Slic3r/xs/src/libslic3r/Config.cpp

710 lines
23 KiB
C++

#include "Config.hpp"
#include <stdlib.h> // for setenv()
#include <assert.h>
#include <ctime>
#include <fstream>
#include <iostream>
#include <exception> // std::runtime_error
#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/erase.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/foreach.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/property_tree/ini_parser.hpp>
#include <boost/property_tree/ptree.hpp>
#include <string.h>
#if defined(_WIN32) && !defined(setenv) && defined(_putenv_s)
#define setenv(k, v, o) _putenv_s(k, v)
#endif
namespace Slic3r {
std::string escape_string_cstyle(const std::string &str)
{
// Allocate a buffer twice the input string length,
// so the output will fit even if all input characters get escaped.
std::vector<char> out(str.size() * 2, 0);
char *outptr = out.data();
for (size_t i = 0; i < str.size(); ++ i) {
char c = str[i];
if (c == '\n' || c == '\r') {
(*outptr ++) = '\\';
(*outptr ++) = 'n';
} else
(*outptr ++) = c;
}
return std::string(out.data(), outptr - out.data());
}
std::string escape_strings_cstyle(const std::vector<std::string> &strs)
{
// 1) Estimate the output buffer size to avoid buffer reallocation.
size_t outbuflen = 0;
for (size_t i = 0; i < strs.size(); ++ i)
// Reserve space for every character escaped + quotes + semicolon.
outbuflen += strs[i].size() * 2 + 3;
// 2) Fill in the buffer.
std::vector<char> out(outbuflen, 0);
char *outptr = out.data();
for (size_t j = 0; j < strs.size(); ++ j) {
if (j > 0)
// Separate the strings.
(*outptr ++) = ';';
const std::string &str = strs[j];
// Is the string simple or complex? Complex string contains spaces, tabs, new lines and other
// escapable characters. Empty string shall be quoted as well, if it is the only string in strs.
bool should_quote = strs.size() == 1 && str.empty();
for (size_t i = 0; i < str.size(); ++ i) {
char c = str[i];
if (c == ' ' || c == '\t' || c == '\\' || c == '"' || c == '\r' || c == '\n') {
should_quote = true;
break;
}
}
if (should_quote) {
(*outptr ++) = '"';
for (size_t i = 0; i < str.size(); ++ i) {
char c = str[i];
if (c == '\\' || c == '"') {
(*outptr ++) = '\\';
(*outptr ++) = c;
} else if (c == '\n' || c == '\r') {
(*outptr ++) = '\\';
(*outptr ++) = 'n';
} else
(*outptr ++) = c;
}
(*outptr ++) = '"';
} else {
memcpy(outptr, str.data(), str.size());
outptr += str.size();
}
}
return std::string(out.data(), outptr - out.data());
}
bool unescape_string_cstyle(const std::string &str, std::string &str_out)
{
std::vector<char> out(str.size(), 0);
char *outptr = out.data();
for (size_t i = 0; i < str.size(); ++ i) {
char c = str[i];
if (c == '\\') {
if (++ i == str.size())
return false;
c = str[i];
if (c == 'n')
(*outptr ++) = '\n';
} else
(*outptr ++) = c;
}
str_out.assign(out.data(), outptr - out.data());
return true;
}
bool unescape_strings_cstyle(const std::string &str, std::vector<std::string> &out)
{
if (str.empty())
return true;
size_t i = 0;
for (;;) {
// Skip white spaces.
char c = str[i];
while (c == ' ' || c == '\t') {
if (++ i == str.size())
return true;
c = str[i];
}
// Start of a word.
std::vector<char> buf;
buf.reserve(16);
// Is it enclosed in quotes?
c = str[i];
if (c == '"') {
// Complex case, string is enclosed in quotes.
for (++ i; i < str.size(); ++ i) {
c = str[i];
if (c == '"') {
// End of string.
break;
}
if (c == '\\') {
if (++ i == str.size())
return false;
c = str[i];
if (c == 'n')
c = '\n';
}
buf.push_back(c);
}
if (i == str.size())
return false;
++ i;
} else {
for (; i < str.size(); ++ i) {
c = str[i];
if (c == ';')
break;
buf.push_back(c);
}
}
// Store the string into the output vector.
out.push_back(std::string(buf.data(), buf.size()));
if (i == str.size())
return true;
// Skip white spaces.
