mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-21 12:24:25 +08:00
Apply clang-format to lapack/blas directories
This commit is contained in:
parent
4eac211e96
commit
186f8205db
357
blas/f2c/chbmv.c
357
blas/f2c/chbmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int chbmv_(char *uplo, integer *n, integer *k, complex *
|
||||
alpha, complex *a, integer *lda, complex *x, integer *incx, complex *
|
||||
beta, complex *y, integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* Subroutine */ int chbmv_(char *uplo, integer *n, integer *k, complex *alpha, complex *a, integer *lda, complex *x,
|
||||
integer *incx, complex *beta, complex *y, integer *incy, ftnlen uplo_len) {
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
||||
real r__1;
|
||||
@ -31,148 +29,148 @@
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CHBMV performs the matrix-vector operation */
|
||||
/* CHBMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian band matrix, with k super-diagonals. */
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian band matrix, with k super-diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - COMPLEX . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
/* ALPHA - COMPLEX . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - COMPLEX array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
/* A - COMPLEX array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
/* X - COMPLEX array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - COMPLEX . */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
/* BETA - COMPLEX . */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - COMPLEX array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
/* Y - COMPLEX array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
@ -183,8 +181,7 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
@ -202,14 +199,13 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
|
||||
beta->i == 0.f))) {
|
||||
if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && beta->i == 0.f))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
@ -222,10 +218,10 @@
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (beta->r != 1.f || beta->i != 0.f) {
|
||||
if (*incy == 1) {
|
||||
@ -234,18 +230,16 @@
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
y[i__2].r = 0.f, y[i__2].i = 0.f;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -256,19 +250,17 @@
|
||||
i__2 = iy;
|
||||
y[i__2].r = 0.f, y[i__2].i = 0.f;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
i__3 = iy;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -277,38 +269,33 @@
|
||||
return 0;
|
||||
}
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r;
|
||||
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__2 = i__;
|
||||
q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, q__2.i =
|
||||
q__3.r * x[i__2].i + q__3.i * x[i__2].r;
|
||||
q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, q__2.i = q__3.r * x[i__2].i + q__3.i * x[i__2].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
i__4 = j;
|
||||
i__2 = j;
|
||||
@ -316,11 +303,10 @@
|
||||
r__1 = a[i__3].r;
|
||||
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
|
||||
q__2.r = y[i__2].r + q__3.r, q__2.i = y[i__2].i + q__3.i;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
|
||||
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -328,34 +314,30 @@
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__4 = jx;
|
||||
q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, q__1.i =
|
||||
alpha->r * x[i__4].i + alpha->i * x[i__4].r;
|
||||
q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, q__1.i = alpha->r * x[i__4].i + alpha->i * x[i__4].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) {
|
||||
i__4 = iy;
|
||||
i__2 = iy;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r;
|
||||
q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
|
||||
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
|
||||
q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
@ -363,8 +345,7 @@
|
||||
r__1 = a[i__2].r;
|
||||
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
|
||||
q__2.r = y[i__4].r + q__3.r, q__2.i = y[i__4].i + q__3.i;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
jx += *incx;
|
||||
@ -373,19 +354,17 @@
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
}
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__3 = j;
|
||||
q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
|
||||
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i = alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
i__3 = j;
|
||||
@ -396,33 +375,29 @@
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
i__3 = min(i__4, i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
i__4 = i__;
|
||||
i__2 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r;
|
||||
q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
|
||||
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = i__;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
|
||||
q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
i__3 = j;
|
||||
i__4 = j;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -430,8 +405,7 @@
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__3 = jx;
|
||||
q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
|
||||
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i = alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
i__3 = jy;
|
||||
@ -444,44 +418,39 @@
|
||||
l = 1 - j;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
i__3 = min(i__4, i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
i__4 = iy;
|
||||
i__2 = iy;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r;
|
||||
q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
|
||||
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
|
||||
q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of CHBMV . */
|
||||
/* End of CHBMV . */
|
||||
|
||||
} /* chbmv_ */
|
||||
|
||||
|
285
blas/f2c/chpmv.c
285
blas/f2c/chpmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex *
|
||||
ap, complex *x, integer *incx, complex *beta, complex *y, integer *
|
||||
incy, ftnlen uplo_len)
|
||||
{
|
||||
/* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex *ap, complex *x, integer *incx,
|
||||
complex *beta, complex *y, integer *incy, ftnlen uplo_len) {
|
||||
/* System generated locals */
|
||||
integer i__1, i__2, i__3, i__4, i__5;
|
||||
real r__1;
|
||||
@ -30,114 +28,114 @@
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CHPMV performs the matrix-vector operation */
|
||||
/* CHPMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian matrix, supplied in packed form. */
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian matrix, supplied in packed form. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - COMPLEX . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
/* ALPHA - COMPLEX . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* AP - COMPLEX array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* AP - COMPLEX array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
/* X - COMPLEX array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - COMPLEX . */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
/* BETA - COMPLEX . */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - COMPLEX array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
/* Y - COMPLEX array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--y;
|
||||
@ -146,8 +144,7 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
@ -161,14 +158,13 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
|
||||
beta->i == 0.f))) {
|
||||
if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && beta->i == 0.f))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
@ -181,10 +177,10 @@
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (beta->r != 1.f || beta->i != 0.f) {
|
||||
if (*incy == 1) {
|
||||
@ -193,18 +189,16 @@
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
y[i__2].r = 0.f, y[i__2].i = 0.f;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -215,19 +209,17 @@
|
||||
i__2 = iy;
|
||||
y[i__2].r = 0.f, y[i__2].i = 0.f;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
i__3 = iy;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -237,15 +229,13 @@
|
||||
}
|
||||
kk = 1;
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
k = kk;
|
||||
@ -254,19 +244,16 @@
|
||||
i__3 = i__;
|
||||
i__4 = i__;
|
||||
i__5 = k;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
r_cnjg(&q__3, &ap[k]);
|
||||
i__3 = i__;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
|
||||
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
++k;
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
@ -274,12 +261,11 @@
|
||||
r__1 = ap[i__4].r;
|
||||
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
|
||||
q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
kk += j;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -287,8 +273,7 @@
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = jx;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
ix = kx;
|
||||
@ -298,20 +283,17 @@
|
||||
i__3 = iy;
|
||||
i__4 = iy;
|
||||
i__5 = k;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
r_cnjg(&q__3, &ap[k]);
|
||||
i__3 = ix;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
|
||||
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
@ -319,26 +301,23 @@
|
||||
r__1 = ap[i__4].r;
|
||||
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
|
||||
q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += j;
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
i__2 = j;
|
||||
@ -354,28 +333,24 @@
|
||||
i__3 = i__;
|
||||
i__4 = i__;
|
||||
i__5 = k;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
r_cnjg(&q__3, &ap[k]);
|
||||
i__3 = i__;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
|
||||
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
++k;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
kk += *n - j + 1;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -383,8 +358,7 @@
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = jx;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
i__2 = jy;
|
||||
@ -403,36 +377,31 @@
|
||||
i__3 = iy;
|
||||
i__4 = iy;
|
||||
i__5 = k;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
r_cnjg(&q__3, &ap[k]);
|
||||
i__3 = ix;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
|
||||
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += *n - j + 1;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of CHPMV . */
|
||||
/* End of CHPMV . */
|
||||
|
||||
} /* chpmv_ */
|
||||
|
||||
|
@ -18,12 +18,9 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
complex cdotc_(integer *n, complex *cx, integer
|
||||
*incx, complex *cy, integer *incy)
|
||||
{
|
||||
complex cdotc_(integer *n, complex *cx, integer *incx, complex *cy, integer *incy) {
|
||||
complex res;
|
||||
extern /* Subroutine */ int cdotcw_(integer *, complex *, integer *,
|
||||
complex *, integer *, complex *);
|
||||
extern /* Subroutine */ int cdotcw_(integer *, complex *, integer *, complex *, integer *, complex *);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--cy;
|
||||
@ -34,12 +31,9 @@ complex cdotc_(integer *n, complex *cx, integer
|
||||
return res;
|
||||
} /* cdotc_ */
|
||||
|
||||
complex cdotu_(integer *n, complex *cx, integer
|
||||
*incx, complex *cy, integer *incy)
|
||||
{
|
||||
complex cdotu_(integer *n, complex *cx, integer *incx, complex *cy, integer *incy) {
|
||||
complex res;
|
||||
extern /* Subroutine */ int cdotuw_(integer *, complex *, integer *,
|
||||
complex *, integer *, complex *);
|
||||
extern /* Subroutine */ int cdotuw_(integer *, complex *, integer *, complex *, integer *, complex *);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--cy;
|
||||
@ -50,12 +44,10 @@ complex cdotu_(integer *n, complex *cx, integer
|
||||
return res;
|
||||
} /* cdotu_ */
|
||||
|
||||
doublecomplex zdotc_(integer *n, doublecomplex *cx, integer *incx,
|
||||
doublecomplex *cy, integer *incy)
|
||||
{
|
||||
doublecomplex zdotc_(integer *n, doublecomplex *cx, integer *incx, doublecomplex *cy, integer *incy) {
|
||||
doublecomplex res;
|
||||
extern /* Subroutine */ int zdotcw_(integer *, doublecomplex *, integer *,
|
||||
doublecomplex *, integer *, doublecomplex *);
|
||||
extern /* Subroutine */ int zdotcw_(integer *, doublecomplex *, integer *, doublecomplex *, integer *,
|
||||
doublecomplex *);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--cy;
|
||||
@ -66,12 +58,10 @@ doublecomplex zdotc_(integer *n, doublecomplex *cx, integer *incx,
|
||||
return res;
|
||||
} /* zdotc_ */
|
||||
|
||||
doublecomplex zdotu_(integer *n, doublecomplex *cx, integer *incx,
|
||||
doublecomplex *cy, integer *incy)
|
||||
{
|
||||
doublecomplex zdotu_(integer *n, doublecomplex *cx, integer *incx, doublecomplex *cy, integer *incy) {
|
||||
doublecomplex res;
|
||||
extern /* Subroutine */ int zdotuw_(integer *, doublecomplex *, integer *,
|
||||
doublecomplex *, integer *, doublecomplex *);
|
||||
extern /* Subroutine */ int zdotuw_(integer *, doublecomplex *, integer *, doublecomplex *, integer *,
|
||||
doublecomplex *);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--cy;
|
||||
@ -81,4 +71,3 @@ doublecomplex zdotu_(integer *n, doublecomplex *cx, integer *incx,
|
||||
zdotuw_(n, &cx[1], incx, &cy[1], incy, &res);
|
||||
return res;
|
||||
} /* zdotu_ */
|
||||
|
||||
|
492
blas/f2c/ctbmv.c
492
blas/f2c/ctbmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n,
|
||||
integer *k, complex *a, integer *lda, complex *x, integer *incx,
|
||||
ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
|
||||
{
|
||||
/* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n, integer *k, complex *a, integer *lda,
|
||||
complex *x, integer *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len) {
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
||||
complex q__1, q__2, q__3;
|
||||
@ -31,154 +29,154 @@
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
logical noconj, nounit;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CTBMV performs one of the matrix-vector operations */
|
||||
/* CTBMV performs one of the matrix-vector operations */
|
||||
|
||||
/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
|
||||
/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
|
||||
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
|
||||
/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
|
||||
/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - COMPLEX array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
/* A - COMPLEX array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* transformed vector x. */
|
||||
/* X - COMPLEX array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* transformed vector x. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
@ -188,15 +186,12 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
|
||||
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
|
||||
ftnlen)1)) {
|
||||
} else if (!lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && !lsame_(trans, "T", (ftnlen)1, (ftnlen)1) &&
|
||||
!lsame_(trans, "C", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
