mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 11:19:02 +08:00
Propagate all five matrix template parameters to members and temporaries of decomposition classes. One particular advantage of this is that decomposing matrices with max sizes known at compile time will not allocate.
NOTE: The ComplexEigenSolver class currently _does_ allocate (line 135 of Eigenvalues/ComplexEigenSolver.h), but the reason appears to be in the implementation of matrix-matrix products, and not in the decomposition itself. The nomalloc unit test has been extended to verify that decompositions do not allocate when max sizes are specified. There are currently two workarounds to prevent the test from failing (see comments in test/nomalloc.cpp), both of which are related to matrix products that allocate on the stack.
This commit is contained in:
parent
898762529e
commit
5a36f4a8d1
@ -56,11 +56,18 @@ template<typename _MatrixType> class LDLT
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
|
||||
typedef Matrix<int, 1, MatrixType::RowsAtCompileTime> IntRowVectorType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<int, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> IntColVectorType;
|
||||
typedef Matrix<int, 1, RowsAtCompileTime, Options, 1, MaxRowsAtCompileTime> IntRowVectorType;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
@ -201,7 +208,7 @@ LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a)
|
||||
// By using a temorary, packet-aligned products are guarenteed. In the LLT
|
||||
// case this is unnecessary because the diagonal is included and will always
|
||||
// have optimal alignment.
|
||||
Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);
|
||||
Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> _temporary(size);
|
||||
|
||||
for (int j = 0; j < size; ++j)
|
||||
{
|
||||
|
@ -57,9 +57,15 @@ template<typename _MatrixType, int _UpLo> class LLT
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> VectorType;
|
||||
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
|
@ -41,11 +41,18 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<Complex, MatrixType::ColsAtCompileTime,1> EigenvalueType;
|
||||
typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> EigenvectorType;
|
||||
typedef Matrix<Complex, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef Matrix<Complex, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, ColsAtCompileTime> EigenvectorType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
|
@ -45,10 +45,17 @@ template<typename _MatrixType> class ComplexSchur
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> ComplexMatrixType;
|
||||
typedef Matrix<Complex, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
|
||||
enum {
|
||||
Size = MatrixType::RowsAtCompileTime
|
||||
};
|
||||
|
@ -45,13 +45,19 @@ template<typename _MatrixType> class EigenSolver
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<Complex, MatrixType::ColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef Matrix<Complex, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> EigenvectorType;
|
||||
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
|
||||
typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
|
||||
typedef Matrix<Complex, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef Matrix<Complex, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
|
||||
typedef Matrix<RealScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> RealVectorType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
|
@ -44,17 +44,17 @@ template<typename _MatrixType> class HessenbergDecomposition
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
enum {
|
||||
Size = MatrixType::RowsAtCompileTime,
|
||||
SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
|
||||
? Dynamic
|
||||
: MatrixType::RowsAtCompileTime-1
|
||||
SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1,
|
||||
Options = MatrixType::Options,
|
||||
MaxSize = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, SizeMinusOne, 1, Options, MaxSizeMinusOne, 1> CoeffVectorType;
|
||||
typedef Matrix<Scalar, 1, Size, Options, 1, MaxSize> VectorType;
|
||||
|
||||
/** This constructor initializes a HessenbergDecomposition object for
|
||||
* further use with HessenbergDecomposition::compute()
|
||||
@ -143,7 +143,7 @@ void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVector
|
||||
{
|
||||
assert(matA.rows()==matA.cols());
|
||||
int n = matA.rows();
|
||||
Matrix<Scalar,1,Dynamic> temp(n);
|
||||
VectorType temp(n);
|
||||
for (int i = 0; i<n-1; ++i)
|
||||
{
|
||||
// let's consider the vector v = i-th column starting at position i+1
|
||||
@ -174,7 +174,7 @@ HessenbergDecomposition<MatrixType>::matrixQ() const
|
||||
{
|
||||
int n = m_matrix.rows();
|
||||
MatrixType matQ = MatrixType::Identity(n,n);
|
||||
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(n);
|
||||
VectorType temp(n);
|
||||
for (int i = n-2; i>=0; i--)
|
||||
{
|
||||
matQ.corner(BottomRight,n-i-1,n-i-1)
|
||||
|
@ -42,13 +42,17 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
||||
{
|
||||
public:
|
||||
|
||||
enum {Size = _MatrixType::RowsAtCompileTime };
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
Size = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
|
||||
typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
|
||||
typedef Matrix<RealScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> RealVectorType;
|
||||
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
|
||||
// typedef typename TridiagonalizationType::TridiagonalMatrixType TridiagonalMatrixType;
|
||||
|
||||
|
@ -50,16 +50,18 @@ template<typename _MatrixType> class Tridiagonalization
|
||||
|
||||
enum {
|
||||
Size = MatrixType::RowsAtCompileTime,
|
||||
SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
|
||||
? Dynamic
|
||||
: MatrixType::RowsAtCompileTime-1,
|
||||
SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1,
|
||||
Options = MatrixType::Options,
|
||||
MaxSize = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1,
|
||||
PacketSize = ei_packet_traits<Scalar>::size
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
|
||||
typedef Matrix<RealScalar, Size, 1> DiagonalType;
