add new API for Cholmod preserving the legacy one for now

This commit is contained in:
Gael Guennebaud 2010-10-26 15:48:33 +02:00
parent 7bc8e3ac09
commit 666c16cf63
4 changed files with 768 additions and 387 deletions

View File

@ -21,9 +21,10 @@ namespace Eigen {
*/
struct Cholmod {};
#include "src/SparseExtra/CholmodSupportLegacy.h"
#include "src/SparseExtra/CholmodSupport.h"
} // namespace Eigen
#include "../../Eigen/src/Core/util/EnableMSVCWarnings.h"

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -26,26 +26,26 @@
#define EIGEN_CHOLMODSUPPORT_H
namespace internal {
template<typename Scalar, typename CholmodType>
void cholmod_configure_matrix(CholmodType& mat)
{
if (is_same<Scalar,float>::value)
if (internal::is_same<Scalar,float>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_SINGLE;
}
else if (is_same<Scalar,double>::value)
else if (internal::is_same<Scalar,double>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_DOUBLE;
}
else if (is_same<Scalar,std::complex<float> >::value)
else if (internal::is_same<Scalar,std::complex<float> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_SINGLE;
}
else if (is_same<Scalar,std::complex<double> >::value)
else if (internal::is_same<Scalar,std::complex<double> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_DOUBLE;
@ -56,10 +56,15 @@ void cholmod_configure_matrix(CholmodType& mat)
}
}
template<typename _MatrixType>
cholmod_sparse cholmod_map_eigen_to_sparse(_MatrixType& mat)
} // namespace internal
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
* Note that the data are shared.
*/
template<typename _Scalar, int _Options, typename _Index>
cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
{
typedef typename _MatrixType::Scalar Scalar;
typedef SparseMatrix<_Scalar,_Options,_Index> MatrixType;
cholmod_sparse res;
res.nzmax = mat.nonZeros();
res.nrow = mat.rows();;
@ -67,35 +72,47 @@ cholmod_sparse cholmod_map_eigen_to_sparse(_MatrixType& mat)
res.p = mat._outerIndexPtr();
res.i = mat._innerIndexPtr();
res.x = mat._valuePtr();
res.xtype = CHOLMOD_REAL;
res.itype = CHOLMOD_INT;
res.sorted = 1;
res.packed = 1;
res.dtype = 0;
res.stype = -1;
cholmod_configure_matrix<Scalar>(res);
if (_MatrixType::Flags & SelfAdjoint)
if (internal::is_same<_Index,int>::value)
{
if (_MatrixType::Flags & Upper)
res.stype = 1;
else if (_MatrixType::Flags & Lower)
res.stype = -1;
else
res.stype = 0;
res.itype = CHOLMOD_INT;
}
else
res.stype = -1; // by default we consider the lower part
{
eigen_assert(false && "Index type different than int is not supported yet");
}
// setup res.xtype
internal::cholmod_configure_matrix<_Scalar>(res);
res.stype = 0;
return res;
}
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
* The data are not copied but shared. */
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
{
cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
if(UpLo==Upper) res.stype = 1;
if(UpLo==Lower) res.stype = -1;
return res;
}
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
* The data are not copied but shared. */
template<typename Derived>
cholmod_dense cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
{
EIGEN_STATIC_ASSERT((traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
typedef typename Derived::Scalar Scalar;
cholmod_dense res;
@ -106,412 +123,242 @@ cholmod_dense cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
res.x = mat.derived().data();
res.z = 0;
cholmod_configure_matrix<Scalar>(res);
internal::cholmod_configure_matrix<Scalar>(res);
return res;
}
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
* The data are not copied but shared. */
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> map_cholmod_sparse_to_eigen(cholmod_sparse& cm)
MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
{
return MappedSparseMatrix<Scalar,Flags,Index>
(cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol],
reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) );
}
} // end namespace internal
template<typename _MatrixType>
class SparseLLT<_MatrixType, Cholmod> : public SparseLLT<_MatrixType>
{
protected:
typedef SparseLLT<_MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef typename Base::CholMatrixType CholMatrixType;
using Base::MatrixLIsDirty;
using Base::SupernodalFactorIsDirty;
using Base::m_flags;
using Base::m_matrix;
using Base::m_status;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
SparseLLT(int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
}
SparseLLT(const MatrixType& matrix, int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
compute(matrix);
}
~SparseLLT()
{
if (m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline const CholMatrixType& matrixL() const;
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(true && "SparseLLT is not initialized.");
return internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