||||
"N", (ftnlen)1, (ftnlen)1)) {
|
||||
} else if (!lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && !lsame_(diag, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 3;
|
||||
} else if (*n < 0) {
|
||||
info = 4;
|
||||
@ -212,7 +207,7 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0) {
|
||||
return 0;
|
||||
@ -221,8 +216,8 @@
|
||||
noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
|
||||
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
|
||||
if (*incx <= 0) {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
@ -230,12 +225,11 @@
|
||||
kx = 1;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
|
||||
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form x := A*x. */
|
||||
/* Form x := A*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
@ -247,32 +241,28 @@
|
||||
i__2 = j;
|
||||
temp.r = x[i__2].r, temp.i = x[i__2].i;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
|
||||
q__2.i = temp.r * a[i__5].i + temp.i * a[
|
||||
i__5].r;
|
||||
q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
|
||||
q__2.i;
|
||||
q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, q__2.i = temp.r * a[i__5].i + temp.i * a[i__5].r;
|
||||
q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + q__2.i;
|
||||
x[i__2].r = q__1.r, x[i__2].i = q__1.i;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__4 = j;
|
||||
i__2 = j;
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
|
||||
i__3].i, q__1.i = x[i__2].r * a[i__3].i +
|
||||
x[i__2].i * a[i__3].r;
|
||||
q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[i__3].i,
|
||||
q__1.i = x[i__2].r * a[i__3].i + x[i__2].i * a[i__3].r;
|
||||
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
|
||||
}
|
||||
}
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -284,29 +274,25 @@
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) {
|
||||
i__4 = ix;
|
||||
i__2 = ix;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
|
||||
q__2.i = temp.r * a[i__5].i + temp.i * a[
|
||||
i__5].r;
|
||||
q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i +
|
||||
q__2.i;
|
||||
q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, q__2.i = temp.r * a[i__5].i + temp.i * a[i__5].r;
|
||||
q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i + q__2.i;
|
||||
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
|
||||
ix += *incx;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__3 = jx;
|
||||
i__4 = jx;
|
||||
i__2 = kplus1 + j * a_dim1;
|
||||
q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
|
||||
i__2].i, q__1.i = x[i__4].r * a[i__2].i +
|
||||
x[i__4].i * a[i__2].r;
|
||||
q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[i__2].i,
|
||||
q__1.i = x[i__4].r * a[i__2].i + x[i__4].i * a[i__2].r;
|
||||
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
|
||||
}
|
||||
}
|
||||
@ -314,7 +300,7 @@
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
}
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -325,32 +311,28 @@
|
||||
i__1 = j;
|
||||
temp.r = x[i__1].r, temp.i = x[i__1].i;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__3 = j + *k;
|
||||
i__4 = j + 1;
|
||||
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
|
||||
for (i__ = min(i__1, i__3); i__ >= i__4; --i__) {
|
||||
i__1 = i__;
|
||||
i__3 = i__;
|
||||
i__2 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
|
||||
q__2.i = temp.r * a[i__2].i + temp.i * a[
|
||||
i__2].r;
|
||||
q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
|
||||
q__2.i;
|
||||
q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, q__2.i = temp.r * a[i__2].i + temp.i * a[i__2].r;
|
||||
q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + q__2.i;
|
||||
x[i__1].r = q__1.r, x[i__1].i = q__1.i;
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__4 = j;
|
||||
i__1 = j;
|
||||
i__3 = j * a_dim1 + 1;
|
||||
q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
|
||||
i__3].i, q__1.i = x[i__1].r * a[i__3].i +
|
||||
x[i__1].i * a[i__3].r;
|
||||
q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[i__3].i,
|
||||
q__1.i = x[i__1].r * a[i__3].i + x[i__1].i * a[i__3].r;
|
||||
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
|
||||
}
|
||||
}
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
@ -362,29 +344,25 @@
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__1 = j + *k;
|
||||
i__3 = j + 1;
|
||||
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
|
||||
for (i__ = min(i__4, i__1); i__ >= i__3; --i__) {
|
||||
i__4 = ix;
|
||||
i__1 = ix;
|
||||
i__2 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
|
||||
q__2.i = temp.r * a[i__2].i + temp.i * a[
|
||||
i__2].r;
|
||||
q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i +
|
||||
q__2.i;
|
||||
q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, q__2.i = temp.r * a[i__2].i + temp.i * a[i__2].r;
|
||||
q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i + q__2.i;
|
||||
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
|
||||
ix -= *incx;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__3 = jx;
|
||||
i__4 = jx;
|
||||
i__1 = j * a_dim1 + 1;
|
||||
q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
|
||||
i__1].i, q__1.i = x[i__4].r * a[i__1].i +
|
||||
x[i__4].i * a[i__1].r;
|
||||
q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[i__1].i,
|
||||
q__1.i = x[i__4].r * a[i__1].i + x[i__4].i * a[i__1].r;
|
||||
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
|
||||
}
|
||||
}
|
||||
@ -392,13 +370,12 @@
|
||||
if (*n - j >= *k) {
|
||||
kx -= *incx;
|
||||
}
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form x := A'*x or x := conjg( A' )*x. */
|
||||
/* Form x := A'*x or x := conjg( A' )*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
@ -410,51 +387,42 @@
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
|
||||
q__1.i = temp.r * a[i__3].i + temp.i * a[
|
||||
i__3].r;
|
||||
q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, q__1.i = temp.r * a[i__3].i + temp.i * a[i__3].r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
i__4 = l + i__ + j * a_dim1;
|
||||
i__1 = i__;
|
||||
q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
|
||||
i__1].i, q__2.i = a[i__4].r * x[i__1].i +
|
||||
a[i__4].i * x[i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[i__1].i,
|
||||
q__2.i = a[i__4].r * x[i__1].i + a[i__4].i * x[i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
|
||||
q__1.i = temp.r * q__2.i + temp.i *
|
||||
q__2.r;
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i, q__1.i = temp.r * q__2.i + temp.i * q__2.r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = i__;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
|
||||
q__2.i = q__3.r * x[i__4].i + q__3.i * x[
|
||||
i__4].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
}
|
||||
i__3 = j;
|
||||
x[i__3].r = temp.r, x[i__3].i = temp.i;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
@ -468,54 +436,45 @@
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
|
||||
q__1.i = temp.r * a[i__3].i + temp.i * a[
|
||||
i__3].r;
|
||||
q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, q__1.i = temp.r * a[i__3].i + temp.i * a[i__3].r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
i__4 = l + i__ + j * a_dim1;
|
||||
i__1 = ix;
|
||||
q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
|
||||
i__1].i, q__2.i = a[i__4].r * x[i__1].i +
|
||||
a[i__4].i * x[i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[i__1].i,
|
||||
q__2.i = a[i__4].r * x[i__1].i + a[i__4].i * x[i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
ix -= *incx;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
|
||||
q__1.i = temp.r * q__2.i + temp.i *
|
||||
q__2.r;
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i, q__1.i = temp.r * q__2.i + temp.i * q__2.r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
|
||||
q__2.i = q__3.r * x[i__4].i + q__3.i * x[
|
||||
i__4].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
ix -= *incx;
|
||||
/* L130: */
|
||||
/* L130: */
|
||||
}
|
||||
}
|
||||
i__3 = jx;
|
||||
x[i__3].r = temp.r, x[i__3].i = temp.i;
|
||||
jx -= *incx;
|
||||
/* L140: */
|
||||
/* L140: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -528,51 +487,42 @@
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__4 = j * a_dim1 + 1;
|
||||
q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
|
||||
q__1.i = temp.r * a[i__4].i + temp.i * a[
|
||||
i__4].r;
|
||||
q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, q__1.i = temp.r * a[i__4].i + temp.i * a[i__4].r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
i__1 = l + i__ + j * a_dim1;
|
||||
i__2 = i__;
|
||||
q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
|
||||
i__2].i, q__2.i = a[i__1].r * x[i__2].i +
|
||||
a[i__1].i * x[i__2].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[i__2].i,
|
||||
q__2.i = a[i__1].r * x[i__2].i + a[i__1].i * x[i__2].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
/* L150: */
|
||||
/* L150: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
r_cnjg(&q__2, &a[j * a_dim1 + 1]);
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
|
||||
q__1.i = temp.r * q__2.i + temp.i *
|
||||
q__2.r;
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i, q__1.i = temp.r * q__2.i + temp.i * q__2.r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__1 = i__;
|
||||
q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
|
||||
q__2.i = q__3.r * x[i__1].i + q__3.i * x[
|
||||
i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, q__2.i = q__3.r * x[i__1].i + q__3.i * x[i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
/* L160: */
|
||||
/* L160: */
|
||||
}
|
||||
}
|
||||
i__4 = j;
|
||||
x[i__4].r = temp.r, x[i__4].i = temp.i;
|
||||
/* L170: */
|
||||
/* L170: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -586,54 +536,45 @@
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__4 = j * a_dim1 + 1;
|
||||
q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
|
||||
q__1.i = temp.r * a[i__4].i + temp.i * a[
|
||||
i__4].r;
|
||||
q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, q__1.i = temp.r * a[i__4].i + temp.i * a[i__4].r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
i__1 = l + i__ + j * a_dim1;
|
||||
i__2 = ix;
|
||||
q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
|
||||
i__2].i, q__2.i = a[i__1].r * x[i__2].i +
|
||||
a[i__1].i * x[i__2].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[i__2].i,
|
||||
q__2.i = a[i__1].r * x[i__2].i + a[i__1].i * x[i__2].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
ix += *incx;
|
||||
/* L180: */
|
||||
/* L180: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
r_cnjg(&q__2, &a[j * a_dim1 + 1]);
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
|
||||
q__1.i = temp.r * q__2.i + temp.i *
|
||||
q__2.r;
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i, q__1.i = temp.r * q__2.i + temp.i * q__2.r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__1 = ix;
|
||||
q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
|
||||
q__2.i = q__3.r * x[i__1].i + q__3.i * x[
|
||||
i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, q__2.i = q__3.r * x[i__1].i + q__3.i * x[i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
ix += *incx;
|
||||
/* L190: */
|
||||
/* L190: */
|
||||
}
|
||||
}
|
||||
i__4 = jx;
|
||||
x[i__4].r = temp.r, x[i__4].i = temp.i;
|
||||
jx += *incx;
|
||||
/* L200: */
|
||||
/* L200: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -641,7 +582,6 @@
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of CTBMV . */
|
||||
/* End of CTBMV . */
|
||||
|
||||
} /* ctbmv_ */
|
||||
|
||||
|
100
blas/f2c/drotm.c
100
blas/f2c/drotm.c
@ -12,9 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int drotm_(integer *n, doublereal *dx, integer *incx,
|
||||
doublereal *dy, integer *incy, doublereal *dparam)
|
||||
{
|
||||
/* Subroutine */ int drotm_(integer *n, doublereal *dx, integer *incx, doublereal *dy, integer *incy,
|
||||
doublereal *dparam) {
|
||||
/* Initialized data */
|
||||
|
||||
static doublereal zero = 0.;
|
||||
@ -30,73 +29,73 @@
|
||||
doublereal dh11, dh12, dh21, dh22, dflag;
|
||||
integer nsteps;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
|
||||
/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
|
||||
|
||||
/* (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN */
|
||||
/* (DY**T) */
|
||||
/* (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN */
|
||||
/* (DY**T) */
|
||||
|
||||
/* DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
|
||||
/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY. */
|
||||
/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
/* DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
|
||||
/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY. */
|
||||
/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
|
||||
/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
|
||||
/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
|
||||
|
||||
/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
|
||||
/* SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM. */
|
||||
/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
|
||||
/* SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* N (input) INTEGER */
|
||||
/* number of elements in input vector(s) */
|
||||
/* N (input) INTEGER */
|
||||
/* number of elements in input vector(s) */
|
||||
|
||||
/* DX (input/output) DOUBLE PRECISION array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
/* DX (input/output) DOUBLE PRECISION array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
|
||||
/* INCX (input) INTEGER */
|
||||
/* storage spacing between elements of DX */
|
||||
/* INCX (input) INTEGER */
|
||||
/* storage spacing between elements of DX */
|
||||
|
||||
/* DY (input/output) DOUBLE PRECISION array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
/* DY (input/output) DOUBLE PRECISION array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
|
||||
/* INCY (input) INTEGER */
|
||||
/* storage spacing between elements of DY */
|
||||
/* INCY (input) INTEGER */
|
||||
/* storage spacing between elements of DY */
|
||||
|
||||
/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
|
||||
/* DPARAM(1)=DFLAG */
|
||||
/* DPARAM(2)=DH11 */
|
||||
/* DPARAM(3)=DH21 */
|
||||
/* DPARAM(4)=DH12 */
|
||||
/* DPARAM(5)=DH22 */
|
||||
/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
|
||||
/* DPARAM(1)=DFLAG */
|
||||
/* DPARAM(2)=DH11 */
|
||||
/* DPARAM(3)=DH21 */
|
||||
/* DPARAM(4)=DH12 */
|
||||
/* DPARAM(5)=DH22 */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
/* Parameter adjustments */
|
||||
--dparam;
|
||||
--dy;
|
||||
--dx;
|
||||
|
||||
/* Function Body */
|
||||
/* .. */
|
||||
/* .. */
|
||||
|
||||
dflag = dparam[1];
|
||||
if (*n <= 0 || dflag + two == zero) {
|
||||
goto L140;
|
||||
}
|
||||
if (! (*incx == *incy && *incx > 0)) {
|
||||
if (!(*incx == *incy && *incx > 0)) {
|
||||
goto L70;
|
||||
}
|
||||
|
||||
@ -118,7 +117,7 @@ L10:
|
||||
z__ = dy[i__];
|
||||
dx[i__] = w + z__ * dh12;
|
||||
dy[i__] = w * dh21 + z__;
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
goto L140;
|
||||
L30:
|
||||
@ -131,7 +130,7 @@ L30:
