slightly higher than the overlap of FillAdaptive, otherwise
// the anchors of the adaptive infill will mask the other side of the perimeter line.
// (see connect_lines_using_hooks() in FillAdaptive.cpp)
const double distance_colliding = 0.8 * scale_(spacing);
mark_boundary_segments_touching_infill(boundary, boundary_params, boundary_intersection_points, bbox, infill_ordered, clip_distance, distance_colliding);
}
}
// Connection from end of one infill line to the start of another infill line.
//const double length_max = scale_(spacing);
// const auto length_max = double(scale_((2. / params.density) * spacing));
const auto length_max = double(scale_((1000. / params.density) * spacing));
std::vector<size_t> merged_with(infill_ordered.size());
std::iota(merged_with.begin(), merged_with.end(), 0);
struct ConnectionCost {
ConnectionCost(size_t idx_first, double cost, bool reversed) : idx_first(idx_first), cost(cost), reversed(reversed) {}
size_t idx_first;
double cost;
bool reversed;
};
std::vector<ConnectionCost> connections_sorted;
connections_sorted.reserve(infill_ordered.size() * 2 - 2);
for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++idx_chain) {
const Polyline& pl1 = infill_ordered[idx_chain - 1];
const Polyline& pl2 = infill_ordered[idx_chain];
const ContourIntersectionPoint* cp1 = &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1];
const ContourIntersectionPoint* cp2 = &map_infill_end_point_to_boundary[idx_chain * 2];
if (cp1->contour_idx != boundary_idx_unconnected && cp1->contour_idx == cp2->contour_idx) {
// End points on the same contour. Try to connect them.
std::pair<double, double> len = path_lengths_along_contour(cp1, cp2, boundary_params[cp1->contour_idx].back());
if (len.first < length_max)
connections_sorted.emplace_back(idx_chain - 1, len.first, false);
if (len.second < length_max)
connections_sorted.emplace_back(idx_chain - 1, len.second, true);
}
}
std::sort(connections_sorted.begin(), connections_sorted.end(), [](const ConnectionCost& l, const ConnectionCost& r) { return l.cost < r.cost; });
//mark point as used depends of connection parameter
//if (params.connection == icOuterShell) {
// for (auto it = boundary_data.begin() + 1; it != boundary_data.end(); ++it) {
// for (ContourPointData& pt : *it) {
// pt.point_consumed = true;
// }
// }
//} else if (params.connection == icHoles) {
// for (ContourPointData& pt : boundary_data[0]) {
// pt.point_consumed = true;
// }
//}
//assert(boundary_data.size() == boundary_src.holes.size() + 1);
auto get_and_update_merged_with = [&merged_with](size_t polyline_idx) -> size_t {
for (size_t last = polyline_idx;;) {
size_t lower = merged_with[last];
assert(lower <= last);
if (lower == last) {
merged_with[polyline_idx] = last;
return last;
}
last = lower;
}
assert(false);
return std::numeric_limits<size_t>::max();
};
const double line_half_width = 0.5 * scale_(spacing);
#if 0
for (ConnectionCost& connection_cost : connections_sorted) {
ContourIntersectionPoint* cp1 = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1];
ContourIntersectionPoint* cp2 = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2];
assert(cp1 != cp2);
assert(cp1->contour_idx == cp2->contour_idx && cp1->contour_idx != boundary_idx_unconnected);
if (cp1->consumed || cp2->consumed)
continue;
const double length = connection_cost.cost;
bool could_connect;
{
// cp1, cp2 sorted CCW.
ContourIntersectionPoint* cp_low = connection_cost.reversed ? cp2 : cp1;
ContourIntersectionPoint* cp_high = connection_cost.reversed ? cp1 : cp2;
assert(std::abs(length - closed_contour_distance_ccw(cp_low->param, cp_high->param, boundary_params[cp1->contour_idx].back())) < SCALED_EPSILON);
could_connect = !cp_low->next_trimmed && !cp_high->prev_trimmed;
if (could_connect && cp_low->next_on_contour != cp_high) {
// Other end of cp1, may or may not be on the same contour as cp1.
const ContourIntersectionPoint* cp1prev = cp1 - 1;
// Other end of cp2, may or may not be on the same contour as cp2.