}
void compute(const MatrixType& matrix);
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline const cholmod_factor* cholmodFactor() const
{ return m_cholmodFactor; }
inline cholmod_common* cholmodCommon() const
{ return &m_cholmod; }
bool succeeded() const;
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
};
template<typename _MatrixType, typename Rhs>
struct internal::solve_retval<SparseLLT<_MatrixType, Cholmod>, Rhs>
: internal::solve_retval_base<SparseLLT<_MatrixType, Cholmod>, Rhs>
{
typedef SparseLLT<_MatrixType, Cholmod> SpLLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
//Index size = dec().cholmodFactor()->n;
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
cholmod_dense* x = cholmod_solve(CHOLMOD_A, cholmodFactor, &cdb, cholmodCommon);
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
cholmod_free_dense(&x, cholmodCommon);
}
};
template<typename _MatrixType>
void SparseLLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
{
if (m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
// m_cholmod.supernodal = CHOLMOD_AUTO;
// TODO
// if (m_flags&IncompleteFactorization)
// {
// m_cholmod.nmethods = 1;
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
// m_cholmod.postorder = 0;
// }
// else
// {
// m_cholmod.nmethods = 1;
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
// m_cholmod.postorder = 0;
// }
// m_cholmod.final_ll = 1;
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
}
// TODO
template<typename _MatrixType>
bool SparseLLT<_MatrixType,Cholmod>::succeeded() const
{ return true; }
template<typename _MatrixType>
inline const typename SparseLLT<_MatrixType,Cholmod>::CholMatrixType&
SparseLLT<_MatrixType,Cholmod>::matrixL() const
{
if (m_status & MatrixLIsDirty)
{
eigen_assert(!(m_status & SupernodalFactorIsDirty));
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
const_cast<typename Base::CholMatrixType&>(m_matrix) =
internal::map_cholmod_sparse_to_eigen<Scalar,ColMajor,Index>(*cmRes);
free(cmRes);
m_status = (m_status & ~MatrixLIsDirty);
}
return m_matrix;
}
template<typename _MatrixType>
template<typename Derived>
bool SparseLLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
{
//Index size = m_cholmodFactor->n;
eigen_assert((Index)m_cholmodFactor->n==b.rows());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
eigen_assert(x && "Eigen: cholmod_solve failed.");
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
cholmod_free_dense(&x, &m_cholmod);
return true;
}
template<typename _MatrixType>
class SparseLDLT<_MatrixType,Cholmod> : public SparseLDLT<_MatrixType>
class SparseSolverBase
{
public:
SparseSolverBase()
: m_info(Success), m_isInitialized(false)
{}
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** Computes the sparse Cholesky decomposition of \a matrix */
void compute(const typename Derived::MatrixType& matrix)
{
derived().compute(matrix);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<Derived, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
// eigen_assert(m_matrix.rows()==b.rows()
// && "LLT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
}
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
protected:
typedef SparseLDLT<_MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
using Base::MatrixLIsDirty;
using Base::SupernodalFactorIsDirty;
using Base::m_flags;
using Base::m_matrix;
using Base::m_status;
mutable ComputationInfo m_info;
bool m_isInitialized;
};
enum CholmodMode {
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
};
/** \brief A Cholesky factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
* using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodDecomposition : public SparseSolverBase<CholmodDecomposition<_MatrixType,_UpLo> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
protected:
typedef SparseSolverBase<MatrixType> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef MatrixType CholMatrixType;
typedef typename MatrixType::Index Index;
SparseLDLT(int flags = 0)
: Base(flags), m_cholmodFactor(0)
public:
CholmodDecomposition()
: m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
}
SparseLDLT(const _MatrixType& matrix, int flags = 0)
: Base(flags), m_cholmodFactor(0)
CholmodDecomposition(const MatrixType& matrix)
: m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
compute(matrix);
}
~SparseLDLT()
~CholmodDecomposition()
{
if (m_cholmodFactor)
if(m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline const typename Base::CholMatrixType& matrixL(void) const;
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>
solve(const MatrixBase<Rhs>& b) const
int cols() const { return m_cholmodFactor->n; }
int rows() const { return m_cholmodFactor->n; }
void setMode(CholmodMode mode)
{
eigen_assert(true && "SparseLDLT is not initialized.");
return internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