|
||||
z__ = dy[i__];
|
||||
dx[i__] = w * dh11 + z__;
|
||||
dy[i__] = -w + dh22 * z__;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
goto L140;
|
||||
L50:
|
||||
@ -146,7 +145,7 @@ L50:
|
||||
z__ = dy[i__];
|
||||
dx[i__] = w * dh11 + z__ * dh12;
|
||||
dy[i__] = w * dh21 + z__ * dh22;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
goto L140;
|
||||
L70:
|
||||
@ -177,7 +176,7 @@ L80:
|
||||
dy[ky] = w * dh21 + z__;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
goto L140;
|
||||
L100:
|
||||
@ -191,7 +190,7 @@ L100:
|
||||
dy[ky] = -w + dh22 * z__;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
goto L140;
|
||||
L120:
|
||||
@ -207,9 +206,8 @@ L120:
|
||||
dy[ky] = w * dh21 + z__ * dh22;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L130: */
|
||||
/* L130: */
|
||||
}
|
||||
L140:
|
||||
return 0;
|
||||
} /* drotm_ */
|
||||
|
||||
|
@ -12,9 +12,7 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int drotmg_(doublereal *dd1, doublereal *dd2, doublereal *
|
||||
dx1, doublereal *dy1, doublereal *dparam)
|
||||
{
|
||||
/* Subroutine */ int drotmg_(doublereal *dd1, doublereal *dd2, doublereal *dx1, doublereal *dy1, doublereal *dparam) {
|
||||
/* Initialized data */
|
||||
|
||||
static doublereal zero = 0.;
|
||||
@ -41,73 +39,72 @@
|
||||
/* Assigned format variables */
|
||||
static char *igo_fmt;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
|
||||
/* THE SECOND COMPONENT OF THE 2-VECTOR (DSQRT(DD1)*DX1,DSQRT(DD2)* */
|
||||
/* DY2)**T. */
|
||||
/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
|
||||
/* THE SECOND COMPONENT OF THE 2-VECTOR (DSQRT(DD1)*DX1,DSQRT(DD2)* */
|
||||
/* DY2)**T. */
|
||||
/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
|
||||
/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
|
||||
/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
|
||||
|
||||
/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
|
||||
/* LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22 */
|
||||
/* RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE */
|
||||
/* VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.) */
|
||||
/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
|
||||
/* LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22 */
|
||||
/* RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE */
|
||||
/* VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.) */
|
||||
|
||||
/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
|
||||
/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
|
||||
/* OF DD1 AND DD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
|
||||
/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
|
||||
/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
|
||||
/* OF DD1 AND DD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
/* DD1 (input/output) DOUBLE PRECISION */
|
||||
|
||||
/* DD1 (input/output) DOUBLE PRECISION */
|
||||
/* DD2 (input/output) DOUBLE PRECISION */
|
||||
|
||||
/* DD2 (input/output) DOUBLE PRECISION */
|
||||
/* DX1 (input/output) DOUBLE PRECISION */
|
||||
|
||||
/* DX1 (input/output) DOUBLE PRECISION */
|
||||
/* DY1 (input) DOUBLE PRECISION */
|
||||
|
||||
/* DY1 (input) DOUBLE PRECISION */
|
||||
/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
|
||||
/* DPARAM(1)=DFLAG */
|
||||
/* DPARAM(2)=DH11 */
|
||||
/* DPARAM(3)=DH21 */
|
||||
/* DPARAM(4)=DH12 */
|
||||
/* DPARAM(5)=DH22 */
|
||||
|
||||
/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
|
||||
/* DPARAM(1)=DFLAG */
|
||||
/* DPARAM(2)=DH11 */
|
||||
/* DPARAM(3)=DH21 */
|
||||
/* DPARAM(4)=DH12 */
|
||||
/* DPARAM(5)=DH22 */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--dparam;
|
||||
|
||||
/* Function Body */
|
||||
/* .. */
|
||||
if (! (*dd1 < zero)) {
|
||||
/* .. */
|
||||
if (!(*dd1 < zero)) {
|
||||
goto L10;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-DX1.. */
|
||||
/* GO ZERO-H-D-AND-DX1.. */
|
||||
goto L60;
|
||||
L10:
|
||||
/* CASE-DD1-NONNEGATIVE */
|
||||
/* CASE-DD1-NONNEGATIVE */
|
||||
dp2 = *dd2 * *dy1;
|
||||
if (! (dp2 == zero)) {
|
||||
if (!(dp2 == zero)) {
|
||||
goto L20;
|
||||
}
|
||||
dflag = -two;
|
||||
@ -118,7 +115,7 @@ L20:
|
||||
dq2 = dp2 * *dy1;
|
||||
dq1 = dp1 * *dx1;
|
||||
|
||||
if (! (abs(dq1) > abs(dq2))) {
|
||||
if (!(abs(dq1) > abs(dq2))) {
|
||||
goto L40;
|
||||
}
|
||||
dh21 = -(*dy1) / *dx1;
|
||||
@ -126,23 +123,23 @@ L20:
|
||||
|
||||
du = one - dh12 * dh21;
|
||||
|
||||
if (! (du <= zero)) {
|
||||
if (!(du <= zero)) {
|
||||
goto L30;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-DX1.. */
|
||||
/* GO ZERO-H-D-AND-DX1.. */
|
||||
goto L60;
|
||||
L30:
|
||||
dflag = zero;
|
||||
*dd1 /= du;
|
||||
*dd2 /= du;
|
||||
*dx1 *= du;
|
||||
/* GO SCALE-CHECK.. */
|
||||
/* GO SCALE-CHECK.. */
|
||||
goto L100;
|
||||
L40:
|
||||
if (! (dq2 < zero)) {
|
||||
if (!(dq2 < zero)) {
|
||||
goto L50;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-DX1.. */
|
||||
/* GO ZERO-H-D-AND-DX1.. */
|
||||
goto L60;
|
||||
L50:
|
||||
dflag = one;
|
||||
@ -153,7 +150,7 @@ L50:
|
||||
*dd2 = *dd1 / du;
|
||||
*dd1 = dtemp;
|
||||
*dx1 = *dy1 * du;
|
||||
/* GO SCALE-CHECK */
|
||||
/* GO SCALE-CHECK */
|
||||
goto L100;
|
||||
/* PROCEDURE..ZERO-H-D-AND-DX1.. */
|
||||
L60:
|
||||
@ -166,15 +163,15 @@ L60:
|
||||
*dd1 = zero;
|
||||
*dd2 = zero;
|
||||
*dx1 = zero;
|
||||
/* RETURN.. */
|
||||
/* RETURN.. */
|
||||
goto L220;
|
||||
/* PROCEDURE..FIX-H.. */
|
||||
L70:
|
||||
if (! (dflag >= zero)) {
|
||||
if (!(dflag >= zero)) {
|
||||
goto L90;
|
||||
}
|
||||
|
||||
if (! (dflag == zero)) {
|
||||
if (!(dflag == zero)) {
|
||||
goto L80;
|
||||
}
|
||||
dh11 = one;
|
||||
@ -187,15 +184,19 @@ L80:
|
||||
dflag = -one;
|
||||
L90:
|
||||
switch (igo) {
|
||||
case 0: goto L120;
|
||||
case 1: goto L150;
|
||||
case 2: goto L180;
|
||||
case 3: goto L210;
|
||||
case 0:
|
||||
goto L120;
|
||||
case 1:
|
||||
goto L150;
|
||||
case 2:
|
||||
goto L180;
|
||||
case 3:
|
||||
goto L210;
|
||||
}
|
||||
/* PROCEDURE..SCALE-CHECK */
|
||||
L100:
|
||||
L110:
|
||||
if (! (*dd1 <= rgamsq)) {
|
||||
if (!(*dd1 <= rgamsq)) {
|
||||
goto L130;
|
||||
}
|
||||
if (*dd1 == zero) {
|
||||
@ -203,10 +204,10 @@ L110:
|
||||
}
|
||||
igo = 0;
|
||||
igo_fmt = fmt_120;
|
||||
/* FIX-H.. */
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L120:
|
||||
/* Computing 2nd power */
|
||||
/* Computing 2nd power */
|
||||
d__1 = gam;
|
||||
*dd1 *= d__1 * d__1;
|
||||
*dx1 /= gam;
|
||||
@ -215,15 +216,15 @@ L120:
|
||||
goto L110;
|
||||
L130:
|
||||
L140:
|
||||
if (! (*dd1 >= gamsq)) {
|
||||
if (!(*dd1 >= gamsq)) {
|
||||
goto L160;
|
||||
}
|
||||
igo = 1;
|
||||
igo_fmt = fmt_150;
|
||||
/* FIX-H.. */
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L150:
|
||||
/* Computing 2nd power */
|
||||
/* Computing 2nd power */
|
||||
d__1 = gam;
|
||||
*dd1 /= d__1 * d__1;
|
||||
*dx1 *= gam;
|
||||
@ -232,7 +233,7 @@ L150:
|
||||
goto L140;
|
||||
L160:
|
||||
L170:
|
||||
if (! (abs(*dd2) <= rgamsq)) {
|
||||
if (!(abs(*dd2) <= rgamsq)) {
|
||||
goto L190;
|
||||
}
|
||||
if (*dd2 == zero) {
|
||||
@ -240,10 +241,10 @@ L170:
|
||||
}
|
||||
igo = 2;
|
||||
igo_fmt = fmt_180;
|
||||
/* FIX-H.. */
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L180:
|
||||
/* Computing 2nd power */
|
||||
/* Computing 2nd power */
|
||||
d__1 = gam;
|
||||
*dd2 *= d__1 * d__1;
|
||||
dh21 /= gam;
|
||||
@ -251,15 +252,15 @@ L180:
|
||||
goto L170;
|
||||
L190:
|
||||
L200:
|
||||
if (! (abs(*dd2) >= gamsq)) {
|
||||
if (!(abs(*dd2) >= gamsq)) {
|
||||
goto L220;
|
||||
}
|
||||
igo = 3;
|
||||
igo_fmt = fmt_210;
|
||||
/* FIX-H.. */
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L210:
|
||||
/* Computing 2nd power */
|
||||
/* Computing 2nd power */
|
||||
d__1 = gam;
|
||||
*dd2 /= d__1 * d__1;
|
||||
dh21 *= gam;
|
||||
@ -290,4 +291,3 @@ L260:
|
||||
dparam[1] = dflag;
|
||||
return 0;
|
||||
} /* drotmg_ */
|
||||
|
||||
|
291
blas/f2c/dsbmv.c
291
blas/f2c/dsbmv.c
@ -12,10 +12,9 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int dsbmv_(char *uplo, integer *n, integer *k, doublereal *
|
||||
alpha, doublereal *a, integer *lda, doublereal *x, integer *incx,
|
||||
doublereal *beta, doublereal *y, integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* Subroutine */ int dsbmv_(char *uplo, integer *n, integer *k, doublereal *alpha, doublereal *a, integer *lda,
|
||||
doublereal *x, integer *incx, doublereal *beta, doublereal *y, integer *incy,
|
||||
ftnlen uplo_len) {
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
||||
|
||||
@ -26,144 +25,143 @@
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* DSBMV performs the matrix-vector operation */
|
||||
/* DSBMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric band matrix, with k super-diagonals. */
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric band matrix, with k super-diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - DOUBLE PRECISION. */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
/* ALPHA - DOUBLE PRECISION. */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - DOUBLE PRECISION array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
/* X - DOUBLE PRECISION array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - DOUBLE PRECISION. */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
/* BETA - DOUBLE PRECISION. */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - DOUBLE PRECISION array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
/* Y - DOUBLE PRECISION array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
@ -174,8 +172,7 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
@ -193,13 +190,13 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
@ -212,10 +209,10 @@
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (*beta != 1.) {
|
||||
if (*incy == 1) {
|
||||
@ -223,13 +220,13 @@
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = 0.;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = *beta * y[i__];
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -239,14 +236,14 @@
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = 0.;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = *beta * y[iy];
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -255,8 +252,7 @@
|
||||
return 0;
|
||||
}
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
@ -265,16 +261,16 @@
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) {
|
||||
y[i__] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -286,30 +282,28 @@
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) {
|
||||
y[iy] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
|
||||
temp2;
|
||||
y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
}
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
@ -318,16 +312,16 @@
|
||||
temp2 = 0.;
|
||||
y[j] += temp1 * a[j * a_dim1 + 1];
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
i__3 = min(i__4, i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
y[i__] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
y[j] += *alpha * temp2;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -340,27 +334,26 @@
|
||||
l = 1 - j;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
i__3 = min(i__4, i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
y[iy] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[ix];
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
y[jy] += *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DSBMV . */
|
||||
/* End of DSBMV . */
|
||||
|
||||
} /* dsbmv_ */
|
||||
|
||||
|
214
blas/f2c/dspmv.c
214
blas/f2c/dspmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int dspmv_(char *uplo, integer *n, doublereal *alpha,
|
||||
doublereal *ap, doublereal *x, integer *incx, doublereal *beta,
|
||||
doublereal *y, integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* Subroutine */ int dspmv_(char *uplo, integer *n, doublereal *alpha, doublereal *ap, doublereal *x, integer *incx,
|
||||
doublereal *beta, doublereal *y, integer *incy, ftnlen uplo_len) {
|
||||
/* System generated locals */
|
||||
integer i__1, i__2;
|
||||
|
||||
@ -25,110 +23,110 @@
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* DSPMV performs the matrix-vector operation */
|
||||
/* DSPMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric matrix, supplied in packed form. */
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric matrix, supplied in packed form. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - DOUBLE PRECISION. */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
/* ALPHA - DOUBLE PRECISION. */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* AP - DOUBLE PRECISION array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Unchanged on exit. */
|
||||
/* AP - DOUBLE PRECISION array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - DOUBLE PRECISION array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
/* X - DOUBLE PRECISION array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - DOUBLE PRECISION. */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
/* BETA - DOUBLE PRECISION. */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - DOUBLE PRECISION array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
/* Y - DOUBLE PRECISION array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--y;
|
||||
@ -137,8 +135,7 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
@ -152,13 +149,13 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
@ -171,10 +168,10 @@
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (*beta != 1.) {
|
||||
if (*incy == 1) {
|
||||
@ -182,13 +179,13 @@
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = 0.;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = *beta * y[i__];
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -198,14 +195,14 @@
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = 0.;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = *beta * y[iy];
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -215,8 +212,7 @@
|
||||
}
|
||||
kk = 1;
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
@ -229,11 +225,11 @@
|
||||
y[i__] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[i__];
|
||||
++k;
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
|
||||
kk += j;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -250,18 +246,17 @@
|
||||
temp2 += ap[k] * x[ix];
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += j;
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
@ -275,11 +270,11 @@
|
||||
y[i__] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[i__];
|
||||
++k;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
y[j] += *alpha * temp2;
|
||||
kk += *n - j + 1;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -297,20 +292,19 @@
|
||||
iy += *incy;
|
||||
y[iy] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[ix];
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
y[jy] += *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += *n - j + 1;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DSPMV . */
|
||||
/* End of DSPMV . */
|
||||
|
||||
} /* dspmv_ */
|
||||
|
||||
|
328
blas/f2c/dtbmv.c
328