c = str[i];
while (c == ' ' || c == '\t') {
if (++ i == str.size())
// End of string. This is correct.
return true;
c = str[i];
}
if (c != ';')
return false;
if (++ i == str.size()) {
// Emit one additional empty string.
out.push_back(std::string());
return true;
}
}
}
bool
operator== (const ConfigOption &a, const ConfigOption &b)
{
return a.serialize().compare(b.serialize()) == 0;
}
bool
operator!= (const ConfigOption &a, const ConfigOption &b)
{
return !(a == b);
}
ConfigOptionDef::ConfigOptionDef(const ConfigOptionDef &other)
: type(other.type), default_value(NULL),
gui_type(other.gui_type), gui_flags(other.gui_flags), label(other.label),
full_label(other.full_label), category(other.category), tooltip(other.tooltip),
sidetext(other.sidetext), cli(other.cli), ratio_over(other.ratio_over),
multiline(other.multiline), full_width(other.full_width), readonly(other.readonly),
height(other.height), width(other.width), min(other.min), max(other.max),
aliases(other.aliases), shortcut(other.shortcut), enum_values(other.enum_values),
enum_labels(other.enum_labels), enum_keys_map(other.enum_keys_map)
{
if (other.default_value != NULL)
this->default_value = other.default_value->clone();
}
ConfigOptionDef::~ConfigOptionDef()
{
if (this->default_value != NULL)
delete this->default_value;
}
ConfigOptionDef*
ConfigDef::add(const t_config_option_key &opt_key, ConfigOptionType type)
{
ConfigOptionDef* opt = &this->options[opt_key];
opt->type = type;
return opt;
}
ConfigOptionDef*
ConfigDef::add(const t_config_option_key &opt_key, const ConfigOptionDef &def)
{
this->options.insert(std::make_pair(opt_key, def));
return &this->options[opt_key];
}
bool
ConfigDef::has(const t_config_option_key &opt_key) const
{
return this->options.count(opt_key) > 0;
}
const ConfigOptionDef*
ConfigDef::get(const t_config_option_key &opt_key) const
{
if (this->options.count(opt_key) == 0) return NULL;
return &const_cast<ConfigDef*>(this)->options[opt_key];
}
void
ConfigDef::merge(const ConfigDef &other)
{
this->options.insert(other.options.begin(), other.options.end());
}
bool
ConfigBase::has(const t_config_option_key &opt_key) {
return (this->option(opt_key, false) != NULL);
}
void
ConfigBase::apply(const ConfigBase &other, bool ignore_nonexistent) {
// get list of option keys to apply
t_config_option_keys opt_keys = other.keys();
// loop through options and apply them
for (t_config_option_keys::const_iterator it = opt_keys.begin(); it != opt_keys.end(); ++it) {
ConfigOption* my_opt = this->option(*it, true);
if (my_opt == NULL) {
if (ignore_nonexistent == false) throw "Attempt to apply non-existent option";
continue;
}
// not the most efficient way, but easier than casting pointers to subclasses
bool res = my_opt->deserialize( other.option(*it)->serialize() );
if (!res) {
std::string error = "Unexpected failure when deserializing serialized value for " + *it;
CONFESS(error.c_str());
}
}
}
bool
ConfigBase::equals(ConfigBase &other) {
return this->diff(other).empty();
}
// this will *ignore* options not present in both configs
t_config_option_keys
ConfigBase::diff(ConfigBase &other) {
t_config_option_keys diff;
t_config_option_keys my_keys = this->keys();
for (t_config_option_keys::const_iterator opt_key = my_keys.begin(); opt_key != my_keys.end(); ++opt_key) {
if (other.has(*opt_key) && other.serialize(*opt_key) != this->serialize(*opt_key)) {
diff.push_back(*opt_key);
}
}
return diff;
}
std::string
ConfigBase::serialize(const t_config_option_key &opt_key) const {
const ConfigOption* opt = this->option(opt_key);
assert(opt != NULL);
return opt->serialize();
}
bool
ConfigBase::set_deserialize(t_config_option_key opt_key, std::string str, bool append) {
const ConfigOptionDef* optdef = this->def->get(opt_key);
if (optdef == NULL) {
// If we didn't find an option, look for any other option having this as an alias.
for (const auto &opt : this->def->options) {
for (const t_config_option_key &opt_key2 : opt.second.aliases) {
if (opt_key2 == opt_key) {
opt_key = opt_key2;
optdef = &opt.second;
break;
}
}
if (optdef != NULL) break;
}
if (optdef == NULL)
throw UnknownOptionException();
}
if (!optdef->shortcut.empty()) {
for (const t_config_option_key &shortcut : optdef->shortcut) {
if (!this->set_deserialize(shortcut, str)) return false;
}
return true;
}
ConfigOption* opt = this->option(opt_key, true);
assert(opt != NULL);
return opt->deserialize(str, append);
}
// Return an absolute value of a possibly relative config variable.