switch(mode)
{
case CholmodAuto:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_AUTO;
break;
case CholmodSimplicialLLt:
m_cholmod.final_asis = 0;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
m_cholmod.final_ll = 1;
break;
case CholmodSupernodalLLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
break;
case CholmodLDLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
break;
default:
break;
}
}
void compute(const _MatrixType& matrix);
/** Computes the sparse Cholesky decomposition of \a matrix */
void compute(const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& matrix)
{
if(m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
this->m_isInitialized = true;
this->m_info = Success;
m_analysisIsOk = true;
m_factorizationIsOk = false;
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
this->m_info = Success;
m_factorizationIsOk = true;
}
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
* See the Cholmod user guide for details. */
cholmod_common& cholmod() { return m_cholmod; }
/** \internal */
template<typename Rhs,typename Dest>
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
eigen_assert(size==b.rows());
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline const cholmod_factor* cholmodFactor() const
{ return m_cholmodFactor; }
inline cholmod_common* cholmodCommon() const
{ return &m_cholmod; }
bool succeeded() const;
// note: cd stands for Cholmod Dense
cholmod_dense b_cd = viewAsCholmod(b.const_cast_derived());
cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
if(!x_cd)
{
this->m_info = NumericalIssue;
}
dest = Matrix<Scalar,Dynamic,1>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows());
cholmod_free_dense(&x_cd, &m_cholmod);
}
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
int m_factorizationIsOk;
int m_analysisIsOk;
};
template<typename _MatrixType, typename Rhs>
struct internal::solve_retval<SparseLDLT<_MatrixType, Cholmod>, Rhs>
: internal::solve_retval_base<SparseLDLT<_MatrixType, Cholmod>, Rhs>
{
typedef SparseLDLT<_MatrixType, Cholmod> SpLDLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLDLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
//Index size = dec().cholmodFactor()->n;
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, cholmodFactor, &cdb, cholmodCommon);
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
cholmod_free_dense(&x, cholmodCommon);
}
};
template<typename _MatrixType>
void SparseLDLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
{
if (m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
//m_cholmod.supernodal = CHOLMOD_AUTO;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
//m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
// TODO
if (m_flags & IncompleteFactorization)
{
m_cholmod.nmethods = 1;
//m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
m_cholmod.method[0].ordering = CHOLMOD_COLAMD;
m_cholmod.postorder = 1;
}
else
{
m_cholmod.nmethods = 1;
m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
m_cholmod.postorder = 0;
}
m_cholmod.final_ll = 0;
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
namespace internal {
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
}
// TODO
template<typename _MatrixType>
bool SparseLDLT<_MatrixType,Cholmod>::succeeded() const
{ return true; }
template<typename _MatrixType>
inline const typename SparseLDLT<_MatrixType>::CholMatrixType&
SparseLDLT<_MatrixType,Cholmod>::matrixL() const
template<typename _MatrixType, int _UpLo, typename Rhs>
struct solve_retval<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
: solve_retval_base<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
{
if (m_status & MatrixLIsDirty)
typedef CholmodDecomposition<_MatrixType,_UpLo> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
eigen_assert(!(m_status & SupernodalFactorIsDirty));
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
const_cast<typename Base::CholMatrixType&>(m_matrix) = MappedSparseMatrix<Scalar>(*cmRes);
free(cmRes);
m_status = (m_status & ~MatrixLIsDirty);
dec().derived()._solve(rhs(),dst);
}
return m_matrix;
};
}
template<typename _MatrixType>
template<typename Derived>
void SparseLDLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
{
//Index size = m_cholmodFactor->n;
eigen_assert((Index)m_cholmodFactor->n == b.rows());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
cholmod_free_dense(&x, &m_cholmod);
}
#endif // EIGEN_CHOLMODSUPPORT_H

View File

@ -0,0 +1,517 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CHOLMODSUPPORT_LEGACY_H
#define EIGEN_CHOLMODSUPPORT_LEGACY_H
namespace internal {
template<typename Scalar, typename CholmodType>
void cholmod_configure_matrix_legacy(CholmodType& mat)
{
if (internal::is_same<Scalar,float>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,double>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_DOUBLE;
}
