mirror of
https://git.mirrors.martin98.com/https://github.com/google/draco
synced 2025-07-28 16:22:02 +08:00

- Improved compression for triangular meshes (~10%) - Added WebAssembly decoder - Code cleanup + robustness fixes
144 lines
6.5 KiB
C++
144 lines
6.5 KiB
C++
// Copyright 2016 The Draco Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
#ifndef DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_PARALLELOGRAM_H_
|
|
#define DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_PARALLELOGRAM_H_
|
|
|
|
#include "compression/attributes/prediction_schemes/mesh_prediction_scheme.h"
|
|
#include "compression/attributes/prediction_schemes/mesh_prediction_scheme_parallelogram_shared.h"
|
|
|
|
namespace draco {
|
|
|
|
// Parallelogram prediction predicts an attribute value V from three vertices
|
|
// on the opposite face to the predicted vertex. The values on the three
|
|
// vertices are used to construct a parallelogram V' = O - A - B, where O is the
|
|
// value on the oppoiste vertex, and A, B are values on the shared vertices:
|
|
// V
|
|
// / \
|
|
// / \
|
|
// / \
|
|
// A-------B
|
|
// \ /
|
|
// \ /
|
|
// \ /
|
|
// O
|
|
|
|
template <typename DataTypeT, class TransformT, class MeshDataT>
|
|
class MeshPredictionSchemeParallelogram
|
|
: public MeshPredictionScheme<DataTypeT, TransformT, MeshDataT> {
|
|
public:
|
|
using CorrType = typename PredictionScheme<DataTypeT, TransformT>::CorrType;
|
|
using CornerTable = typename MeshDataT::CornerTable;
|
|
explicit MeshPredictionSchemeParallelogram(const PointAttribute *attribute)
|
|
: MeshPredictionScheme<DataTypeT, TransformT, MeshDataT>(attribute) {}
|
|
MeshPredictionSchemeParallelogram(const PointAttribute *attribute,
|
|
const TransformT &transform,
|
|
const MeshDataT &mesh_data)
|
|
: MeshPredictionScheme<DataTypeT, TransformT, MeshDataT>(
|
|
attribute, transform, mesh_data) {}
|
|
|
|
bool Encode(const DataTypeT *in_data, CorrType *out_corr, int size,
|
|
int num_components,
|
|
const PointIndex *entry_to_point_id_map) override;
|
|
bool Decode(const CorrType *in_corr, DataTypeT *out_data, int size,
|
|
int num_components,
|
|
const PointIndex *entry_to_point_id_map) override;
|
|
PredictionSchemeMethod GetPredictionMethod() const override {
|
|
return MESH_PREDICTION_PARALLELOGRAM;
|
|
}
|
|
|
|
bool IsInitialized() const override {
|
|
return this->mesh_data().IsInitialized();
|
|
}
|
|
};
|
|
|
|
template <typename DataTypeT, class TransformT, class MeshDataT>
|
|
bool MeshPredictionSchemeParallelogram<DataTypeT, TransformT, MeshDataT>::
|
|
Encode(const DataTypeT *in_data, CorrType *out_corr, int size,
|
|
int num_components, const PointIndex * /* entry_to_point_id_map */) {
|
|
this->transform().InitializeEncoding(in_data, size, num_components);
|
|
std::unique_ptr<DataTypeT[]> pred_vals(new DataTypeT[num_components]());
|
|
|
|
// We start processing from the end because this prediction uses data from
|
|
// previous entries that could be overwritten when an entry is processed.
|
|
const CornerTable *const table = this->mesh_data().corner_table();
|
|
const std::vector<int32_t> *const vertex_to_data_map =
|
|
this->mesh_data().vertex_to_data_map();
|
|
for (int p = this->mesh_data().data_to_corner_map()->size() - 1; p > 0; --p) {
|
|
const CornerIndex corner_id = this->mesh_data().data_to_corner_map()->at(p);
|
|
const int dst_offset = p * num_components;
|
|
if (!ComputeParallelogramPrediction(p, corner_id, table,
|
|
*vertex_to_data_map, in_data,
|
|
num_components, pred_vals.get())) {
|
|
// Parallelogram could not be computed, Possible because some of the
|
|
// vertices are not valid (not encoded yet).
|
|
// We use the last encoded point as a reference (delta coding).
|
|
const int src_offset = (p - 1) * num_components;
|
|
this->transform().ComputeCorrection(
|
|
in_data + dst_offset, in_data + src_offset, out_corr, dst_offset);
|
|
} else {
|
|
// Apply the parallelogram prediction.
|
|
this->transform().ComputeCorrection(in_data + dst_offset, pred_vals.get(),
|
|
out_corr, dst_offset);
|
|
}
|
|
}
|
|
// First element is always fixed because it cannot be predicted.
|
|
for (int i = 0; i < num_components; ++i) {
|
|
pred_vals[i] = static_cast<DataTypeT>(0);
|
|
}
|
|
this->transform().ComputeCorrection(in_data, pred_vals.get(), out_corr, 0);
|
|
return true;
|
|
}
|
|
|
|
template <typename DataTypeT, class TransformT, class MeshDataT>
|
|
bool MeshPredictionSchemeParallelogram<DataTypeT, TransformT, MeshDataT>::
|
|
Decode(const CorrType *in_corr, DataTypeT *out_data, int /* size */,
|
|
int num_components, const PointIndex * /* entry_to_point_id_map */) {
|
|
this->transform().InitializeDecoding(num_components);
|
|
|
|
const CornerTable *const table = this->mesh_data().corner_table();
|
|
const std::vector<int32_t> *const vertex_to_data_map =
|
|
this->mesh_data().vertex_to_data_map();
|
|
|
|
std::unique_ptr<DataTypeT[]> pred_vals(new DataTypeT[num_components]());
|
|
|
|
// Restore the first value.
|
|
this->transform().ComputeOriginalValue(pred_vals.get(), in_corr, out_data, 0);
|
|
|
|
const int corner_map_size = this->mesh_data().data_to_corner_map()->size();
|
|
for (int p = 1; p < corner_map_size; ++p) {
|
|
const CornerIndex corner_id = this->mesh_data().data_to_corner_map()->at(p);
|
|
const int dst_offset = p * num_components;
|
|
if (!ComputeParallelogramPrediction(p, corner_id, table,
|
|
*vertex_to_data_map, out_data,
|
|
num_components, pred_vals.get())) {
|
|
// Parallelogram could not be computed, Possible because some of the
|
|
// vertices are not valid (not encoded yet).
|
|
// We use the last encoded point as a reference (delta coding).
|
|
const int src_offset = (p - 1) * num_components;
|
|
this->transform().ComputeOriginalValue(out_data + src_offset, in_corr,
|
|
out_data + dst_offset, dst_offset);
|
|
} else {
|
|
// Apply the parallelogram prediction.
|
|
this->transform().ComputeOriginalValue(pred_vals.get(), in_corr,
|
|
out_data + dst_offset, dst_offset);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace draco
|
|
|
|
#endif // DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_PARALLELOGRAM_H_
|