blas/f2c/dtbmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int dtbmv_(char *uplo, char *trans, char *diag, integer *n,
|
||||
integer *k, doublereal *a, integer *lda, doublereal *x, integer *incx,
|
||||
ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
|
||||
{
|
||||
/* Subroutine */ int dtbmv_(char *uplo, char *trans, char *diag, integer *n, integer *k, doublereal *a, integer *lda,
|
||||
doublereal *x, integer *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len) {
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
||||
|
||||
@ -27,154 +25,154 @@
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
logical nounit;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* DTBMV performs one of the matrix-vector operations */
|
||||
/* DTBMV performs one of the matrix-vector operations */
|
||||
|
||||
/* x := A*x, or x := A'*x, */
|
||||
/* x := A*x, or x := A'*x, */
|
||||
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
|
||||
/* TRANS = 'C' or 'c' x := A'*x. */
|
||||
/* TRANS = 'C' or 'c' x := A'*x. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - DOUBLE PRECISION array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* transformed vector x. */
|
||||
/* X - DOUBLE PRECISION array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* transformed vector x. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
@ -184,15 +182,12 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
|
||||
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
|
||||
ftnlen)1)) {
|
||||
} else if (!lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && !lsame_(trans, "T", (ftnlen)1, (ftnlen)1) &&
|
||||
!lsame_(trans, "C", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
||||
"N", (ftnlen)1, (ftnlen)1)) {
|
||||
} else if (!lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && !lsame_(diag, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 3;
|
||||
} else if (*n < 0) {
|
||||
info = 4;
|
||||
@ -208,7 +203,7 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0) {
|
||||
return 0;
|
||||
@ -216,8 +211,8 @@
|
||||
|
||||
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
|
||||
if (*incx <= 0) {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
@ -225,12 +220,11 @@
|
||||
kx = 1;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
|
||||
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form x := A*x. */
|
||||
/* Form x := A*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
@ -240,18 +234,18 @@
|
||||
if (x[j] != 0.) {
|
||||
temp = x[j];
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) {
|
||||
x[i__] += temp * a[l + i__ + j * a_dim1];
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[j] *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
}
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -261,13 +255,13 @@
|
||||
temp = x[jx];
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) {
|
||||
x[ix] += temp * a[l + i__ + j * a_dim1];
|
||||
ix += *incx;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[jx] *= a[kplus1 + j * a_dim1];
|
||||
@ -277,7 +271,7 @@
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
}
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -286,18 +280,18 @@
|
||||
if (x[j] != 0.) {
|
||||
temp = x[j];
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__3 = j + *k;
|
||||
i__4 = j + 1;
|
||||
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
|
||||
for (i__ = min(i__1, i__3); i__ >= i__4; --i__) {
|
||||
x[i__] += temp * a[l + i__ + j * a_dim1];
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[j] *= a[j * a_dim1 + 1];
|
||||
}
|
||||
}
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
@ -307,13 +301,13 @@
|
||||
temp = x[jx];
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__1 = j + *k;
|
||||
i__3 = j + 1;
|
||||
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
|
||||
for (i__ = min(i__4, i__1); i__ >= i__3; --i__) {
|
||||
x[ix] += temp * a[l + i__ + j * a_dim1];
|
||||
ix -= *incx;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[jx] *= a[j * a_dim1 + 1];
|
||||
@ -323,13 +317,12 @@
|
||||
if (*n - j >= *k) {
|
||||
kx -= *incx;
|
||||
}
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form x := A'*x. */
|
||||
/* Form x := A'*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
@ -340,15 +333,15 @@
|
||||
if (nounit) {
|
||||
temp *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
x[j] = temp;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
@ -361,17 +354,17 @@
|
||||
if (nounit) {
|
||||
temp *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix -= *incx;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
x[jx] = temp;
|
||||
jx -= *incx;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -383,15 +376,15 @@
|
||||
if (nounit) {
|
||||
temp *= a[j * a_dim1 + 1];
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L130: */
|
||||
/* L130: */
|
||||
}
|
||||
x[j] = temp;
|
||||
/* L140: */
|
||||
/* L140: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -404,17 +397,17 @@
|
||||
if (nounit) {
|
||||
temp *= a[j * a_dim1 + 1];
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix += *incx;
|
||||
/* L150: */
|
||||
/* L150: */
|
||||
}
|
||||
x[jx] = temp;
|
||||
jx += *incx;
|
||||
/* L160: */
|
||||
/* L160: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -422,7 +415,6 @@
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DTBMV . */
|
||||
/* End of DTBMV . */
|
||||
|
||||
} /* dtbmv_ */
|
||||
|
||||
|
@ -12,66 +12,63 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len)
|
||||
{
|
||||
logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len) {
|
||||
/* System generated locals */
|
||||
logical ret_val;
|
||||
|
||||
/* Local variables */
|
||||
integer inta, intb, zcode;
|
||||
|
||||
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
||||
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||||
/* November 2006 */
|
||||
|
||||
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
||||
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||||
/* November 2006 */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* LSAME returns .TRUE. if CA is the same letter as CB regardless of */
|
||||
/* case. */
|
||||
|
||||
/* LSAME returns .TRUE. if CA is the same letter as CB regardless of */
|
||||
/* case. */
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
/* CA (input) CHARACTER*1 */
|
||||
|
||||
/* CA (input) CHARACTER*1 */
|
||||
/* CB (input) CHARACTER*1 */
|
||||
/* CA and CB specify the single characters to be compared. */
|
||||
|
||||
/* CB (input) CHARACTER*1 */
|
||||
/* CA and CB specify the single characters to be compared. */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
|
||||
/* Test if the characters are equal */
|
||||
/* Test if the characters are equal */
|
||||
|
||||
ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
|
||||
if (ret_val) {
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/* Now test for equivalence if both characters are alphabetic. */
|
||||
/* Now test for equivalence if both characters are alphabetic. */
|
||||
|
||||
zcode = 'Z';
|
||||
|
||||
/* Use 'Z' rather than 'A' so that ASCII can be detected on Prime */
|
||||
/* machines, on which ICHAR returns a value with bit 8 set. */
|
||||
/* ICHAR('A') on Prime machines returns 193 which is the same as */
|
||||
/* ICHAR('A') on an EBCDIC machine. */
|
||||
/* Use 'Z' rather than 'A' so that ASCII can be detected on Prime */
|
||||
/* machines, on which ICHAR returns a value with bit 8 set. */
|
||||
/* ICHAR('A') on Prime machines returns 193 which is the same as */
|
||||
/* ICHAR('A') on an EBCDIC machine. */
|
||||
|
||||
inta = *(unsigned char *)ca;
|
||||
intb = *(unsigned char *)cb;
|
||||
|
||||
if (zcode == 90 || zcode == 122) {
|
||||
|
||||
/* ASCII is assumed - ZCODE is the ASCII code of either lower or */
|
||||
/* upper case 'Z'. */
|
||||
/* ASCII is assumed - ZCODE is the ASCII code of either lower or */
|
||||
/* upper case 'Z'. */
|
||||
|
||||
if (inta >= 97 && inta <= 122) {
|
||||
inta += -32;
|
||||
@ -81,23 +78,19 @@ logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len)
|
||||
}
|
||||
|
||||
} else if (zcode == 233 || zcode == 169) {
|
||||
/* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or */
|
||||
/* upper case 'Z'. */
|
||||
|
||||
/* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or */
|
||||
/* upper case 'Z'. */
|
||||
|
||||
if ((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153) ||
|
||||
(inta >= 162 && inta <= 169)) {
|
||||
if ((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153) || (inta >= 162 && inta <= 169)) {
|
||||
inta += 64;
|
||||
}
|
||||
if ((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153) ||
|
||||
(intb >= 162 && intb <= 169)) {
|
||||
if ((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153) || (intb >= 162 && intb <= 169)) {
|
||||
intb += 64;
|
||||
}
|
||||
|
||||
} else if (zcode == 218 || zcode == 250) {
|
||||
|
||||
/* ASCII is assumed, on Prime machines - ZCODE is the ASCII code */
|
||||
/* plus 128 of either lower or upper case 'Z'. */
|
||||
/* ASCII is assumed, on Prime machines - ZCODE is the ASCII code */
|
||||
/* plus 128 of either lower or upper case 'Z'. */
|
||||
|
||||
if (inta >= 225 && inta <= 250) {
|
||||
inta += -32;
|
||||
@ -108,10 +101,9 @@ logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len)
|
||||
}
|
||||
ret_val = inta == intb;
|
||||
|
||||
/* RETURN */
|
||||
/* RETURN */
|
||||
|
||||
/* End of LSAME */
|
||||
/* End of LSAME */
|
||||
|
||||
return ret_val;
|
||||
} /* lsame_ */
|
||||
|
||||
|
100
blas/f2c/srotm.c
100
blas/f2c/srotm.c
@ -12,9 +12,7 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int srotm_(integer *n, real *sx, integer *incx, real *sy,
|
||||
integer *incy, real *sparam)
|
||||
{
|
||||
/* Subroutine */ int srotm_(integer *n, real *sx, integer *incx, real *sy, integer *incy, real *sparam) {
|
||||
/* Initialized data */
|
||||
|
||||
static real zero = 0.f;
|
||||
@ -30,74 +28,73 @@
|
||||
real sh11, sh12, sh21, sh22, sflag;
|
||||
integer nsteps;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
|
||||
/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
|
||||
|
||||
/* (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN */
|
||||
/* (DX**T) */
|
||||
/* (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN */
|
||||
/* (DX**T) */
|
||||
|
||||
/* SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
|
||||
/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. */
|
||||
/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
/* SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
|
||||
/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. */
|
||||
/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
|
||||
/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
|
||||
/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
|
||||
|
||||
/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
|
||||
/* SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. */
|
||||
/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
|
||||
/* SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
/* N (input) INTEGER */
|
||||
/* number of elements in input vector(s) */
|
||||
|
||||
/* N (input) INTEGER */
|
||||
/* number of elements in input vector(s) */
|
||||
/* SX (input/output) REAL array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
|
||||
/* SX (input/output) REAL array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
/* INCX (input) INTEGER */
|
||||
/* storage spacing between elements of SX */
|
||||
|
||||
/* INCX (input) INTEGER */
|
||||
/* storage spacing between elements of SX */
|
||||
/* SY (input/output) REAL array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
|
||||
/* SY (input/output) REAL array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
/* INCY (input) INTEGER */
|
||||
/* storage spacing between elements of SY */
|
||||
|
||||
/* INCY (input) INTEGER */
|
||||
/* storage spacing between elements of SY */
|
||||
/* SPARAM (input/output) REAL array, dimension 5 */
|
||||
/* SPARAM(1)=SFLAG */
|
||||
/* SPARAM(2)=SH11 */
|
||||
/* SPARAM(3)=SH21 */
|
||||
/* SPARAM(4)=SH12 */
|
||||
/* SPARAM(5)=SH22 */
|
||||
|
||||
/* SPARAM (input/output) REAL array, dimension 5 */
|
||||
/* SPARAM(1)=SFLAG */
|
||||
/* SPARAM(2)=SH11 */
|
||||
/* SPARAM(3)=SH21 */
|
||||
/* SPARAM(4)=SH12 */
|
||||
/* SPARAM(5)=SH22 */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
/* Parameter adjustments */
|
||||
--sparam;
|
||||
--sy;
|
||||
--sx;
|
||||
|
||||
/* Function Body */
|
||||
/* .. */
|
||||
/* .. */
|
||||
|
||||
sflag = sparam[1];
|
||||
if (*n <= 0 || sflag + two == zero) {
|
||||
goto L140;
|
||||
}
|
||||
if (! (*incx == *incy && *incx > 0)) {
|
||||
if (!(*incx == *incy && *incx > 0)) {
|
||||
goto L70;
|
||||
}
|
||||
|
||||
@ -119,7 +116,7 @@ L10:
|
||||
z__ = sy[i__];
|
||||
sx[i__] = w + z__ * sh12;
|
||||
sy[i__] = w * sh21 + z__;
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
goto L140;
|
||||
L30:
|
||||
@ -132,7 +129,7 @@ L30:
|
||||
z__ = sy[i__];
|
||||
sx[i__] = w * sh11 + z__;
|
||||
sy[i__] = -w + sh22 * z__;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
goto L140;
|
||||
L50:
|
||||
@ -147,7 +144,7 @@ L50:
|
||||
z__ = sy[i__];
|
||||
sx[i__] = w * sh11 + z__ * sh12;
|
||||
sy[i__] = w * sh21 + z__ * sh22;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
goto L140;
|
||||
L70:
|
||||
@ -178,7 +175,7 @@ L80:
|
||||
sy[ky] = w * sh21 + z__;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
goto L140;
|
||||
L100:
|
||||
@ -192,7 +189,7 @@ L100:
|
||||
sy[ky] = -w + sh22 * z__;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
goto L140;
|
||||
L120:
|
||||
@ -208,9 +205,8 @@ L120:
|
||||
sy[ky] = w * sh21 + z__ * sh22;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L130: */
|
||||
/* L130: */
|
||||
}
|
||||
L140:
|
||||
return 0;
|
||||
} /* srotm_ */
|
||||
|
||||
|
@ -12,9 +12,7 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int srotmg_(real *sd1, real *sd2, real *sx1, real *sy1, real
|
||||
*sparam)
|
||||
{
|
||||
/* Subroutine */ int srotmg_(real *sd1, real *sd2, real *sx1, real *sy1, real *sparam) {
|
||||
/* Initialized data */
|
||||
|
||||
static real zero = 0.f;
|
||||
@ -41,75 +39,72 @@
|
||||
/* Assigned format variables */
|
||||
static char *igo_fmt;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
|
||||
/* THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)* */
|
||||
/* SY2)**T. */
|
||||
/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
|
||||
/* THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)* */
|
||||
/* SY2)**T. */
|
||||
/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
|
||||
/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
|
||||
/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
|
||||
|
||||
/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
|
||||
/* LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22 */
|
||||
/* RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE */
|
||||
/* VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.) */
|
||||
/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
|
||||
/* LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22 */