else if (internal::is_same<Scalar,std::complex<float> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,std::complex<double> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_DOUBLE;
}
else
{
eigen_assert(false && "Scalar type not supported by CHOLMOD");
}
}
template<typename _MatrixType>
cholmod_sparse cholmod_map_eigen_to_sparse(_MatrixType& mat)
{
typedef typename _MatrixType::Scalar Scalar;
cholmod_sparse res;
res.nzmax = mat.nonZeros();
res.nrow = mat.rows();;
res.ncol = mat.cols();
res.p = mat._outerIndexPtr();
res.i = mat._innerIndexPtr();
res.x = mat._valuePtr();
res.xtype = CHOLMOD_REAL;
res.itype = CHOLMOD_INT;
res.sorted = 1;
res.packed = 1;
res.dtype = 0;
res.stype = -1;
internal::cholmod_configure_matrix_legacy<Scalar>(res);
if (_MatrixType::Flags & SelfAdjoint)
{
if (_MatrixType::Flags & Upper)
res.stype = 1;
else if (_MatrixType::Flags & Lower)
res.stype = -1;
else
res.stype = 0;
}
else
res.stype = -1; // by default we consider the lower part
return res;
}
template<typename Derived>
cholmod_dense cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
{
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
typedef typename Derived::Scalar Scalar;
cholmod_dense res;
res.nrow = mat.rows();
res.ncol = mat.cols();
res.nzmax = res.nrow * res.ncol;
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
res.x = mat.derived().data();
res.z = 0;
internal::cholmod_configure_matrix_legacy<Scalar>(res);
return res;
}
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> map_cholmod_sparse_to_eigen(cholmod_sparse& cm)
{
return MappedSparseMatrix<Scalar,Flags,Index>
(cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol],
reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) );
}
} // namespace internal
template<typename _MatrixType>
class SparseLLT<_MatrixType, Cholmod> : public SparseLLT<_MatrixType>
{
protected:
typedef SparseLLT<_MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef typename Base::CholMatrixType CholMatrixType;
using Base::MatrixLIsDirty;
using Base::SupernodalFactorIsDirty;
using Base::m_flags;
using Base::m_matrix;
using Base::m_status;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
SparseLLT(int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
}
SparseLLT(const MatrixType& matrix, int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
compute(matrix);
}
~SparseLLT()
{
if (m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline const CholMatrixType& matrixL() const;
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(true && "SparseLLT is not initialized.");
return internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
}
void compute(const MatrixType& matrix);
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline const cholmod_factor* cholmodFactor() const
{ return m_cholmodFactor; }
inline cholmod_common* cholmodCommon() const
{ return &m_cholmod; }
bool succeeded() const;
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
};
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<SparseLLT<_MatrixType, Cholmod>, Rhs>
: solve_retval_base<SparseLLT<_MatrixType, Cholmod>, Rhs>
{
typedef SparseLLT<_MatrixType, Cholmod> SpLLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
//Index size = dec().cholmodFactor()->n;
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
cholmod_dense* x = cholmod_solve(CHOLMOD_A, cholmodFactor, &cdb, cholmodCommon);
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
cholmod_free_dense(&x, cholmodCommon);
}
};
} // namespace internal
template<typename _MatrixType>
void SparseLLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
{
if (m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
// m_cholmod.supernodal = CHOLMOD_AUTO;
// TODO
// if (m_flags&IncompleteFactorization)
// {
// m_cholmod.nmethods = 1;
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
// m_cholmod.postorder = 0;
// }
// else
// {
// m_cholmod.nmethods = 1;
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
// m_cholmod.postorder = 0;
// }
// m_cholmod.final_ll = 1;
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
}
// TODO
template<typename _MatrixType>
bool SparseLLT<_MatrixType,Cholmod>::succeeded() const
{ return true; }
template<typename _MatrixType>
inline const typename SparseLLT<_MatrixType,Cholmod>::CholMatrixType&
SparseLLT<_MatrixType,Cholmod>::matrixL() const
{
if (m_status & MatrixLIsDirty)
{
eigen_assert(!(m_status & SupernodalFactorIsDirty));
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
const_cast<typename Base::CholMatrixType&>(m_matrix) =
internal::map_cholmod_sparse_to_eigen<Scalar,ColMajor,Index>(*cmRes);
free(cmRes);
m_status = (m_status & ~MatrixLIsDirty);
}
return m_matrix;
}
template<typename _MatrixType>
template<typename Derived>
bool SparseLLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
{
//Index size = m_cholmodFactor->n;
