mirror of
https://git.mirrors.martin98.com/https://github.com/slic3r/Slic3r.git
synced 2025-07-15 16:51:48 +08:00
323 lines
11 KiB
C++
323 lines
11 KiB
C++
#include <limits>
|
|
|
|
#include <libslic3r/SLA/Rotfinder.hpp>
|
|
#include <libslic3r/SLA/Concurrency.hpp>
|
|
|
|
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
|
|
|
|
#include "libslic3r/SLAPrint.hpp"
|
|
#include "libslic3r/PrintConfig.hpp"
|
|
|
|
#include <libslic3r/Geometry.hpp>
|
|
#include "Model.hpp"
|
|
|
|
#include <thread>
|
|
|
|
namespace Slic3r { namespace sla {
|
|
|
|
inline bool is_on_floor(const SLAPrintObject &mo)
|
|
{
|
|
auto opt_elevation = mo.config().support_object_elevation.getFloat();
|
|
auto opt_padaround = mo.config().pad_around_object.getBool();
|
|
|
|
return opt_elevation < EPSILON || opt_padaround;
|
|
}
|
|
|
|
// Find transformed mesh ground level without copy and with parallel reduce.
|
|
double find_ground_level(const TriangleMesh &mesh,
|
|
const Transform3d & tr,
|
|
size_t threads)
|
|
{
|
|
size_t vsize = mesh.its.vertices.size();
|
|
|
|
auto minfn = [](double a, double b) { return std::min(a, b); };
|
|
|
|
auto accessfn = [&mesh, &tr] (size_t vi) {
|
|
return (tr * mesh.its.vertices[vi].template cast<double>()).z();
|
|
};
|
|
|
|
double zmin = std::numeric_limits<double>::max();
|
|
size_t granularity = vsize / threads;
|
|
return ccr_par::reduce(size_t(0), vsize, zmin, minfn, accessfn, granularity);
|
|
}
|
|
|
|
// Get the vertices of a triangle directly in an array of 3 points
|
|
std::array<Vec3d, 3> get_triangle_vertices(const TriangleMesh &mesh,
|
|
size_t faceidx)
|
|
{
|
|
const auto &face = mesh.its.indices[faceidx];
|
|
return {Vec3d{mesh.its.vertices[face(0)].cast<double>()},
|
|
Vec3d{mesh.its.vertices[face(1)].cast<double>()},
|
|
Vec3d{mesh.its.vertices[face(2)].cast<double>()}};
|
|
}
|
|
|
|
std::array<Vec3d, 3> get_transformed_triangle(const TriangleMesh &mesh,
|
|
const Transform3d & tr,
|
|
size_t faceidx)
|
|
{
|
|
const auto &tri = get_triangle_vertices(mesh, faceidx);
|
|
return {tr * tri[0], tr * tri[1], tr * tri[2]};
|
|
}
|
|
|
|
// Get area and normal of a triangle
|
|
struct Facestats {
|
|
Vec3d normal;
|
|
double area;
|
|
|
|
explicit Facestats(const std::array<Vec3d, 3> &triangle)
|
|
{
|
|
Vec3d U = triangle[1] - triangle[0];
|
|
Vec3d V = triangle[2] - triangle[0];
|
|
Vec3d C = U.cross(V);
|
|
normal = C.normalized();
|
|
area = 0.5 * C.norm();
|
|
}
|
|
};
|
|
|
|
inline const Vec3d DOWN = {0., 0., -1.};
|
|
constexpr double POINTS_PER_UNIT_AREA = 1.;
|
|
|
|
// The score function for a particular face
|
|
inline double get_score(const Facestats &fc)
|
|
{
|
|
// Simply get the angle (acos of dot product) between the face normal and
|
|
// the DOWN vector.
