draco/core/adaptive_rans_coding.cc
2016-12-12 16:39:06 -08:00

117 lines
3.3 KiB
C++

// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "core/adaptive_rans_coding.h"
#include <iostream>
namespace draco {
uint8_t clamp_probability(double p) {
DCHECK_LE(p, 1.0);
DCHECK_LE(0.0, p);
uint32_t p_int = static_cast<uint32_t>((p * 256) + 0.5);
p_int -= (p_int == 256);
p_int += (p_int == 0);
return static_cast<uint8_t>(p_int);
}
double update_probability(double old_p, bool bit) {
static constexpr double w = 128.0;
static constexpr double w0 = (w - 1.0) / w;
static constexpr double w1 = 1.0 / w;
return old_p * w0 + (!bit) * w1;
}
AdaptiveRAnsBitEncoder::AdaptiveRAnsBitEncoder() {}
AdaptiveRAnsBitEncoder::~AdaptiveRAnsBitEncoder() { Clear(); }
void AdaptiveRAnsBitEncoder::StartEncoding() { Clear(); }
void AdaptiveRAnsBitEncoder::EndEncoding(EncoderBuffer *target_buffer) {
// Buffer for ans to write.
std::vector<uint8_t> buffer(bits_.size() + 16);
AnsCoder ans_coder;
ans_write_init(&ans_coder, buffer.data());
// Unfortunaetly we have to encode the bits in reversed order, while the
// probabilities that should be given are those of the forward sequence.
double p0_f = 0.5;
std::vector<uint8_t> p0s;
p0s.reserve(bits_.size());
for (bool b : bits_) {
p0s.push_back(clamp_probability(p0_f));
p0_f = update_probability(p0_f, b);
}
auto bit = bits_.rbegin();
auto pit = p0s.rbegin();
while (bit != bits_.rend()) {
rabs_write(&ans_coder, *bit, *pit);
++bit;
++pit;
}
const uint32_t size_in_bytes = ans_write_end(&ans_coder);
target_buffer->Encode(size_in_bytes);
target_buffer->Encode(buffer.data(), size_in_bytes);
Clear();
}
void AdaptiveRAnsBitEncoder::Clear() { bits_.clear(); }
AdaptiveRAnsBitDecoder::AdaptiveRAnsBitDecoder() : p0_f_(0.5) {}
AdaptiveRAnsBitDecoder::~AdaptiveRAnsBitDecoder() { Clear(); }
void AdaptiveRAnsBitDecoder::StartDecoding(DecoderBuffer *source_buffer) {
Clear();
uint32_t size_in_bytes;
source_buffer->Decode(&size_in_bytes);
ans_read_init(&ans_decoder_, reinterpret_cast<uint8_t *>(const_cast<char *>(
source_buffer->data_head())),
size_in_bytes);
source_buffer->Advance(size_in_bytes);
}
// TODO(hemmer): Consider moving these to the .h file.
bool AdaptiveRAnsBitDecoder::DecodeNextBit() {
const uint8_t p0 = clamp_probability(p0_f_);
const bool bit = static_cast<bool>(rabs_read(&ans_decoder_, p0));
p0_f_ = update_probability(p0_f_, bit);
return bit;
}
void AdaptiveRAnsBitDecoder::DecodeBits32(int nbits, uint32_t *value) {
DCHECK_EQ(true, nbits <= 32);
DCHECK_EQ(true, nbits > 0);
uint32_t result = 0;
while (nbits) {
result = (result << 1) + DecodeNextBit();
--nbits;
}
*value = result;
}
void AdaptiveRAnsBitDecoder::Clear() {
ans_read_end(&ans_decoder_);
p0_f_ = 0.5;
}
} // namespace draco