eigen_assert((Index)m_cholmodFactor->n==b.rows());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
eigen_assert(x && "Eigen: cholmod_solve failed.");
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
cholmod_free_dense(&x, &m_cholmod);
return true;
}
template<typename _MatrixType>
class SparseLDLT<_MatrixType,Cholmod> : public SparseLDLT<_MatrixType>
{
protected:
typedef SparseLDLT<_MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
using Base::MatrixLIsDirty;
using Base::SupernodalFactorIsDirty;
using Base::m_flags;
using Base::m_matrix;
using Base::m_status;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
SparseLDLT(int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
}
SparseLDLT(const _MatrixType& matrix, int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
compute(matrix);
}
~SparseLDLT()
{
if (m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline const typename Base::CholMatrixType& matrixL(void) const;
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(true && "SparseLDLT is not initialized.");
return internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
}
void compute(const _MatrixType& matrix);
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline const cholmod_factor* cholmodFactor() const
{ return m_cholmodFactor; }
inline cholmod_common* cholmodCommon() const
{ return &m_cholmod; }
bool succeeded() const;
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
};
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<SparseLDLT<_MatrixType, Cholmod>, Rhs>
: solve_retval_base<SparseLDLT<_MatrixType, Cholmod>, Rhs>
{
typedef SparseLDLT<_MatrixType, Cholmod> SpLDLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLDLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
//Index size = dec().cholmodFactor()->n;
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, cholmodFactor, &cdb, cholmodCommon);
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
cholmod_free_dense(&x, cholmodCommon);
}
};
} // namespace internal
template<typename _MatrixType>
void SparseLDLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
{
if (m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
//m_cholmod.supernodal = CHOLMOD_AUTO;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
//m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
// TODO
if (m_flags & IncompleteFactorization)
{
m_cholmod.nmethods = 1;
//m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
m_cholmod.method[0].ordering = CHOLMOD_COLAMD;
m_cholmod.postorder = 1;
}
else
{
m_cholmod.nmethods = 1;
m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
m_cholmod.postorder = 0;
}
m_cholmod.final_ll = 0;
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
}
// TODO
template<typename _MatrixType>
bool SparseLDLT<_MatrixType,Cholmod>::succeeded() const
{ return true; }
template<typename _MatrixType>
inline const typename SparseLDLT<_MatrixType>::CholMatrixType&
SparseLDLT<_MatrixType,Cholmod>::matrixL() const
{
if (m_status & MatrixLIsDirty)
{
eigen_assert(!(m_status & SupernodalFactorIsDirty));
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
const_cast<typename Base::CholMatrixType&>(m_matrix) = MappedSparseMatrix<Scalar>(*cmRes);
free(cmRes);
m_status = (m_status & ~MatrixLIsDirty);
}
return m_matrix;
}
template<typename _MatrixType>
template<typename Derived>
void SparseLDLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
{
//Index size = m_cholmodFactor->n;
eigen_assert((Index)m_cholmodFactor->n == b.rows());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
cholmod_free_dense(&x, &m_cholmod);
}
#endif // EIGEN_CHOLMODSUPPORT_LEGACY_H

View File

@ -56,6 +56,7 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
}
#ifdef EIGEN_CHOLMOD_SUPPORT
// legacy API
{
// Cholmod, as configured in CholmodSupport.h, only supports self-adjoint matrices
SparseMatrix<Scalar> m3 = m2.adjoint()*m2;
@ -65,9 +66,24 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
x = b;
SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solveInPlace(x);
VERIFY((m3*x).isApprox(b,test_precision<Scalar>()) && "LLT: cholmod solveInPlace");
VERIFY((m3*x).isApprox(b,test_precision<Scalar>()) && "LLT legacy: cholmod solveInPlace");
x = SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solve(b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT legacy: cholmod solve");
}
// new API
{
// Cholmod, as configured in CholmodSupport.h, only supports self-adjoint matrices
SparseMatrix<Scalar> m3 = m2.adjoint()*m2;
DenseMatrix refMat3 = refMat2.adjoint()*refMat2;
refX = refMat3.template selfadjointView<Lower>().llt().solve(b);
x = CholmodDecomposition<SparseMatrix<Scalar>, Lower>(m3).solve(b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve");
x = CholmodDecomposition<SparseMatrix<Scalar>, Upper>(m3).solve(b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve");
}
#endif