|
|
double phi = 1. - std::acos(fc.normal.dot(DOWN)) / PI;
|
|
|
|
// Only consider faces that have have slopes below 90 deg:
|
|
phi = phi * (phi > 0.5);
|
|
|
|
// Make the huge slopes more significant than the smaller slopes
|
|
phi = phi * phi * phi;
|
|
|
|
// Multiply with the area of the current face
|
|
return fc.area * POINTS_PER_UNIT_AREA * phi;
|
|
}
|
|
|
|
template<class AccessFn>
|
|
double sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
|
|
{
|
|
double initv = 0.;
|
|
auto mergefn = std::plus<double>{};
|
|
size_t grainsize = facecount / Nthreads;
|
|
size_t from = 0, to = facecount;
|
|
|
|
return ccr_par::reduce(from, to, initv, mergefn, accessfn, grainsize);
|
|
}
|
|
|
|
// Try to guess the number of support points needed to support a mesh
|
|
double get_model_supportedness(const TriangleMesh &mesh, const Transform3d &tr)
|
|
{
|
|
if (mesh.its.vertices.empty()) return std::nan("");
|
|
|
|
auto accessfn = [&mesh, &tr](size_t fi) {
|
|
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
|
|
return get_score(fc);
|
|
};
|
|
|
|
size_t facecount = mesh.its.indices.size();
|
|
size_t Nthreads = std::thread::hardware_concurrency();
|
|
return sum_score(accessfn, facecount, Nthreads) / facecount;
|
|
}
|
|
|
|
double get_model_supportedness_onfloor(const TriangleMesh &mesh,
|
|
const Transform3d & tr)
|
|
{
|
|
if (mesh.its.vertices.empty()) return std::nan("");
|
|
|
|
size_t Nthreads = std::thread::hardware_concurrency();
|
|
|
|
double zmin = find_ground_level(mesh, tr, Nthreads);
|
|
double zlvl = zmin + 0.1; // Set up a slight tolerance from z level
|
|
|
|
auto accessfn = [&mesh, &tr, zlvl](size_t fi) {
|
|
std::array<Vec3d, 3> tri = get_transformed_triangle(mesh, tr, fi);
|
|
Facestats fc{tri};
|
|
|
|
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
|
|
return -fc.area * POINTS_PER_UNIT_AREA;
|
|
|
|
return get_score(fc);
|
|
};
|
|
|
|
size_t facecount = mesh.its.indices.size();
|
|
return sum_score(accessfn, facecount, Nthreads) / facecount;
|
|
}
|
|
|
|
using XYRotation = std::array<double, 2>;
|
|
|
|
// prepare the rotation transformation
|
|
Transform3d to_transform3d(const XYRotation &rot)
|
|
{
|
|
Transform3d rt = Transform3d::Identity();
|
|
rt.rotate(Eigen::AngleAxisd(rot[1], Vec3d::UnitY()));
|
|
rt.rotate(Eigen::AngleAxisd(rot[0], Vec3d::UnitX()));
|
|
return rt;
|
|
}
|
|
|
|
XYRotation from_transform3d(const Transform3d &tr)
|
|
{
|
|
Vec3d rot3d = Geometry::Transformation {tr}.get_rotation();
|
|
return {rot3d.x(), rot3d.y()};
|
|
}
|
|
|
|
// Find the best score from a set of function inputs. Evaluate for every point.
|
|
template<size_t N, class Fn, class It, class StopCond>
|
|
std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
|
|
{
|
|
std::array<double, N> ret;
|
|
|
|
double score = std::numeric_limits<double>::max();
|
|
|
|
size_t Nthreads = std::thread::hardware_concurrency();
|
|
size_t dist = std::distance(from, to);
|
|
std::vector<double> scores(dist, score);
|
|
|
|
ccr_par::for_each(size_t(0), dist, [&stopfn, &scores, &fn, &from](size_t i) {
|
|
if (stopfn()) return;
|
|
|
|
scores[i] = fn(*(from + i));
|
|
}, dist / Nthreads);
|
|
|
|
auto it = std::min_element(scores.begin(), scores.end());
|
|
|
|
if (it != scores.end()) ret = *(from + std::distance(scores.begin(), it));
|
|
|
|
return ret;
|
|
}
|
|
|
|
// collect the rotations for each face of the convex hull
|
|
std::vector<XYRotation> get_chull_rotations(const TriangleMesh &mesh, size_t max_count)
|
|
{
|
|
TriangleMesh chull = mesh.convex_hull_3d();
|
|
chull.require_shared_vertices();
|
|
double chull2d_area = chull.convex_hull().area();
|
|
double area_threshold = chull2d_area / (scaled<double>(1e3) * scaled(1.));
|
|
|
|
size_t facecount = chull.its.indices.size();
|
|
|
|
struct RotArea { XYRotation rot; double area; };
|
|
|
|
auto inputs = reserve_vector<RotArea>(facecount);
|
|
|
|