// For example, return absolute infill extrusion width, either from an absolute value, or relative to the layer height.
double
ConfigBase::get_abs_value(const t_config_option_key &opt_key) const {
const ConfigOption* opt = this->option(opt_key);
if (const ConfigOptionFloatOrPercent* optv = dynamic_cast<const ConfigOptionFloatOrPercent*>(opt)) {
// get option definition
const ConfigOptionDef* def = this->def->get(opt_key);
assert(def != NULL);
// compute absolute value over the absolute value of the base option
return optv->get_abs_value(this->get_abs_value(def->ratio_over));
} else if (const ConfigOptionFloat* optv = dynamic_cast<const ConfigOptionFloat*>(opt)) {
return optv->value;
} else {
throw "Not a valid option type for get_abs_value()";
}
}
// Return an absolute value of a possibly relative config variable.
// For example, return absolute infill extrusion width, either from an absolute value, or relative to a provided value.
double
ConfigBase::get_abs_value(const t_config_option_key &opt_key, double ratio_over) const {
// get stored option value
const ConfigOptionFloatOrPercent* opt = dynamic_cast<const ConfigOptionFloatOrPercent*>(this->option(opt_key));
assert(opt != NULL);
// compute absolute value
return opt->get_abs_value(ratio_over);
}
void
ConfigBase::setenv_()
{
#ifdef setenv
t_config_option_keys opt_keys = this->keys();
for (t_config_option_keys::const_iterator it = opt_keys.begin(); it != opt_keys.end(); ++it) {
// prepend the SLIC3R_ prefix
std::ostringstream ss;
ss << "SLIC3R_";
ss << *it;
std::string envname = ss.str();
// capitalize environment variable name
for (size_t i = 0; i < envname.size(); ++i)
envname[i] = (envname[i] <= 'z' && envname[i] >= 'a') ? envname[i]-('a'-'A') : envname[i];
setenv(envname.c_str(), this->serialize(*it).c_str(), 1);
}
#endif
}
const ConfigOption*
ConfigBase::option(const t_config_option_key &opt_key) const {
return const_cast<ConfigBase*>(this)->option(opt_key, false);
}
ConfigOption*
ConfigBase::option(const t_config_option_key &opt_key, bool create) {
return this->optptr(opt_key, create);
}
void
ConfigBase::load(const std::string &file)
{
namespace pt = boost::property_tree;
pt::ptree tree;
pt::read_ini(file, tree);
BOOST_FOREACH(const pt::ptree::value_type &v, tree) {
try {
t_config_option_key opt_key = v.first;
std::string value = v.second.get_value<std::string>();
this->set_deserialize(opt_key, value);
} catch (UnknownOptionException &e) {
// ignore
}
}
}
void
ConfigBase::save(const std::string &file) const
{
using namespace std;
ofstream c;
c.open(file.c_str(), ios::out | ios::trunc);
{
time_t now;
time(&now);
char buf[sizeof "0000-00-00 00:00:00"];
strftime(buf, sizeof buf, "%F %T", gmtime(&now));
c << "# generated by Slic3r " << SLIC3R_VERSION << " on " << buf << endl;
}
t_config_option_keys my_keys = this->keys();
for (t_config_option_keys::const_iterator opt_key = my_keys.begin(); opt_key != my_keys.end(); ++opt_key)
c << *opt_key << " = " << this->serialize(*opt_key) << endl;
c.close();
}
DynamicConfig& DynamicConfig::operator= (DynamicConfig other)
{
this->swap(other);
return *this;
}
void
DynamicConfig::swap(DynamicConfig &other)
{
std::swap(this->options, other.options);
}
DynamicConfig::~DynamicConfig () {
for (t_options_map::iterator it = this->options.begin(); it != this->options.end(); ++it) {
ConfigOption* opt = it->second;
if (opt != NULL) delete opt;
}
}
DynamicConfig::DynamicConfig (const DynamicConfig& other) {
this->def = other.def;
this->apply(other, false);
}
ConfigOption*
DynamicConfig::optptr(const t_config_option_key &opt_key, bool create) {
if (this->options.count(opt_key) == 0) {
if (create) {