|
||||
typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
|
||||
|
||||
typedef Matrix<Scalar, SizeMinusOne, 1, Options, MaxSizeMinusOne, 1> CoeffVectorType;
|
||||
typedef Matrix<RealScalar, Size, 1, Options, MaxSize, 1> DiagonalType;
|
||||
typedef Matrix<RealScalar, SizeMinusOne, 1, Options, MaxSizeMinusOne, 1> SubDiagonalType;
|
||||
typedef Matrix<Scalar, 1, Size, Options, 1, MaxSize> RowVectorType;
|
||||
|
||||
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
|
||||
typename Diagonal<MatrixType,0>::RealReturnType,
|
||||
Diagonal<MatrixType,0>
|
||||
@ -238,7 +240,7 @@ void Tridiagonalization<MatrixType>::matrixQInPlace(MatrixBase<QDerived>* q) con
|
||||
QDerived& matQ = q->derived();
|
||||
int n = m_matrix.rows();
|
||||
matQ = MatrixType::Identity(n,n);
|
||||
Matrix<Scalar,1,Dynamic> aux(n);
|
||||
RowVectorType aux(n);
|
||||
for (int i = n-2; i>=0; i--)
|
||||
{
|
||||
matQ.corner(BottomRight,n-i-1,n-i-1)
|
||||
|
@ -59,12 +59,19 @@ template<typename _MatrixType> class FullPivLU
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
|
||||
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
|
||||
typedef PermutationMatrix<MatrixType::ColsAtCompileTime> PermutationQType;
|
||||
typedef PermutationMatrix<MatrixType::RowsAtCompileTime> PermutationPType;
|
||||
typedef Matrix<int, 1, ColsAtCompileTime, Options, 1, MaxColsAtCompileTime> IntRowVectorType;
|
||||
typedef Matrix<int, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> IntColVectorType;
|
||||
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
|
||||
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
|
@ -62,15 +62,18 @@ template<typename _MatrixType> class PartialPivLU
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> PermutationVectorType;
|
||||
typedef PermutationMatrix<MatrixType::RowsAtCompileTime> PermutationType;
|
||||
typedef Matrix<int, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> PermutationVectorType;
|
||||
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
|
||||
|
||||
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN(
|
||||
MatrixType::MaxColsAtCompileTime,
|
||||
MatrixType::MaxRowsAtCompileTime)
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
|
@ -51,16 +51,19 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN(ColsAtCompileTime,RowsAtCompileTime),
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN(MaxColsAtCompileTime,MaxRowsAtCompileTime)
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef PermutationMatrix<ColsAtCompileTime> PermutationType;
|
||||
typedef Matrix<int, 1, ColsAtCompileTime> IntRowVectorType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<RealScalar, 1, ColsAtCompileTime> RealRowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1, Options, MaxDiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
|
||||
typedef Matrix<int, 1, ColsAtCompileTime, Options, 1, MaxColsAtCompileTime> IntRowVectorType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime, Options, 1, MaxColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<RealScalar, 1, ColsAtCompileTime, Options, 1, MaxColsAtCompileTime> RealRowVectorType;
|
||||
typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
|
||||
|
||||
/**
|
||||
|
@ -51,17 +51,20 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN(ColsAtCompileTime,RowsAtCompileTime),
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN(MaxColsAtCompileTime,MaxRowsAtCompileTime)
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<int, 1, ColsAtCompileTime> IntRowVectorType;
|
||||
typedef PermutationMatrix<ColsAtCompileTime> PermutationType;
|
||||
typedef Matrix<int, RowsAtCompileTime, 1> IntColVectorType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1, Options, MaxDiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<int, 1, ColsAtCompileTime, Options, 1, MaxColsAtCompileTime> IntRowVectorType;
|
||||
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
|
||||
typedef Matrix<int, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> IntColVectorType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime, Options, 1, MaxColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> ColVectorType;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
|
@ -55,13 +55,16 @@ template<typename _MatrixType> class HouseholderQR
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN(ColsAtCompileTime,RowsAtCompileTime),
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN(MaxColsAtCompileTime,MaxRowsAtCompileTime)
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, ei_traits<MatrixType>::Flags&RowMajorBit ? RowMajor : ColMajor> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, ei_traits<MatrixType>::Flags&RowMajorBit ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1, Options, MaxDiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime, Options, 1, MaxColsAtCompileTime> RowVectorType;
|
||||
typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
|
||||
|
||||
/**
|
||||
|
@ -52,15 +52,18 @@ template<typename _MatrixType> class SVD
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
AlignmentMask = int(PacketSize)-1,
|
||||
MinSize = EIGEN_SIZE_MIN(RowsAtCompileTime, ColsAtCompileTime)
|
||||
MinSize = EIGEN_SIZE_MIN(RowsAtCompileTime, ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVector;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1> RowVector;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1, MatrixOptions, MaxRowsAtCompileTime, 1> ColVector;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1, MatrixOptions, MaxColsAtCompileTime, 1> RowVector;
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1> SingularValuesType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1, MatrixOptions, MaxColsAtCompileTime, 1> SingularValuesType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
@ -195,7 +198,8 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
|
||||
bool convergence = true;
|
||||
Scalar eps = NumTraits<Scalar>::dummy_precision();
|
||||
|
||||
Matrix<Scalar,Dynamic,1> rv1(n);
|
||||
RowVector rv1(n);
|
||||
|
||||
g = scale = anorm = 0;
|
||||
// Householder reduction to bidiagonal form.