auto rotcmp = [](const RotArea &r1, const RotArea &r2) {
|
|
double xdiff = r1.rot[X] - r2.rot[X], ydiff = r1.rot[Y] - r2.rot[Y];
|
|
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
|
|
};
|
|
|
|
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
|
|
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
|
|
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
|
|
};
|
|
|
|
for (size_t fi = 0; fi < facecount; ++fi) {
|
|
Facestats fc{get_triangle_vertices(chull, fi)};
|
|
|
|
if (fc.area > area_threshold) {
|
|
auto q = Eigen::Quaterniond{}.FromTwoVectors(fc.normal, DOWN);
|
|
XYRotation rot = from_transform3d(Transform3d::Identity() * q);
|
|
RotArea ra = {rot, fc.area};
|
|
|
|
auto it = std::lower_bound(inputs.begin(), inputs.end(), ra, rotcmp);
|
|
|
|
if (it == inputs.end() || !eqcmp(it->rot, rot))
|
|
inputs.insert(it, ra);
|
|
}
|
|
}
|
|
|
|
inputs.shrink_to_fit();
|
|
if (!max_count) max_count = inputs.size();
|
|
std::sort(inputs.begin(), inputs.end(),
|
|
[](const RotArea &ra, const RotArea &rb) {
|
|
return ra.area > rb.area;
|
|
});
|
|
|
|
auto ret = reserve_vector<XYRotation>(std::min(max_count, inputs.size()));
|
|
for (const RotArea &ra : inputs) ret.emplace_back(ra.rot);
|
|
|
|
return ret;
|
|
}
|
|
|
|
Vec2d find_best_rotation(const SLAPrintObject & po,
|
|
float accuracy,
|
|
std::function<void(unsigned)> statuscb,
|
|
std::function<bool()> stopcond)
|
|
{
|
|
static const unsigned MAX_TRIES = 1000;
|
|
|
|
// return value
|
|
XYRotation rot;
|
|
|
|
// We will use only one instance of this converted mesh to examine different
|
|
// rotations
|
|
TriangleMesh mesh = po.model_object()->raw_mesh();
|
|
mesh.require_shared_vertices();
|
|
|
|
// To keep track of the number of iterations
|
|
unsigned status = 0;
|
|
|
|
// The maximum number of iterations
|
|
auto max_tries = unsigned(accuracy * MAX_TRIES);
|
|
|
|
// call status callback with zero, because we are at the start
|
|
statuscb(status);
|
|
|
|
auto statusfn = [&statuscb, &status, &max_tries] {
|
|
// report status
|
|
statuscb(unsigned(++status * 100.0/max_tries) );
|
|
};
|
|
|
|
// Different search methods have to be used depending on the model elevation
|
|
if (is_on_floor(po)) {
|
|
|
|
std::vector<XYRotation> inputs = get_chull_rotations(mesh, max_tries);
|
|
max_tries = inputs.size();
|
|
|
|
// If the model can be placed on the bed directly, we only need to
|
|
// check the 3D convex hull face rotations.
|
|
|
|
auto objfn = [&mesh, &statusfn](const XYRotation &rot) {
|
|
statusfn();
|
|
Transform3d tr = to_transform3d(rot);
|
|
return get_model_supportedness_onfloor(mesh, tr);
|
|
};
|
|
|
|
rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), stopcond);
|
|
} else {
|
|
// Preparing the optimizer.
|
|
size_t gridsize = std::sqrt(max_tries); // 2D grid has gridsize^2 calls
|
|
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
|
|
.max_iterations(max_tries)
|
|
.stop_condition(stopcond),
|
|
gridsize);
|
|
|
|
// We are searching rotations around only two axes x, y. Thus the
|
|
// problem becomes a 2 dimensional optimization task.
|
|
// We can specify the bounds for a dimension in the following way:
|
|
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
|
|
|
|
auto result = solver.to_min().optimize(
|
|
[&mesh, &statusfn] (const XYRotation &rot)
|
|
{
|
|
statusfn();
|
|
return get_model_supportedness(mesh, to_transform3d(rot));
|
|
}, opt::initvals({0., 0.}), bounds);
|
|
|
|
// Save the result and fck off
|
|
rot = result.optimum;
|
|
}
|
|
|
|
return {rot[0], rot[1]};
|
|
}
|
|
|
|
double get_model_supportedness(const SLAPrintObject &po, const Transform3d &tr)
|
|
{
|
|
TriangleMesh mesh = po.model_object()->raw_mesh();
|
|
mesh.require_shared_vertices();
|
|
|
|
return is_on_floor(po) ? get_model_supportedness_onfloor(mesh, tr) :
|
|
get_model_supportedness(mesh, tr);
|
|
}
|
|
|
|
}} // namespace Slic3r::sla
|