|
||||
/* RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE */
|
||||
/* VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.) */
|
||||
|
||||
/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
|
||||
/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
|
||||
/* OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
|
||||
/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
|
||||
/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
|
||||
/* OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
/* SD1 (input/output) REAL */
|
||||
|
||||
/* SD2 (input/output) REAL */
|
||||
|
||||
/* SD1 (input/output) REAL */
|
||||
/* SX1 (input/output) REAL */
|
||||
|
||||
/* SD2 (input/output) REAL */
|
||||
/* SY1 (input) REAL */
|
||||
|
||||
/* SX1 (input/output) REAL */
|
||||
/* SPARAM (input/output) REAL array, dimension 5 */
|
||||
/* SPARAM(1)=SFLAG */
|
||||
/* SPARAM(2)=SH11 */
|
||||
/* SPARAM(3)=SH21 */
|
||||
/* SPARAM(4)=SH12 */
|
||||
/* SPARAM(5)=SH22 */
|
||||
|
||||
/* SY1 (input) REAL */
|
||||
/* ===================================================================== */
|
||||
|
||||
|
||||
/* SPARAM (input/output) REAL array, dimension 5 */
|
||||
/* SPARAM(1)=SFLAG */
|
||||
/* SPARAM(2)=SH11 */
|
||||
/* SPARAM(3)=SH21 */
|
||||
/* SPARAM(4)=SH12 */
|
||||
/* SPARAM(5)=SH22 */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--sparam;
|
||||
|
||||
/* Function Body */
|
||||
/* .. */
|
||||
if (! (*sd1 < zero)) {
|
||||
/* .. */
|
||||
if (!(*sd1 < zero)) {
|
||||
goto L10;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-SX1.. */
|
||||
/* GO ZERO-H-D-AND-SX1.. */
|
||||
goto L60;
|
||||
L10:
|
||||
/* CASE-SD1-NONNEGATIVE */
|
||||
/* CASE-SD1-NONNEGATIVE */
|
||||
sp2 = *sd2 * *sy1;
|
||||
if (! (sp2 == zero)) {
|
||||
if (!(sp2 == zero)) {
|
||||
goto L20;
|
||||
}
|
||||
sflag = -two;
|
||||
@ -120,7 +115,7 @@ L20:
|
||||
sq2 = sp2 * *sy1;
|
||||
sq1 = sp1 * *sx1;
|
||||
|
||||
if (! (dabs(sq1) > dabs(sq2))) {
|
||||
if (!(dabs(sq1) > dabs(sq2))) {
|
||||
goto L40;
|
||||
}
|
||||
sh21 = -(*sy1) / *sx1;
|
||||
@ -128,23 +123,23 @@ L20:
|
||||
|
||||
su = one - sh12 * sh21;
|
||||
|
||||
if (! (su <= zero)) {
|
||||
if (!(su <= zero)) {
|
||||
goto L30;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-SX1.. */
|
||||
/* GO ZERO-H-D-AND-SX1.. */
|
||||
goto L60;
|
||||
L30:
|
||||
sflag = zero;
|
||||
*sd1 /= su;
|
||||
*sd2 /= su;
|
||||
*sx1 *= su;
|
||||
/* GO SCALE-CHECK.. */
|
||||
/* GO SCALE-CHECK.. */
|
||||
goto L100;
|
||||
L40:
|
||||
if (! (sq2 < zero)) {
|
||||
if (!(sq2 < zero)) {
|
||||
goto L50;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-SX1.. */
|
||||
/* GO ZERO-H-D-AND-SX1.. */
|
||||
goto L60;
|
||||
L50:
|
||||
sflag = one;
|
||||
@ -155,7 +150,7 @@ L50:
|
||||
*sd2 = *sd1 / su;
|
||||
*sd1 = stemp;
|
||||
*sx1 = *sy1 * su;
|
||||
/* GO SCALE-CHECK */
|
||||
/* GO SCALE-CHECK */
|
||||
goto L100;
|
||||
/* PROCEDURE..ZERO-H-D-AND-SX1.. */
|
||||
L60:
|
||||
@ -168,15 +163,15 @@ L60:
|
||||
*sd1 = zero;
|
||||
*sd2 = zero;
|
||||
*sx1 = zero;
|
||||
/* RETURN.. */
|
||||
/* RETURN.. */
|
||||
goto L220;
|
||||
/* PROCEDURE..FIX-H.. */
|
||||
L70:
|
||||
if (! (sflag >= zero)) {
|
||||
if (!(sflag >= zero)) {
|
||||
goto L90;
|
||||
}
|
||||
|
||||
if (! (sflag == zero)) {
|
||||
if (!(sflag == zero)) {
|
||||
goto L80;
|
||||
}
|
||||
sh11 = one;
|
||||
@ -189,15 +184,19 @@ L80:
|
||||
sflag = -one;
|
||||
L90:
|
||||
switch (igo) {
|
||||
case 0: goto L120;
|
||||
case 1: goto L150;
|
||||
case 2: goto L180;
|
||||
case 3: goto L210;
|
||||
case 0:
|
||||
goto L120;
|
||||
case 1:
|
||||
goto L150;
|
||||
case 2:
|
||||
goto L180;
|
||||
case 3:
|
||||
goto L210;
|
||||
}
|
||||
/* PROCEDURE..SCALE-CHECK */
|
||||
L100:
|
||||
L110:
|
||||
if (! (*sd1 <= rgamsq)) {
|
||||
if (!(*sd1 <= rgamsq)) {
|
||||
goto L130;
|
||||
}
|
||||
if (*sd1 == zero) {
|
||||
@ -205,10 +204,10 @@ L110:
|
||||
}
|
||||
igo = 0;
|
||||
igo_fmt = fmt_120;
|
||||
/* FIX-H.. */
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L120:
|
||||
/* Computing 2nd power */
|
||||
/* Computing 2nd power */
|
||||
r__1 = gam;
|
||||
*sd1 *= r__1 * r__1;
|
||||
*sx1 /= gam;
|
||||
@ -217,15 +216,15 @@ L120:
|
||||
goto L110;
|
||||
L130:
|
||||
L140:
|
||||
if (! (*sd1 >= gamsq)) {
|
||||
if (!(*sd1 >= gamsq)) {
|
||||
goto L160;
|
||||
}
|
||||
igo = 1;
|
||||
igo_fmt = fmt_150;
|
||||
/* FIX-H.. */
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L150:
|
||||
/* Computing 2nd power */
|
||||
/* Computing 2nd power */
|
||||
r__1 = gam;
|
||||
*sd1 /= r__1 * r__1;
|
||||
*sx1 *= gam;
|
||||
@ -234,7 +233,7 @@ L150:
|
||||
goto L140;
|
||||
L160:
|
||||
L170:
|
||||
if (! (dabs(*sd2) <= rgamsq)) {
|
||||
if (!(dabs(*sd2) <= rgamsq)) {
|
||||
goto L190;
|
||||
}
|
||||
if (*sd2 == zero) {
|
||||
@ -242,10 +241,10 @@ L170:
|
||||
}
|
||||
igo = 2;
|
||||
igo_fmt = fmt_180;
|
||||
/* FIX-H.. */
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L180:
|
||||
/* Computing 2nd power */
|
||||
/* Computing 2nd power */
|
||||
r__1 = gam;
|
||||
*sd2 *= r__1 * r__1;
|
||||
sh21 /= gam;
|
||||
@ -253,15 +252,15 @@ L180:
|
||||
goto L170;
|
||||
L190:
|
||||
L200:
|
||||
if (! (dabs(*sd2) >= gamsq)) {
|
||||
if (!(dabs(*sd2) >= gamsq)) {
|
||||
goto L220;
|
||||
}
|
||||
igo = 3;
|
||||
igo_fmt = fmt_210;
|
||||
/* FIX-H.. */
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L210:
|
||||
/* Computing 2nd power */
|
||||
/* Computing 2nd power */
|
||||
r__1 = gam;
|
||||
*sd2 /= r__1 * r__1;
|
||||
sh21 *= gam;
|
||||
@ -292,4 +291,3 @@ L260:
|
||||
sparam[1] = sflag;
|
||||
return 0;
|
||||
} /* srotmg_ */
|
||||
|
||||
|
293
blas/f2c/ssbmv.c
293
blas/f2c/ssbmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha,
|
||||
real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
|
||||
integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha, real *a, integer *lda, real *x,
|
||||
integer *incx, real *beta, real *y, integer *incy, ftnlen uplo_len) {
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
||||
|
||||
@ -26,146 +24,146 @@
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* SSBMV performs the matrix-vector operation */
|
||||
/* SSBMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric band matrix, with k super-diagonals. */
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric band matrix, with k super-diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - REAL . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
/* ALPHA - REAL . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - REAL array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
/* A - REAL array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - REAL array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
/* X - REAL array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - REAL . */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
/* BETA - REAL . */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - REAL array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
/* Y - REAL array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
@ -176,8 +174,7 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
@ -195,13 +192,13 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
@ -214,10 +211,10 @@
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (*beta != 1.f) {
|
||||
if (*incy == 1) {
|
||||
@ -225,13 +222,13 @@
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = 0.f;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = *beta * y[i__];
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -241,14 +238,14 @@
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = 0.f;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = *beta * y[iy];
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -257,8 +254,7 @@
|
||||
return 0;
|
||||
}
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
@ -267,16 +263,16 @@
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.f;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) {
|
||||
y[i__] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -288,30 +284,28 @@
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) {
|
||||
y[iy] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
|
||||
temp2;
|
||||
y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
}
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
@ -320,16 +314,16 @@
|
||||
temp2 = 0.f;
|
||||
y[j] += temp1 * a[j * a_dim1 + 1];
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
i__3 = min(i__4, i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
y[i__] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
y[j] += *alpha * temp2;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -342,27 +336,26 @@
|
||||
l = 1 - j;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
i__3 = min(i__4, i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
y[iy] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[ix];
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
y[jy] += *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of SSBMV . */
|
||||
/* End of SSBMV . */
|
||||
|
||||
} /* ssbmv_ */
|
||||
|
||||
|
214
blas/f2c/sspmv.c
214
blas/f2c/sspmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int sspmv_(char *uplo, integer *n, real *alpha, real *ap,
|
||||
real *x, integer *incx, real *beta, real *y, integer *incy, ftnlen
|
||||
uplo_len)
|
||||
{
|
||||
/* Subroutine */ int sspmv_(char *uplo, integer *n, real *alpha, real *ap, real *x, integer *incx, real *beta, real *y,
|
||||
integer *incy, ftnlen uplo_len) {
|
||||
/* System generated locals */
|
||||
integer i__1, i__2;
|
||||
|
||||
@ -25,110 +23,110 @@
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* SSPMV performs the matrix-vector operation */
|
||||
/* SSPMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric matrix, supplied in packed form. */
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric matrix, supplied in packed form. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - REAL . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
/* ALPHA - REAL . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* AP - REAL array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Unchanged on exit. */
|
||||
/* AP - REAL array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - REAL array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
/* X - REAL array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - REAL . */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
/* BETA - REAL . */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - REAL array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
/* Y - REAL array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--y;
|
||||
@ -137,8 +135,7 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
@ -152,13 +149,13 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
@ -171,10 +168,10 @@
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (*beta != 1.f) {
|
||||
if (*incy == 1) {
|
||||
@ -182,13 +179,13 @@
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = 0.f;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = *beta * y[i__];
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -198,14 +195,14 @@
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = 0.f;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = *beta * y[iy];
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -215,8 +212,7 @@
|
||||
}
|
||||
kk = 1;
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
@ -229,11 +225,11 @@
|
||||
y[i__] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[i__];
|
||||
++k;
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
|
||||
kk += j;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -250,18 +246,17 @@
|
||||
temp2 += ap[k] * x[ix];
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += j;
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
@ -275,11 +270,11 @@
|
||||
y[i__] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[i__];
|
||||
++k;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
y[j] += *alpha * temp2;
|
||||
kk += *n - j + 1;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -297,20 +292,19 @@
|
||||
iy += *incy;
|
||||
y[iy] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[ix];
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
y[jy] += *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += *n - j + 1;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of SSPMV . */
|
||||
/* End of SSPMV . */
|
||||
|
||||
} /* sspmv_ */
|
||||
|
||||
|
328
blas/f2c/stbmv.c
328
blas/f2c/stbmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int stbmv_(char *uplo, char *trans, char *diag, integer *n,
|
||||
integer *k, real *a, integer *lda, real *x, integer *incx, ftnlen
|
||||
uplo_len, ftnlen trans_len, ftnlen diag_len)
|
||||
{
|
||||
/* Subroutine */ int stbmv_(char *uplo, char *trans, char *diag, integer *n, integer *k, real *a, integer *lda, real *x,
|
||||
integer *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len) {
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
||||
|
||||
@ -27,154 +25,154 @@
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
logical nounit;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* STBMV performs one of the matrix-vector operations */
|
||||
/* STBMV performs one of the matrix-vector operations */
|
||||
|
||||
/* x := A*x, or x := A'*x, */
|
||||
/* x := A*x, or x := A'*x, */
|
||||
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
|
||||
/* TRANS = 'C' or 'c' x := A'*x. */
|
||||
/* TRANS = 'C' or 'c' x := A'*x. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - REAL array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
/* A - REAL array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - REAL array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* transformed vector x. */
|
||||
/* X - REAL array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* transformed vector x. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
@ -184,15 +182,12 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
|
||||
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
|
||||
ftnlen)1)) {
|
||||
} else if (!lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && !lsame_(trans, "T", (ftnlen)1, (ftnlen)1) &&
|
||||
!lsame_(trans, "C", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
||||
"N", (ftnlen)1, (ftnlen)1)) {
|
||||
} else if (!lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && !lsame_(diag, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 3;
|
||||
} else if (*n < 0) {
|
||||
info = 4;
|
||||
@ -208,7 +203,7 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0) {
|
||||
return 0;
|
||||
@ -216,8 +211,8 @@
|
||||
|
||||
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
|
||||
if (*incx <= 0) {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
@ -225,12 +220,11 @@
|
||||
kx = 1;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
|
||||
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form x := A*x. */
|
||||
/* Form x := A*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
@ -240,18 +234,18 @@
|
||||
if (x[j] != 0.f) {
|
||||
temp = x[j];