const ContourIntersectionPoint* cp2next = cp2 + 1;
for (auto* cp = cp_low->next_on_contour; cp != cp_high; cp = cp->next_on_contour)
if (cp->consumed || cp == cp1prev || cp == cp2next || cp->prev_trimmed || cp->next_trimmed) {
could_connect = false;
break;
}
}
}
// Indices of the polylines to be connected by a perimeter segment.
size_t idx_first = connection_cost.idx_first;
size_t idx_second = idx_first + 1;
idx_first = get_and_update_merged_with(idx_first);
assert(idx_first < idx_second);
assert(idx_second == merged_with[idx_second]);
if (could_connect && length < anchor_length_max) {
// Take the complete contour.
// Connect the two polygons using the boundary contour.
take(infill_ordered[idx_first], infill_ordered[idx_second], boundary[cp1->contour_idx], cp1, cp2, connection_cost.reversed);
// Mark the second polygon as merged with the first one.
merged_with[idx_second] = merged_with[idx_first];
infill_ordered[idx_second].points.clear();
} else {
// Try to connect cp1 resp. cp2 with a piece of perimeter line.
take_limited(infill_ordered[idx_first], boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp1, cp2, connection_cost.reversed, anchor_length, line_half_width);
take_limited(infill_ordered[idx_second], boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp2, cp1, !connection_cost.reversed, anchor_length, line_half_width);
}
}
#endif
struct Arc {
ContourIntersectionPoint* intersection;
double arc_length;
};
std::vector<Arc> arches;
arches.reserve(map_infill_end_point_to_boundary.size());
for (ContourIntersectionPoint& cp : map_infill_end_point_to_boundary)
if (cp.contour_idx != boundary_idx_unconnected && cp.next_on_contour != &cp && cp.could_connect_next())
arches.push_back({ &cp, path_length_along_contour_ccw(&cp, cp.next_on_contour, boundary_params[cp.contour_idx].back()) });
std::sort(arches.begin(), arches.end(), [](const auto& l, const auto& r) { return l.arc_length < r.arc_length; });
//FIXME improve the Traveling Salesman problem with 2-opt and 3-opt local optimization.
for (Arc& arc : arches)
if (!arc.intersection->consumed && !arc.intersection->next_on_contour->consumed) {
// Indices of the polylines to be connected by a perimeter segment.
ContourIntersectionPoint *cp1 = arc.intersection;
ContourIntersectionPoint *cp2 = arc.intersection->next_on_contour;
size_t polyline_idx1 = get_and_update_merged_with(((cp1 - map_infill_end_point_to_boundary.data()) / 2));
size_t polyline_idx2 = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2));
const Points &contour = boundary[cp1->contour_idx];
const std::vector<double> &contour_params = boundary_params[cp1->contour_idx];
if (polyline_idx1 != polyline_idx2) {
Polyline& polyline1 = infill_ordered[polyline_idx1];
Polyline& polyline2 = infill_ordered[polyline_idx2];
if (arc.arc_length < anchor_length_max) {
// Not closing a loop, connecting the lines.
assert(contour[cp1->point_idx] == polyline1.points.front() || contour[cp1->point_idx] == polyline1.points.back());
if (contour[cp1->point_idx] == polyline1.points.front())
polyline1.reverse();
assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back());
if (contour[cp2->point_idx] == polyline2.points.back())
polyline2.reverse();
take(polyline1, polyline2, contour, cp1, cp2, false);
// Mark the second polygon as merged with the first one.
if (polyline_idx2 < polyline_idx1) {
polyline2 = std::move(polyline1);
polyline1.points.clear();
merged_with[polyline_idx1] = merged_with[polyline_idx2];
} else {
polyline2.points.clear();
merged_with[polyline_idx2] = merged_with[polyline_idx1];
}
} else if (anchor_length > SCALED_EPSILON) {
// Move along the perimeter, but don't take the whole arc.
take_limited(polyline1, contour, contour_params, cp1, cp2, false, anchor_length, line_half_width);
take_limited(polyline2, contour, contour_params, cp2, cp1, true, anchor_length, line_half_width);
}
}
}
// Connect the remaining open infill lines to the perimeter lines if possible.