const ConfigOptionDef* optdef = this->def->get(opt_key);
if (optdef == NULL) return NULL;
ConfigOption* opt;
if (optdef->default_value != NULL) {
opt = optdef->default_value->clone();
} else if (optdef->type == coFloat) {
opt = new ConfigOptionFloat ();
} else if (optdef->type == coFloats) {
opt = new ConfigOptionFloats ();
} else if (optdef->type == coInt) {
opt = new ConfigOptionInt ();
} else if (optdef->type == coInts) {
opt = new ConfigOptionInts ();
} else if (optdef->type == coString) {
opt = new ConfigOptionString ();
} else if (optdef->type == coStrings) {
opt = new ConfigOptionStrings ();
} else if (optdef->type == coPercent) {
opt = new ConfigOptionPercent ();
} else if (optdef->type == coFloatOrPercent) {
opt = new ConfigOptionFloatOrPercent ();
} else if (optdef->type == coPoint) {
opt = new ConfigOptionPoint ();
} else if (optdef->type == coPoint3) {
opt = new ConfigOptionPoint3 ();
} else if (optdef->type == coPoints) {
opt = new ConfigOptionPoints ();
} else if (optdef->type == coBool) {
opt = new ConfigOptionBool ();
} else if (optdef->type == coBools) {
opt = new ConfigOptionBools ();
} else if (optdef->type == coEnum) {
ConfigOptionEnumGeneric* optv = new ConfigOptionEnumGeneric ();
optv->keys_map = &optdef->enum_keys_map;
opt = static_cast<ConfigOption*>(optv);
} else {
throw "Unknown option type";
}
this->options[opt_key] = opt;
return opt;
} else {
return NULL;
}
}
return this->options[opt_key];
}
template<class T>
T*
DynamicConfig::opt(const t_config_option_key &opt_key, bool create) {
return dynamic_cast<T*>(this->option(opt_key, create));
}
template ConfigOptionInt* DynamicConfig::opt<ConfigOptionInt>(const t_config_option_key &opt_key, bool create);
template ConfigOptionBool* DynamicConfig::opt<ConfigOptionBool>(const t_config_option_key &opt_key, bool create);
template ConfigOptionBools* DynamicConfig::opt<ConfigOptionBools>(const t_config_option_key &opt_key, bool create);
template ConfigOptionPercent* DynamicConfig::opt<ConfigOptionPercent>(const t_config_option_key &opt_key, bool create);
t_config_option_keys
DynamicConfig::keys() const {
t_config_option_keys keys;
for (t_options_map::const_iterator it = this->options.begin(); it != this->options.end(); ++it)
keys.push_back(it->first);
return keys;
}
void
DynamicConfig::erase(const t_config_option_key &opt_key) {
this->options.erase(opt_key);
}
void
DynamicConfig::read_cli(const std::vector<std::string> &tokens, t_config_option_keys* extra)
{
std::vector<const char*> _argv;
// push a bogus executable name (argv[0])
_argv.push_back("");
for (size_t i = 0; i < tokens.size(); ++i)
_argv.push_back(const_cast<const char*>(tokens[i].c_str()));
this->read_cli(_argv.size(), &_argv[0], extra);
}
void
DynamicConfig::read_cli(const int argc, const char** argv, t_config_option_keys* extra)
{
// cache the CLI option => opt_key mapping
std::map<std::string,std::string> opts;
for (const auto &oit : this->def->options) {
std::string cli = oit.second.cli;
cli = cli.substr(0, cli.find("="));
boost::trim_right_if(cli, boost::is_any_of("!"));
std::vector<std::string> tokens;
boost::split(tokens, cli, boost::is_any_of("|"));
for (const std::string &t : tokens)
opts[t] = oit.first;
}
bool parse_options = true;
for (int i = 1; i < argc; ++i) {
std::string token = argv[i];
// Store non-option arguments in the provided vector.
if (!parse_options || !boost::starts_with(token, "-")) {
extra->push_back(token);
continue;
}
// Stop parsing tokens as options when -- is supplied.
if (token == "--") {
parse_options = false;
continue;
}
// Remove leading dashes
boost::trim_left_if(token, boost::is_any_of("-"));
// Remove the "no-" prefix used to negate boolean options.