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) {
|
||||
x[i__] += temp * a[l + i__ + j * a_dim1];
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[j] *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
}
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -261,13 +255,13 @@
|
||||
temp = x[jx];
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) {
|
||||
x[ix] += temp * a[l + i__ + j * a_dim1];
|
||||
ix += *incx;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[jx] *= a[kplus1 + j * a_dim1];
|
||||
@ -277,7 +271,7 @@
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
}
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -286,18 +280,18 @@
|
||||
if (x[j] != 0.f) {
|
||||
temp = x[j];
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__3 = j + *k;
|
||||
i__4 = j + 1;
|
||||
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
|
||||
for (i__ = min(i__1, i__3); i__ >= i__4; --i__) {
|
||||
x[i__] += temp * a[l + i__ + j * a_dim1];
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[j] *= a[j * a_dim1 + 1];
|
||||
}
|
||||
}
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
@ -307,13 +301,13 @@
|
||||
temp = x[jx];
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__1 = j + *k;
|
||||
i__3 = j + 1;
|
||||
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
|
||||
for (i__ = min(i__4, i__1); i__ >= i__3; --i__) {
|
||||
x[ix] += temp * a[l + i__ + j * a_dim1];
|
||||
ix -= *incx;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[jx] *= a[j * a_dim1 + 1];
|
||||
@ -323,13 +317,12 @@
|
||||
if (*n - j >= *k) {
|
||||
kx -= *incx;
|
||||
}
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form x := A'*x. */
|
||||
/* Form x := A'*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
@ -340,15 +333,15 @@
|
||||
if (nounit) {
|
||||
temp *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
x[j] = temp;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
@ -361,17 +354,17 @@
|
||||
if (nounit) {
|
||||
temp *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix -= *incx;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
x[jx] = temp;
|
||||
jx -= *incx;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -383,15 +376,15 @@
|
||||
if (nounit) {
|
||||
temp *= a[j * a_dim1 + 1];
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L130: */
|
||||
/* L130: */
|
||||
}
|
||||
x[j] = temp;
|
||||
/* L140: */
|
||||
/* L140: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -404,17 +397,17 @@
|
||||
if (nounit) {
|
||||
temp *= a[j * a_dim1 + 1];
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix += *incx;
|
||||
/* L150: */
|
||||
/* L150: */
|
||||
}
|
||||
x[jx] = temp;
|
||||
jx += *incx;
|
||||
/* L160: */
|
||||
/* L160: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -422,7 +415,6 @@
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of STBMV . */
|
||||
/* End of STBMV . */
|
||||
|
||||
} /* stbmv_ */
|
||||
|
||||
|
359
blas/f2c/zhbmv.c
359
blas/f2c/zhbmv.c
@ -12,11 +12,9 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex
|
||||
*alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer *
|
||||
incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen
|
||||
uplo_len)
|
||||
{
|
||||
/* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda,
|
||||
doublecomplex *x, integer *incx, doublecomplex *beta, doublecomplex *y, integer *incy,
|
||||
ftnlen uplo_len) {
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
||||
doublereal d__1;
|
||||
@ -32,148 +30,148 @@
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* ZHBMV performs the matrix-vector operation */
|
||||
/* ZHBMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian band matrix, with k super-diagonals. */
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian band matrix, with k super-diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - COMPLEX*16 . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
/* ALPHA - COMPLEX*16 . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX*16 array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
/* X - COMPLEX*16 array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - COMPLEX*16 . */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
/* BETA - COMPLEX*16 . */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - COMPLEX*16 array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
/* Y - COMPLEX*16 array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
@ -184,8 +182,7 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
@ -203,14 +200,13 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
|
||||
beta->i == 0.))) {
|
||||
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && beta->i == 0.))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
@ -223,10 +219,10 @@
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (beta->r != 1. || beta->i != 0.) {
|
||||
if (*incy == 1) {
|
||||
@ -235,18 +231,16 @@
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
y[i__2].r = 0., y[i__2].i = 0.;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, z__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -257,19 +251,17 @@
|
||||
i__2 = iy;
|
||||
y[i__2].r = 0., y[i__2].i = 0.;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
i__3 = iy;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, z__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -278,38 +270,33 @@
|
||||
return 0;
|
||||
}
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r;
|
||||
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__2 = i__;
|
||||
z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i =
|
||||
z__3.r * x[i__2].i + z__3.i * x[i__2].r;
|
||||
z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i = z__3.r * x[i__2].i + z__3.i * x[i__2].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
i__4 = j;
|
||||
i__2 = j;
|
||||
@ -317,11 +304,10 @@
|
||||
d__1 = a[i__3].r;
|
||||
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
|
||||
z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
||||
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -329,34 +315,30 @@
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__4 = jx;
|
||||
z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i =
|
||||
alpha->r * x[i__4].i + alpha->i * x[i__4].r;
|
||||
z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i = alpha->r * x[i__4].i + alpha->i * x[i__4].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) {
|
||||
i__4 = iy;
|
||||
i__2 = iy;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r;
|
||||
z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
|
||||
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
|
||||
z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
@ -364,8 +346,7 @@
|
||||
d__1 = a[i__2].r;
|
||||
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
|
||||
z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
jx += *incx;
|
||||
@ -374,19 +355,17 @@
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
}
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__3 = j;
|
||||
z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
|
||||
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i = alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
i__3 = j;
|
||||
@ -397,33 +376,29 @@
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
i__3 = min(i__4, i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
i__4 = i__;
|
||||
i__2 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r;
|
||||
z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
|
||||
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = i__;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
|
||||
z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
i__3 = j;
|
||||
i__4 = j;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -431,8 +406,7 @@
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__3 = jx;
|
||||
z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
|
||||
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i = alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
i__3 = jy;
|
||||
@ -445,44 +419,39 @@
|
||||
l = 1 - j;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
i__3 = min(i__4, i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
i__4 = iy;
|
||||
i__2 = iy;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r;
|
||||
z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
|
||||
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
|
||||
z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of ZHBMV . */
|
||||
/* End of ZHBMV . */
|
||||
|
||||
} /* zhbmv_ */
|
||||
|
||||
|
285
blas/f2c/zhpmv.c
285
blas/f2c/zhpmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int zhpmv_(char *uplo, integer *n, doublecomplex *alpha,
|
||||
doublecomplex *ap, doublecomplex *x, integer *incx, doublecomplex *
|
||||
beta, doublecomplex *y, integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* Subroutine */ int zhpmv_(char *uplo, integer *n, doublecomplex *alpha, doublecomplex *ap, doublecomplex *x,
|
||||
integer *incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen uplo_len) {
|
||||
/* System generated locals */
|
||||
integer i__1, i__2, i__3, i__4, i__5;
|
||||
doublereal d__1;
|
||||
@ -30,114 +28,114 @@
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* ZHPMV performs the matrix-vector operation */
|
||||
/* ZHPMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian matrix, supplied in packed form. */
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian matrix, supplied in packed form. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - COMPLEX*16 . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
/* ALPHA - COMPLEX*16 . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* AP - COMPLEX*16 array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* AP - COMPLEX*16 array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX*16 array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
/* X - COMPLEX*16 array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - COMPLEX*16 . */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
/* BETA - COMPLEX*16 . */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - COMPLEX*16 array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
/* Y - COMPLEX*16 array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--y;
|
||||
@ -146,8 +144,7 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
@ -161,14 +158,13 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
|
||||
beta->i == 0.))) {
|
||||
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && beta->i == 0.))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
@ -181,10 +177,10 @@
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (beta->r != 1. || beta->i != 0.) {
|
||||
if (*incy == 1) {
|
||||
@ -193,18 +189,16 @@
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
y[i__2].r = 0., y[i__2].i = 0.;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, z__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -215,19 +209,17 @@
|
||||
i__2 = iy;
|
||||
y[i__2].r = 0., y[i__2].i = 0.;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
i__3 = iy;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, z__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -237,15 +229,13 @@
|
||||
}
|
||||
kk = 1;
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
k = kk;
|
||||
@ -254,19 +244,16 @@
|
||||
i__3 = i__;
|
||||
i__4 = i__;
|
||||
i__5 = k;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
d_cnjg(&z__3, &ap[k]);
|
||||
i__3 = i__;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
|
||||
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
++k;
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
@ -274,12 +261,11 @@
|
||||
d__1 = ap[i__4].r;
|
||||
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
|
||||
z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
kk += j;
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -287,8 +273,7 @@
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = jx;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
ix = kx;
|
||||
@ -298,20 +283,17 @@
|
||||
i__3 = iy;
|
||||
i__4 = iy;
|
||||
i__5 = k;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
d_cnjg(&z__3, &ap[k]);
|
||||
i__3 = ix;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
|
||||
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
@ -319,26 +301,23 @@
|
||||
d__1 = ap[i__4].r;
|
||||
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
|
||||
z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += j;
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
i__2 = j;
|
||||
@ -354,28 +333,24 @@
|
||||
i__3 = i__;
|
||||
i__4 = i__;
|
||||
i__5 = k;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
d_cnjg(&z__3, &ap[k]);
|
||||
i__3 = i__;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
|
||||
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
++k;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
kk += *n - j + 1;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -383,8 +358,7 @@
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = jx;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
i__2 = jy;
|
||||
@ -403,36 +377,31 @@
|
||||
i__3 = iy;
|
||||
i__4 = iy;
|
||||
i__5 = k;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
d_cnjg(&z__3, &ap[k]);
|
||||
i__3 = ix;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
|
||||
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += *n - j + 1;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of ZHPMV . */
|
||||
/* End of ZHPMV . */
|
||||
|
||||
} /* zhpmv_ */
|
||||
|
||||
|
492
blas/f2c/ztbmv.c
492
blas/f2c/ztbmv.c
@ -12,10 +12,8 @@
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int ztbmv_(char *uplo, char *trans, char *diag, integer *n,
|
||||
integer *k, doublecomplex *a, integer *lda, doublecomplex *x, integer
|
||||
*incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
|
||||
{
|
||||
/* Subroutine */ int ztbmv_(char *uplo, char *trans, char *diag, integer *n, integer *k, doublecomplex *a, integer *lda,
|
||||
doublecomplex *x, integer *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len) {
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
||||
doublecomplex z__1, z__2, z__3;
|
||||
@ -31,154 +29,154 @@
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
logical noconj, nounit;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* ZTBMV performs one of the matrix-vector operations */
|
||||
/* ZTBMV performs one of the matrix-vector operations */
|
||||
|
||||
/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
|
||||
/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
|
||||
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
|
||||
/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
|
||||
/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX*16 array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* transformed vector x. */
|
||||
/* X - COMPLEX*16 array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* transformed vector x. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
@ -188,15 +186,12 @@
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
if (!lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && !lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