|
||||
for (i=0; i<n; i++)
|
||||
|
@ -33,6 +33,11 @@
|
||||
#define EIGEN_NO_MALLOC
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/Cholesky>
|
||||
#include <Eigen/Eigenvalues>
|
||||
#include <Eigen/LU>
|
||||
#include <Eigen/QR>
|
||||
#include <Eigen/SVD>
|
||||
|
||||
template<typename MatrixType> void nomalloc(const MatrixType& m)
|
||||
{
|
||||
@ -73,6 +78,58 @@ template<typename MatrixType> void nomalloc(const MatrixType& m)
|
||||
}
|
||||
}
|
||||
|
||||
void ctms_decompositions()
|
||||
{
|
||||
const int maxSize = 16;
|
||||
const int size = 12;
|
||||
|
||||
typedef Eigen::Matrix<float,
|
||||
Eigen::Dynamic, Eigen::Dynamic,
|
||||
Eigen::ColMajor | Eigen::AutoAlign,
|
||||
maxSize, maxSize> Matrix;
|
||||
|
||||
typedef Eigen::Matrix<float,
|
||||
Eigen::Dynamic, 1,
|
||||
Eigen::ColMajor | Eigen::AutoAlign,
|
||||
maxSize, 1> Vector;
|
||||
|
||||
typedef Eigen::Matrix<std::complex<float>,
|
||||
Eigen::Dynamic, Eigen::Dynamic,
|
||||
Eigen::ColMajor | Eigen::AutoAlign,
|
||||
maxSize, maxSize> ComplexMatrix;
|
||||
|
||||
const Matrix A(Matrix::Random(size, size));
|
||||
const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
|
||||
// const Matrix saA = A.adjoint() * A; // NOTE: This product allocates on the stack. The two following lines are a kludgy workaround
|
||||
Matrix saA(Matrix::Constant(size, size, 1.0));
|
||||
saA.diagonal().setConstant(2.0);
|
||||
|
||||
// Cholesky module
|
||||
Eigen::LLT<Matrix> LLT; LLT.compute(A);
|
||||
Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
|
||||
|
||||
// Eigenvalues module
|
||||
Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; hessDecomp.compute(complexA);
|
||||
Eigen::ComplexSchur<ComplexMatrix> cSchur(size); cSchur.compute(complexA);
|
||||
Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; //cEigSolver.compute(complexA); // NOTE: Commented-out because makes test fail (L135 of ComplexEigenSolver.h has a product that allocates on the stack)
|
||||
Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A);
|
||||
Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); saEigSolver.compute(saA);
|
||||
Eigen::Tridiagonalization<Matrix> tridiag; tridiag.compute(saA);
|
||||
|
||||
// LU module
|
||||
Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
|
||||
Eigen::FullPivLU<Matrix> fpLU; fpLU.compute(A);
|
||||
|
||||
// QR module
|
||||
Eigen::HouseholderQR<Matrix> hQR; hQR.compute(A);
|
||||
Eigen::ColPivHouseholderQR<Matrix> cpQR; cpQR.compute(A);
|
||||
Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
|
||||
|
||||
// SVD module
|
||||
Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A);
|
||||
Eigen::SVD<Matrix> svd; svd.compute(A);
|
||||
}
|
||||
|
||||
void test_nomalloc()
|
||||
{
|
||||
// check that our operator new is indeed called:
|
||||
@ -80,4 +137,8 @@ void test_nomalloc()
|
||||
CALL_SUBTEST(nomalloc(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST(nomalloc(Matrix4d()) );
|
||||
CALL_SUBTEST(nomalloc(Matrix<float,32,32>()) );
|
||||
|
||||
// Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
|
||||
CALL_SUBTEST(ctms_decompositions());
|
||||
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user