bool no = false;
if (boost::starts_with(token, "no-")) {
no = true;
boost::replace_first(token, "no-", "");
}
// Read value when supplied in the --key=value form.
std::string value;
{
size_t equals_pos = token.find("=");
if (equals_pos != std::string::npos) {
value = token.substr(equals_pos+1);
token.erase(equals_pos);
}
}
// Look for the cli -> option mapping.
const auto it = opts.find(token);
if (it == opts.end()) {
printf("Warning: unknown option --%s\n", token.c_str());
continue;
}
const t_config_option_key opt_key = it->second;
const ConfigOptionDef &optdef = this->def->options.at(opt_key);
// If the option type expects a value and it was not already provided,
// look for it in the next token.
if (optdef.type != coBool && optdef.type != coBools && value.empty()) {
if (i == (argc-1)) {
printf("No value supplied for --%s\n", token.c_str());
continue;
}
value = argv[++i];
}
// Store the option value.
const bool existing = this->has(opt_key);
if (ConfigOptionBool* opt = this->opt<ConfigOptionBool>(opt_key, true)) {
opt->value = !no;
} else if (ConfigOptionBools* opt = this->opt<ConfigOptionBools>(opt_key, true)) {
if (!existing) opt->values.clear(); // remove the default values
opt->values.push_back(!no);
} else if (ConfigOptionStrings* opt = this->opt<ConfigOptionStrings>(opt_key, true)) {
if (!existing) opt->values.clear(); // remove the default values
opt->deserialize(value, true);
} else if (ConfigOptionFloats* opt = this->opt<ConfigOptionFloats>(opt_key, true)) {
if (!existing) opt->values.clear(); // remove the default values
opt->deserialize(value, true);
} else if (ConfigOptionPoints* opt = this->opt<ConfigOptionPoints>(opt_key, true)) {
if (!existing) opt->values.clear(); // remove the default values
opt->deserialize(value, true);
} else {
this->set_deserialize(opt_key, value, true);
}
}
}
void
StaticConfig::set_defaults()
{
// use defaults from definition
if (this->def == NULL) return;
t_config_option_keys keys = this->keys();
for (t_config_option_keys::const_iterator it = keys.begin(); it != keys.end(); ++it) {
const ConfigOptionDef* def = this->def->get(*it);
if (def->default_value != NULL)
this->option(*it)->set(*def->default_value);
}
}
t_config_option_keys
StaticConfig::keys() const {
t_config_option_keys keys;
for (t_optiondef_map::const_iterator it = this->def->options.begin(); it != this->def->options.end(); ++it) {
const ConfigOption* opt = this->option(it->first);
if (opt != NULL) keys.push_back(it->first);
}
return keys;
}
bool
ConfigOptionPoint::deserialize(std::string str, bool append) {
std::vector<std::string> tokens(2);
boost::split(tokens, str, boost::is_any_of(",x"));
try {
this->value.x = boost::lexical_cast<coordf_t>(tokens[0]);
this->value.y = boost::lexical_cast<coordf_t>(tokens[1]);
} catch (boost::bad_lexical_cast &e){
std::cout << "Exception caught : " << e.what() << std::endl;
return false;
}
return true;
};
bool
ConfigOptionPoint3::deserialize(std::string str, bool append) {
std::vector<std::string> tokens(3);
boost::split(tokens, str, boost::is_any_of(",x"));
try {
this->value.x = boost::lexical_cast<coordf_t>(tokens[0]);
this->value.y = boost::lexical_cast<coordf_t>(tokens[1]);
this->value.z = boost::lexical_cast<coordf_t>(tokens[2]);
} catch (boost::bad_lexical_cast &e){
std::cout << "Exception caught : " << e.what() << std::endl;
return false;
}
return true;
};
bool
ConfigOptionPoints::deserialize(std::string str, bool append) {
if (!append) this->values.clear();
std::vector<std::string> tokens;
boost::split(tokens, str, boost::is_any_of("x,"));
if (tokens.size() % 2) return false;
try {
for (size_t i = 0; i < tokens.size(); ++i) {
Pointf point;
point.x = boost::lexical_cast<coordf_t>(tokens[i]);
point.y = boost::lexical_cast<coordf_t>(tokens[++i]);
this->values.push_back(point);
}
} catch (boost::bad_lexical_cast &e) {
printf("%s\n", e.what());
return false;
}
return true;
}
}