|
||||
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
|
||||
ftnlen)1)) {
|
||||
} else if (!lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && !lsame_(trans, "T", (ftnlen)1, (ftnlen)1) &&
|
||||
!lsame_(trans, "C", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
||||
"N", (ftnlen)1, (ftnlen)1)) {
|
||||
} else if (!lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && !lsame_(diag, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 3;
|
||||
} else if (*n < 0) {
|
||||
info = 4;
|
||||
@ -212,7 +207,7 @@
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0) {
|
||||
return 0;
|
||||
@ -221,8 +216,8 @@
|
||||
noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
|
||||
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
|
||||
if (*incx <= 0) {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
@ -230,12 +225,11 @@
|
||||
kx = 1;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
|
||||
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form x := A*x. */
|
||||
/* Form x := A*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
@ -247,32 +241,28 @@
|
||||
i__2 = j;
|
||||
temp.r = x[i__2].r, temp.i = x[i__2].i;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
|
||||
z__2.i = temp.r * a[i__5].i + temp.i * a[
|
||||
i__5].r;
|
||||
z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
|
||||
z__2.i;
|
||||
z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, z__2.i = temp.r * a[i__5].i + temp.i * a[i__5].r;
|
||||
z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i + z__2.i;
|
||||
x[i__2].r = z__1.r, x[i__2].i = z__1.i;
|
||||
/* L10: */
|
||||
/* L10: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__4 = j;
|
||||
i__2 = j;
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
|
||||
i__3].i, z__1.i = x[i__2].r * a[i__3].i +
|
||||
x[i__2].i * a[i__3].r;
|
||||
z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[i__3].i,
|
||||
z__1.i = x[i__2].r * a[i__3].i + x[i__2].i * a[i__3].r;
|
||||
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
|
||||
}
|
||||
}
|
||||
/* L20: */
|
||||
/* L20: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -284,29 +274,25 @@
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) {
|
||||
i__4 = ix;
|
||||
i__2 = ix;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
|
||||
z__2.i = temp.r * a[i__5].i + temp.i * a[
|
||||
i__5].r;
|
||||
z__1.r = x[i__2].r + z__2.r, z__1.i = x[i__2].i +
|
||||
z__2.i;
|
||||
z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, z__2.i = temp.r * a[i__5].i + temp.i * a[i__5].r;
|
||||
z__1.r = x[i__2].r + z__2.r, z__1.i = x[i__2].i + z__2.i;
|
||||
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
|
||||
ix += *incx;
|
||||
/* L30: */
|
||||
/* L30: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__3 = jx;
|
||||
i__4 = jx;
|
||||
i__2 = kplus1 + j * a_dim1;
|
||||
z__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
|
||||
i__2].i, z__1.i = x[i__4].r * a[i__2].i +
|
||||
x[i__4].i * a[i__2].r;
|
||||
z__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[i__2].i,
|
||||
z__1.i = x[i__4].r * a[i__2].i + x[i__4].i * a[i__2].r;
|
||||
x[i__3].r = z__1.r, x[i__3].i = z__1.i;
|
||||
}
|
||||
}
|
||||
@ -314,7 +300,7 @@
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
}
|
||||
/* L40: */
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -325,32 +311,28 @@
|
||||
i__1 = j;
|
||||
temp.r = x[i__1].r, temp.i = x[i__1].i;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__3 = j + *k;
|
||||
i__4 = j + 1;
|
||||
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
|
||||
for (i__ = min(i__1, i__3); i__ >= i__4; --i__) {
|
||||
i__1 = i__;
|
||||
i__3 = i__;
|
||||
i__2 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
|
||||
z__2.i = temp.r * a[i__2].i + temp.i * a[
|
||||
i__2].r;
|
||||
z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
|
||||
z__2.i;
|
||||
z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, z__2.i = temp.r * a[i__2].i + temp.i * a[i__2].r;
|
||||
z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i + z__2.i;
|
||||
x[i__1].r = z__1.r, x[i__1].i = z__1.i;
|
||||
/* L50: */
|
||||
/* L50: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__4 = j;
|
||||
i__1 = j;
|
||||
i__3 = j * a_dim1 + 1;
|
||||
z__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
|
||||
i__3].i, z__1.i = x[i__1].r * a[i__3].i +
|
||||
x[i__1].i * a[i__3].r;
|
||||
z__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[i__3].i,
|
||||
z__1.i = x[i__1].r * a[i__3].i + x[i__1].i * a[i__3].r;
|
||||
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
|
||||
}
|
||||
}
|
||||
/* L60: */
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
@ -362,29 +344,25 @@
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__1 = j + *k;
|
||||
i__3 = j + 1;
|
||||
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
|
||||
for (i__ = min(i__4, i__1); i__ >= i__3; --i__) {
|
||||
i__4 = ix;
|
||||
i__1 = ix;
|
||||
i__2 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
|
||||
z__2.i = temp.r * a[i__2].i + temp.i * a[
|
||||
i__2].r;
|
||||
z__1.r = x[i__1].r + z__2.r, z__1.i = x[i__1].i +
|
||||
z__2.i;
|
||||
z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, z__2.i = temp.r * a[i__2].i + temp.i * a[i__2].r;
|
||||
z__1.r = x[i__1].r + z__2.r, z__1.i = x[i__1].i + z__2.i;
|
||||
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
|
||||
ix -= *incx;
|
||||
/* L70: */
|
||||
/* L70: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__3 = jx;
|
||||
i__4 = jx;
|
||||
i__1 = j * a_dim1 + 1;
|
||||
z__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
|
||||
i__1].i, z__1.i = x[i__4].r * a[i__1].i +
|
||||
x[i__4].i * a[i__1].r;
|
||||
z__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[i__1].i,
|
||||
z__1.i = x[i__4].r * a[i__1].i + x[i__4].i * a[i__1].r;
|
||||
x[i__3].r = z__1.r, x[i__3].i = z__1.i;
|
||||
}
|
||||
}
|
||||
@ -392,13 +370,12 @@
|
||||
if (*n - j >= *k) {
|
||||
kx -= *incx;
|
||||
}
|
||||
/* L80: */
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form x := A'*x or x := conjg( A' )*x. */
|
||||
/* Form x := A'*x or x := conjg( A' )*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
@ -410,51 +387,42 @@
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
|
||||
z__1.i = temp.r * a[i__3].i + temp.i * a[
|
||||
i__3].r;
|
||||
z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, z__1.i = temp.r * a[i__3].i + temp.i * a[i__3].r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
i__4 = l + i__ + j * a_dim1;
|
||||
i__1 = i__;
|
||||
z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
|
||||
i__1].i, z__2.i = a[i__4].r * x[i__1].i +
|
||||
a[i__4].i * x[i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[i__1].i,
|
||||
z__2.i = a[i__4].r * x[i__1].i + a[i__4].i * x[i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
/* L90: */
|
||||
/* L90: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
|
||||
z__1.i = temp.r * z__2.i + temp.i *
|
||||
z__2.r;
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = i__;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
|
||||
z__2.i = z__3.r * x[i__4].i + z__3.i * x[
|
||||
i__4].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
/* L100: */
|
||||
/* L100: */
|
||||
}
|
||||
}
|
||||
i__3 = j;
|
||||
x[i__3].r = temp.r, x[i__3].i = temp.i;
|
||||
/* L110: */
|
||||
/* L110: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
@ -468,54 +436,45 @@
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
|
||||
z__1.i = temp.r * a[i__3].i + temp.i * a[
|
||||
i__3].r;
|
||||
z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, z__1.i = temp.r * a[i__3].i + temp.i * a[i__3].r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
i__4 = l + i__ + j * a_dim1;
|
||||
i__1 = ix;
|
||||
z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
|
||||
i__1].i, z__2.i = a[i__4].r * x[i__1].i +
|
||||
a[i__4].i * x[i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[i__1].i,
|
||||
z__2.i = a[i__4].r * x[i__1].i + a[i__4].i * x[i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
ix -= *incx;
|
||||
/* L120: */
|
||||
/* L120: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
|
||||
z__1.i = temp.r * z__2.i + temp.i *
|
||||
z__2.r;
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
i__3 = max(i__4, i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
|
||||
z__2.i = z__3.r * x[i__4].i + z__3.i * x[
|
||||
i__4].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
ix -= *incx;
|
||||
/* L130: */
|
||||
/* L130: */
|
||||
}
|
||||
}
|
||||
i__3 = jx;
|
||||
x[i__3].r = temp.r, x[i__3].i = temp.i;
|
||||
jx -= *incx;
|
||||
/* L140: */
|
||||
/* L140: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -528,51 +487,42 @@
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__4 = j * a_dim1 + 1;
|
||||
z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
|
||||
z__1.i = temp.r * a[i__4].i + temp.i * a[
|
||||
i__4].r;
|
||||
z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, z__1.i = temp.r * a[i__4].i + temp.i * a[i__4].r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
i__1 = l + i__ + j * a_dim1;
|
||||
i__2 = i__;
|
||||
z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
|
||||
i__2].i, z__2.i = a[i__1].r * x[i__2].i +
|
||||
a[i__1].i * x[i__2].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[i__2].i,
|
||||
z__2.i = a[i__1].r * x[i__2].i + a[i__1].i * x[i__2].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
/* L150: */
|
||||
/* L150: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
d_cnjg(&z__2, &a[j * a_dim1 + 1]);
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
|
||||
z__1.i = temp.r * z__2.i + temp.i *
|
||||
z__2.r;
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__1 = i__;
|
||||
z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
|
||||
z__2.i = z__3.r * x[i__1].i + z__3.i * x[
|
||||
i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i, z__2.i = z__3.r * x[i__1].i + z__3.i * x[i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
/* L160: */
|
||||
/* L160: */
|
||||
}
|
||||
}
|
||||
i__4 = j;
|
||||
x[i__4].r = temp.r, x[i__4].i = temp.i;
|
||||
/* L170: */
|
||||
/* L170: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
@ -586,54 +536,45 @@
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__4 = j * a_dim1 + 1;
|
||||
z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
|
||||
z__1.i = temp.r * a[i__4].i + temp.i * a[
|
||||
i__4].r;
|
||||
z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, z__1.i = temp.r * a[i__4].i + temp.i * a[i__4].r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
i__1 = l + i__ + j * a_dim1;
|
||||
i__2 = ix;
|
||||
z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
|
||||
i__2].i, z__2.i = a[i__1].r * x[i__2].i +
|
||||
a[i__1].i * x[i__2].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[i__2].i,
|
||||
z__2.i = a[i__1].r * x[i__2].i + a[i__1].i * x[i__2].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
ix += *incx;
|
||||
/* L180: */
|
||||
/* L180: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
d_cnjg(&z__2, &a[j * a_dim1 + 1]);
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
|
||||
z__1.i = temp.r * z__2.i + temp.i *
|
||||
z__2.r;
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
i__4 = min(i__1, i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__1 = ix;
|
||||
z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
|
||||
z__2.i = z__3.r * x[i__1].i + z__3.i * x[
|
||||
i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i, z__2.i = z__3.r * x[i__1].i + z__3.i * x[i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
ix += *incx;
|
||||
/* L190: */
|
||||
/* L190: */
|
||||
}
|
||||
}
|
||||
i__4 = jx;
|
||||
x[i__4].r = temp.r, x[i__4].i = temp.i;
|
||||
jx += *incx;
|
||||
/* L200: */
|
||||
/* L200: */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -641,7 +582,6 @@
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of ZTBMV . */
|
||||
/* End of ZTBMV . */
|
||||
|
||||
} /* ztbmv_ */
|
||||
|
||||
|
@ -11,26 +11,28 @@
|
||||
#include <Eigen/Cholesky>
|
||||
|
||||
// POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
|
||||
EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info))
|
||||
{
|
||||
EIGEN_LAPACK_FUNC(potrf, (char *uplo, int *n, RealScalar *pa, int *lda, int *info)) {
|
||||
*info = 0;
|
||||
if(UPLO(*uplo)==INVALID) *info = -1;
|
||||
else if(*n<0) *info = -2;
|
||||
else if(*lda<std::max(1,*n)) *info = -4;
|
||||
if(*info!=0)
|
||||
{
|
||||
if (UPLO(*uplo) == INVALID)
|
||||
*info = -1;
|
||||
else if (*n < 0)
|
||||
*info = -2;
|
||||
else if (*lda < std::max(1, *n))
|
||||
*info = -4;
|
||||
if (*info != 0) {
|
||||
int e = -*info;
|
||||
return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6);
|
||||
return xerbla_(SCALAR_SUFFIX_UP "POTRF", &e, 6);
|
||||
}
|
||||
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
MatrixType A(a,*n,*n,*lda);
|
||||
Scalar *a = reinterpret_cast<Scalar *>(pa);
|
||||
MatrixType A(a, *n, *n, *lda);
|
||||
int ret;
|
||||
if(UPLO(*uplo)==UP) ret = int(internal::llt_inplace<Scalar, Upper>::blocked(A));
|
||||
else ret = int(internal::llt_inplace<Scalar, Lower>::blocked(A));
|
||||
if (UPLO(*uplo) == UP)
|
||||
ret = int(internal::llt_inplace<Scalar, Upper>::blocked(A));
|
||||
else
|
||||
ret = int(internal::llt_inplace<Scalar, Lower>::blocked(A));
|
||||
|
||||
if(ret>=0)
|
||||
*info = ret+1;
|
||||
if (ret >= 0) *info = ret + 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -38,32 +40,33 @@ EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info
|
||||
// POTRS solves a system of linear equations A*X = B with a symmetric
|
||||
// positive definite matrix A using the Cholesky factorization
|
||||
// A = U**T*U or A = L*L**T computed by DPOTRF.
|
||||
EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info))
|
||||
{
|
||||
EIGEN_LAPACK_FUNC(potrs,
|
||||
(char *uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info)) {
|
||||
*info = 0;
|
||||
if(UPLO(*uplo)==INVALID) *info = -1;
|
||||
else if(*n<0) *info = -2;
|
||||
else if(*nrhs<0) *info = -3;
|
||||
else if(*lda<std::max(1,*n)) *info = -5;
|
||||
else if(*ldb<std::max(1,*n)) *info = -7;
|
||||
if(*info!=0)
|
||||
{
|
||||
if (UPLO(*uplo) == INVALID)
|
||||
*info = -1;
|
||||
else if (*n < 0)
|
||||
*info = -2;
|
||||
else if (*nrhs < 0)
|
||||
*info = -3;
|
||||
else if (*lda < std::max(1, *n))
|
||||
*info = -5;
|
||||
else if (*ldb < std::max(1, *n))
|
||||
*info = -7;
|
||||
if (*info != 0) {
|
||||
int e = -*info;
|
||||
return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6);
|
||||
return xerbla_(SCALAR_SUFFIX_UP "POTRS", &e, 6);
|
||||
}
|
||||
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
||||
MatrixType A(a,*n,*n,*lda);
|
||||
MatrixType B(b,*n,*nrhs,*ldb);
|
||||
Scalar *a = reinterpret_cast<Scalar *>(pa);
|
||||
Scalar *b = reinterpret_cast<Scalar *>(pb);
|
||||
MatrixType A(a, *n, *n, *lda);
|
||||
MatrixType B(b, *n, *nrhs, *ldb);
|
||||
|
||||
if(UPLO(*uplo)==UP)
|
||||
{
|
||||
if (UPLO(*uplo) == UP) {
|
||||
A.triangularView<Upper>().adjoint().solveInPlace(B);
|
||||
A.triangularView<Upper>().solveInPlace(B);