for (ContourIntersectionPoint &contour_point : map_infill_end_point_to_boundary)
if (! contour_point.consumed && contour_point.contour_idx != boundary_idx_unconnected) {
const Points &contour = boundary[contour_point.contour_idx];
const std::vector<double> &contour_params = boundary_params[contour_point.contour_idx];
const size_t contour_pt_idx = contour_point.point_idx;
double lprev = contour_point.could_connect_prev() ?
path_length_along_contour_ccw(contour_point.prev_on_contour, &contour_point, contour_params.back()) :
std::numeric_limits<double>::max();
double lnext = contour_point.could_connect_next() ?
path_length_along_contour_ccw(&contour_point, contour_point.next_on_contour, contour_params.back()) :
std::numeric_limits<double>::max();
size_t polyline_idx = get_and_update_merged_with(((&contour_point - map_infill_end_point_to_boundary.data()) / 2));
Polyline& polyline = infill_ordered[polyline_idx];
assert(!polyline.empty());
assert(contour[contour_point.point_idx] == polyline.points.front() || contour[contour_point.point_idx] == polyline.points.back());
bool connected = false;
for (double l : { std::min(lprev, lnext), std::max(lprev, lnext) }) {
if (l == std::numeric_limits<double>::max() || l > anchor_length_max)
break;
// Take the complete contour.
bool reversed = l == lprev;
ContourIntersectionPoint* cp2 = reversed ? contour_point.prev_on_contour : contour_point.next_on_contour;
// Identify which end of the polyline touches the boundary.
size_t polyline_idx2 = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2));
if (polyline_idx == polyline_idx2)
// Try the other side.
continue;
// Not closing a loop.
if (contour[contour_point.point_idx] == polyline.points.front())
polyline.reverse();
Polyline& polyline2 = infill_ordered[polyline_idx2];
assert(!polyline.empty());
assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back());
if (contour[cp2->point_idx] == polyline2.points.back())
polyline2.reverse();
take(polyline, polyline2, contour, &contour_point, cp2, reversed);
if (polyline_idx < polyline_idx2) {
// Mark the second polyline as merged with the first one.
merged_with[polyline_idx2] = polyline_idx;
polyline2.points.clear();
} else {
// Mark the first polyline as merged with the second one.
merged_with[polyline_idx] = polyline_idx2;
polyline2 = std::move(polyline);
polyline.points.clear();
}
connected = true;
break;
}
if (! connected && anchor_length > SCALED_EPSILON) {
// Which to take? One could optimize for:
// 1) Shortest path
// 2) Hook length
// ...
// Let's take the longer now, as this improves the chance of another hook to be placed on the other side of this contour point.
double l = std::max(contour_point.contour_not_taken_length_prev, contour_point.contour_not_taken_length_next);
if (l > SCALED_EPSILON) {
if (contour_point.contour_not_taken_length_prev > contour_point.contour_not_taken_length_next)
take_limited(polyline, contour, contour_params, &contour_point, contour_point.prev_on_contour, true, anchor_length, line_half_width);
else
take_limited(polyline, contour, contour_params, &contour_point, contour_point.next_on_contour, false, anchor_length, line_half_width);
}
}
}
polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline& pl) { return !pl.empty(); }));
for (Polyline& pl : infill_ordered)
if (!pl.empty())
polylines_out.emplace_back(std::move(pl));
}
}
void Fill::connect_infill(Polylines&& infill_ordered, const ExPolygon& boundary, Polylines& polylines_out, const double spacing, const FillParams& params) {
if (params.anchor_length_max == 0) {
PrusaSimpleConnect::connect_infill(std::move(infill_ordered), boundary, polylines_out, spacing, params);
} else {
FakePerimeterConnect::connect_infill(std::move(infill_ordered), boundary, polylines_out, spacing, params);
}
}
void Fill::connect_infill(Polylines&& infill_ordered, const ExPolygon& boundary, const Polygons& polygons_src, Polylines& polylines_out, const double spacing, const FillParams& params) {
if (params.anchor_length_max == 0) {
PrusaSimpleConnect::connect_infill(std::move(infill_ordered), boundary, polylines_out, spacing, params);
} else {
FakePerimeterConnect::connect_infill(std::move(infill_ordered), polygons_src, get_extents(boundary.contour), polylines_out, spacing, params);
}
}
} // namespace Slic3r