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
A.triangularView<Lower>().solveInPlace(B);
|
||||
A.triangularView<Lower>().adjoint().solveInPlace(B);
|
||||
}
|
||||
|
@ -11,52 +11,53 @@
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
// computes eigen values and vectors of a general N-by-N matrix A
|
||||
EIGEN_LAPACK_FUNC(syev,(char *jobz, char *uplo, int* n, Scalar* a, int *lda, Scalar* w, Scalar* /*work*/, int* lwork, int *info))
|
||||
{
|
||||
EIGEN_LAPACK_FUNC(syev, (char* jobz, char* uplo, int* n, Scalar* a, int* lda, Scalar* w, Scalar* /*work*/, int* lwork,
|
||||
int* info)) {
|
||||
// TODO exploit the work buffer
|
||||
bool query_size = *lwork==-1;
|
||||
bool query_size = *lwork == -1;
|
||||
|
||||
*info = 0;
|
||||
if(*jobz!='N' && *jobz!='V') *info = -1;
|
||||
else if(UPLO(*uplo)==INVALID) *info = -2;
|
||||
else if(*n<0) *info = -3;
|
||||
else if(*lda<std::max(1,*n)) *info = -5;
|
||||
else if((!query_size) && *lwork<std::max(1,3**n-1)) *info = -8;
|
||||
if (*jobz != 'N' && *jobz != 'V')
|
||||
*info = -1;
|
||||
else if (UPLO(*uplo) == INVALID)
|
||||
*info = -2;
|
||||
else if (*n < 0)
|
||||
*info = -3;
|
||||
else if (*lda < std::max(1, *n))
|
||||
*info = -5;
|
||||
else if ((!query_size) && *lwork < std::max(1, 3 * *n - 1))
|
||||
*info = -8;
|
||||
|
||||
if(*info!=0)
|
||||
{
|
||||
if (*info != 0) {
|
||||
int e = -*info;
|
||||
return xerbla_(SCALAR_SUFFIX_UP"SYEV ", &e, 6);
|
||||
return xerbla_(SCALAR_SUFFIX_UP "SYEV ", &e, 6);
|
||||
}
|
||||
|
||||
if(query_size)
|
||||
{
|
||||
if (query_size) {
|
||||
*lwork = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(*n==0)
|
||||
return 0;
|
||||
if (*n == 0) return 0;
|
||||
|
||||
PlainMatrixType mat(*n,*n);
|
||||
if(UPLO(*uplo)==UP) mat = matrix(a,*n,*n,*lda).adjoint();
|
||||
else mat = matrix(a,*n,*n,*lda);
|
||||
PlainMatrixType mat(*n, *n);
|
||||
if (UPLO(*uplo) == UP)
|
||||
mat = matrix(a, *n, *n, *lda).adjoint();
|
||||
else
|
||||
mat = matrix(a, *n, *n, *lda);
|
||||
|
||||
bool computeVectors = *jobz=='V' || *jobz=='v';
|
||||
SelfAdjointEigenSolver<PlainMatrixType> eig(mat,computeVectors?ComputeEigenvectors:EigenvaluesOnly);
|
||||
bool computeVectors = *jobz == 'V' || *jobz == 'v';
|
||||
SelfAdjointEigenSolver<PlainMatrixType> eig(mat, computeVectors ? ComputeEigenvectors : EigenvaluesOnly);
|
||||
|
||||
if(eig.info()==NoConvergence)
|
||||
{
|
||||
make_vector(w,*n).setZero();
|
||||
if(computeVectors)
|
||||
matrix(a,*n,*n,*lda).setIdentity();
|
||||
if (eig.info() == NoConvergence) {
|
||||
make_vector(w, *n).setZero();
|
||||
if (computeVectors) matrix(a, *n, *n, *lda).setIdentity();
|
||||
//*info = 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
make_vector(w,*n) = eig.eigenvalues();
|
||||
if(computeVectors)
|
||||
matrix(a,*n,*n,*lda) = eig.eigenvectors();
|
||||
make_vector(w, *n) = eig.eigenvalues();
|
||||
if (computeVectors) matrix(a, *n, *n, *lda) = eig.eigenvectors();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -11,79 +11,74 @@
|
||||
#include <Eigen/LU>
|
||||
|
||||
// computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
|
||||
EIGEN_LAPACK_FUNC(getrf,(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info))
|
||||
{
|
||||
EIGEN_LAPACK_FUNC(getrf, (int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info)) {
|
||||
*info = 0;
|
||||
if(*m<0) *info = -1;
|
||||
else if(*n<0) *info = -2;
|
||||
else if(*lda<std::max(1,*m)) *info = -4;
|
||||
if(*info!=0)
|
||||
{
|
||||
if (*m < 0)
|
||||
*info = -1;
|
||||
else if (*n < 0)
|
||||
*info = -2;
|
||||
else if (*lda < std::max(1, *m))
|
||||
*info = -4;
|
||||
if (*info != 0) {
|
||||
int e = -*info;
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GETRF", &e, 6);
|
||||
return xerbla_(SCALAR_SUFFIX_UP "GETRF", &e, 6);
|
||||
}
|
||||
|
||||
if(*m==0 || *n==0)
|
||||
return 0;
|
||||
if (*m == 0 || *n == 0) return 0;
|
||||
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar *a = reinterpret_cast<Scalar *>(pa);
|
||||
int nb_transpositions;
|
||||
int ret = int(Eigen::internal::partial_lu_impl<Scalar,ColMajor,int>
|
||||
::blocked_lu(*m, *n, a, *lda, ipiv, nb_transpositions));
|
||||
int ret = int(
|
||||
Eigen::internal::partial_lu_impl<Scalar, ColMajor, int>::blocked_lu(*m, *n, a, *lda, ipiv, nb_transpositions));
|
||||
|
||||
for(int i=0; i<std::min(*m,*n); ++i)
|
||||
ipiv[i]++;
|
||||
for (int i = 0; i < std::min(*m, *n); ++i) ipiv[i]++;
|
||||
|
||||
if(ret>=0)
|
||||
*info = ret+1;
|
||||
if (ret >= 0) *info = ret + 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
//GETRS solves a system of linear equations
|
||||
// GETRS solves a system of linear equations
|
||||
// A * X = B or A' * X = B
|
||||
// with a general N-by-N matrix A using the LU factorization computed by GETRF
|
||||
EIGEN_LAPACK_FUNC(getrs,(char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info))
|
||||
{
|
||||
EIGEN_LAPACK_FUNC(getrs, (char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb,
|
||||
int *info)) {
|
||||
*info = 0;
|
||||
if(OP(*trans)==INVALID) *info = -1;
|
||||
else if(*n<0) *info = -2;
|
||||
else if(*nrhs<0) *info = -3;
|
||||
else if(*lda<std::max(1,*n)) *info = -5;
|
||||
else if(*ldb<std::max(1,*n)) *info = -8;
|
||||
if(*info!=0)
|
||||
{
|
||||
if (OP(*trans) == INVALID)
|
||||
*info = -1;
|
||||
else if (*n < 0)
|
||||
*info = -2;
|
||||
else if (*nrhs < 0)
|
||||
*info = -3;
|
||||
else if (*lda < std::max(1, *n))
|
||||
*info = -5;
|
||||
else if (*ldb < std::max(1, *n))
|
||||
*info = -8;
|
||||
if (*info != 0) {
|
||||
int e = -*info;
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GETRS", &e, 6);
|
||||
return xerbla_(SCALAR_SUFFIX_UP "GETRS", &e, 6);
|
||||
}
|
||||
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
||||
MatrixType lu(a,*n,*n,*lda);
|
||||
MatrixType B(b,*n,*nrhs,*ldb);
|
||||
Scalar *a = reinterpret_cast<Scalar *>(pa);
|
||||
Scalar *b = reinterpret_cast<Scalar *>(pb);
|
||||
MatrixType lu(a, *n, *n, *lda);
|
||||
MatrixType B(b, *n, *nrhs, *ldb);
|
||||
|
||||
for(int i=0; i<*n; ++i)
|
||||
ipiv[i]--;
|
||||
if(OP(*trans)==NOTR)
|
||||
{
|
||||
B = PivotsType(ipiv,*n) * B;
|
||||
for (int i = 0; i < *n; ++i) ipiv[i]--;
|
||||
if (OP(*trans) == NOTR) {
|
||||
B = PivotsType(ipiv, *n) * B;
|
||||
lu.triangularView<UnitLower>().solveInPlace(B);
|
||||
lu.triangularView<Upper>().solveInPlace(B);
|
||||
}
|
||||
else if(OP(*trans)==TR)
|
||||
{
|
||||
} else if (OP(*trans) == TR) {
|
||||
lu.triangularView<Upper>().transpose().solveInPlace(B);
|
||||
lu.triangularView<UnitLower>().transpose().solveInPlace(B);
|
||||
B = PivotsType(ipiv,*n).transpose() * B;
|
||||
}
|
||||
else if(OP(*trans)==ADJ)
|
||||
{
|
||||
B = PivotsType(ipiv, *n).transpose() * B;
|
||||
} else if (OP(*trans) == ADJ) {
|
||||
lu.triangularView<Upper>().adjoint().solveInPlace(B);
|
||||
lu.triangularView<UnitLower>().adjoint().solveInPlace(B);
|
||||
B = PivotsType(ipiv,*n).transpose() * B;
|
||||
B = PivotsType(ipiv, *n).transpose() * B;
|
||||
}
|
||||
for(int i=0; i<*n; ++i)
|
||||
ipiv[i]++;
|
||||
for (int i = 0; i < *n; ++i) ipiv[i]++;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
169
lapack/svd.inc
169
lapack/svd.inc
@ -11,128 +11,135 @@
|
||||
#include <Eigen/SVD>
|
||||
|
||||
// computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
|
||||
EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
|
||||
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info))
|
||||
{
|
||||
EIGEN_LAPACK_FUNC(gesdd, (char *jobz, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu,
|
||||
Scalar *vt, int *ldvt, Scalar * /*work*/, int *lwork,
|
||||
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int * /*iwork*/, int *info)) {
|
||||
// TODO exploit the work buffer
|
||||
bool query_size = *lwork==-1;
|
||||
int diag_size = (std::min)(*m,*n);
|
||||
bool query_size = *lwork == -1;
|
||||
int diag_size = (std::min)(*m, *n);
|
||||
|
||||
*info = 0;
|
||||
if(*jobz!='A' && *jobz!='S' && *jobz!='O' && *jobz!='N') *info = -1;
|
||||
else if(*m<0) *info = -2;
|
||||
else if(*n<0) *info = -3;
|
||||
else if(*lda<std::max(1,*m)) *info = -5;
|
||||
else if(*lda<std::max(1,*m)) *info = -8;
|
||||
else if(*ldu <1 || (*jobz=='A' && *ldu <*m)
|
||||
|| (*jobz=='O' && *m<*n && *ldu<*m)) *info = -8;
|
||||
else if(*ldvt<1 || (*jobz=='A' && *ldvt<*n)
|
||||
|| (*jobz=='S' && *ldvt<diag_size)
|
||||
|| (*jobz=='O' && *m>=*n && *ldvt<*n)) *info = -10;
|
||||
if (*jobz != 'A' && *jobz != 'S' && *jobz != 'O' && *jobz != 'N')
|
||||
*info = -1;
|
||||
else if (*m < 0)
|
||||
*info = -2;
|
||||
else if (*n < 0)
|
||||
*info = -3;
|
||||
else if (*lda < std::max(1, *m))
|
||||
*info = -5;
|
||||
else if (*lda < std::max(1, *m))
|
||||
*info = -8;
|
||||
else if (*ldu < 1 || (*jobz == 'A' && *ldu < *m) || (*jobz == 'O' && *m < *n && *ldu < *m))
|
||||
*info = -8;
|
||||
else if (*ldvt < 1 || (*jobz == 'A' && *ldvt < *n) || (*jobz == 'S' && *ldvt < diag_size) ||
|
||||
(*jobz == 'O' && *m >= *n && *ldvt < *n))
|
||||
*info = -10;
|
||||
|
||||
if(*info!=0)
|
||||
{
|
||||
if (*info != 0) {
|
||||
int e = -*info;
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GESDD ", &e, 6);
|
||||
return xerbla_(SCALAR_SUFFIX_UP "GESDD ", &e, 6);
|
||||
}
|
||||
|
||||
if(query_size)
|
||||
{
|
||||
if (query_size) {
|
||||
*lwork = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(*n==0 || *m==0)
|
||||
return 0;
|
||||
if (*n == 0 || *m == 0) return 0;
|
||||
|
||||
PlainMatrixType mat(*m,*n);
|
||||
mat = matrix(a,*m,*n,*lda);
|
||||
PlainMatrixType mat(*m, *n);
|
||||
mat = matrix(a, *m, *n, *lda);
|
||||
|
||||
int option = *jobz=='A' ? ComputeFullU|ComputeFullV
|
||||
: *jobz=='S' ? ComputeThinU|ComputeThinV
|
||||
: *jobz=='O' ? ComputeThinU|ComputeThinV
|
||||
int option = *jobz == 'A' ? ComputeFullU | ComputeFullV
|
||||
: *jobz == 'S' ? ComputeThinU | ComputeThinV
|
||||
: *jobz == 'O' ? ComputeThinU | ComputeThinV
|
||||
: 0;
|
||||
|
||||
BDCSVD<PlainMatrixType> svd(mat,option);
|
||||
BDCSVD<PlainMatrixType> svd(mat, option);
|
||||
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
make_vector(s, diag_size) = svd.singularValues().head(diag_size);
|
||||
|
||||
if(*jobz=='A')
|
||||
{
|
||||
matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
}
|
||||
else if(*jobz=='S')
|
||||
{
|
||||
matrix(u,*m,diag_size,*ldu) = svd.matrixU();
|
||||
matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
}
|
||||
else if(*jobz=='O' && *m>=*n)
|
||||
{
|
||||
matrix(a,*m,*n,*lda) = svd.matrixU();
|
||||
matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
}
|
||||
else if(*jobz=='O')
|
||||
{
|
||||
matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
|
||||
if (*jobz == 'A') {
|
||||
matrix(u, *m, *m, *ldu) = svd.matrixU();
|
||||
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
|
||||
} else if (*jobz == 'S') {
|
||||
matrix(u, *m, diag_size, *ldu) = svd.matrixU();
|
||||
matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint();
|
||||
} else if (*jobz == 'O' && *m >= *n) {
|
||||
matrix(a, *m, *n, *lda) = svd.matrixU();
|
||||
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
|
||||
} else if (*jobz == 'O') {
|
||||
matrix(u, *m, *m, *ldu) = svd.matrixU();
|
||||
matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
|
||||
EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
|
||||
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info))
|
||||
{
|
||||
EIGEN_LAPACK_FUNC(gesvd, (char *jobu, char *jobv, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u,
|
||||
int *ldu, Scalar *vt, int *ldvt, Scalar * /*work*/, int *lwork,
|
||||
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int *info)) {
|
||||
// TODO exploit the work buffer
|
||||
bool query_size = *lwork==-1;
|
||||
int diag_size = (std::min)(*m,*n);
|
||||
bool query_size = *lwork == -1;
|
||||
int diag_size = (std::min)(*m, *n);
|
||||
|
||||
*info = 0;
|
||||
if( *jobu!='A' && *jobu!='S' && *jobu!='O' && *jobu!='N') *info = -1;
|
||||
else if((*jobv!='A' && *jobv!='S' && *jobv!='O' && *jobv!='N')
|
||||
|| (*jobu=='O' && *jobv=='O')) *info = -2;
|
||||
else if(*m<0) *info = -3;
|
||||
else if(*n<0) *info = -4;
|
||||
else if(*lda<std::max(1,*m)) *info = -6;
|
||||
else if(*ldu <1 || ((*jobu=='A' || *jobu=='S') && *ldu<*m)) *info = -9;
|
||||
else if(*ldvt<1 || (*jobv=='A' && *ldvt<*n)
|
||||
|| (*jobv=='S' && *ldvt<diag_size)) *info = -11;
|
||||
if (*jobu != 'A' && *jobu != 'S' && *jobu != 'O' && *jobu != 'N')
|
||||
*info = -1;
|
||||
else if ((*jobv != 'A' && *jobv != 'S' && *jobv != 'O' && *jobv != 'N') || (*jobu == 'O' && *jobv == 'O'))
|
||||
*info = -2;
|
||||
else if (*m < 0)
|
||||
*info = -3;
|
||||
else if (*n < 0)
|
||||
*info = -4;
|
||||
else if (*lda < std::max(1, *m))
|
||||
*info = -6;
|
||||
else if (*ldu < 1 || ((*jobu == 'A' || *jobu == 'S') && *ldu < *m))
|
||||
*info = -9;
|
||||
else if (*ldvt < 1 || (*jobv == 'A' && *ldvt < *n) || (*jobv == 'S' && *ldvt < diag_size))
|
||||
*info = -11;
|
||||
|
||||
if(*info!=0)
|
||||
{
|
||||
if (*info != 0) {
|
||||
int e = -*info;
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GESVD ", &e, 6);
|
||||
return xerbla_(SCALAR_SUFFIX_UP "GESVD ", &e, 6);
|
||||
}
|
||||
|
||||
if(query_size)
|
||||
{
|
||||
if (query_size) {
|
||||
*lwork = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(*n==0 || *m==0)
|
||||
return 0;
|
||||
if (*n == 0 || *m == 0) return 0;
|
||||
|
||||
PlainMatrixType mat(*m,*n);
|
||||
mat = matrix(a,*m,*n,*lda);
|
||||
PlainMatrixType mat(*m, *n);
|
||||
mat = matrix(a, *m, *n, *lda);
|
||||
|
||||
int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0)
|
||||
| (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0);
|
||||
int option = (*jobu == 'A' ? ComputeFullU
|
||||
: *jobu == 'S' || *jobu == 'O' ? ComputeThinU
|
||||
: 0) |
|
||||
(*jobv == 'A' ? ComputeFullV
|
||||
: *jobv == 'S' || *jobv == 'O' ? ComputeThinV
|
||||
: 0);
|
||||
|
||||
JacobiSVD<PlainMatrixType> svd(mat,option);
|
||||
JacobiSVD<PlainMatrixType> svd(mat, option);
|
||||
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
make_vector(s, diag_size) = svd.singularValues().head(diag_size);
|
||||
{
|
||||
if(*jobu=='A') matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
else if(*jobu=='S') matrix(u,*m,diag_size,*ldu) = svd.matrixU();
|
||||
else if(*jobu=='O') matrix(a,*m,diag_size,*lda) = svd.matrixU();
|
||||
if (*jobu == 'A')
|
||||
matrix(u, *m, *m, *ldu) = svd.matrixU();
|
||||
else if (*jobu == 'S')
|
||||
matrix(u, *m, diag_size, *ldu) = svd.matrixU();
|
||||
else if (*jobu == 'O')
|
||||
matrix(a, *m, diag_size, *lda) = svd.matrixU();
|
||||
}
|
||||
{
|
||||
if(*jobv=='A') matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
else if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
else if(*jobv=='O') matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
|
||||
if (*jobv == 'A')
|
||||
matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint();
|
||||
else if (*jobv == 'S')
|
||||
matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint();
|
||||
else if (*jobv == 'O')
|
||||
matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint();
|
||||
}
|
||||
return 0;
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user