mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-24 02:29:33 +08:00
add new API for Cholmod preserving the legacy one for now
This commit is contained in:
parent
7bc8e3ac09
commit
666c16cf63
@ -21,9 +21,10 @@ namespace Eigen {
|
||||
*/
|
||||
|
||||
struct Cholmod {};
|
||||
|
||||
#include "src/SparseExtra/CholmodSupportLegacy.h"
|
||||
#include "src/SparseExtra/CholmodSupport.h"
|
||||
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#include "../../Eigen/src/Core/util/EnableMSVCWarnings.h"
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -26,26 +26,26 @@
|
||||
#define EIGEN_CHOLMODSUPPORT_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
|
||||
template<typename Scalar, typename CholmodType>
|
||||
void cholmod_configure_matrix(CholmodType& mat)
|
||||
{
|
||||
if (is_same<Scalar,float>::value)
|
||||
if (internal::is_same<Scalar,float>::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_REAL;
|
||||
mat.dtype = CHOLMOD_SINGLE;
|
||||
}
|
||||
else if (is_same<Scalar,double>::value)
|
||||
else if (internal::is_same<Scalar,double>::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_REAL;
|
||||
mat.dtype = CHOLMOD_DOUBLE;
|
||||
}
|
||||
else if (is_same<Scalar,std::complex<float> >::value)
|
||||
else if (internal::is_same<Scalar,std::complex<float> >::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_COMPLEX;
|
||||
mat.dtype = CHOLMOD_SINGLE;
|
||||
}
|
||||
else if (is_same<Scalar,std::complex<double> >::value)
|
||||
else if (internal::is_same<Scalar,std::complex<double> >::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_COMPLEX;
|
||||
mat.dtype = CHOLMOD_DOUBLE;
|
||||
@ -56,10 +56,15 @@ void cholmod_configure_matrix(CholmodType& mat)
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _MatrixType>
|
||||
cholmod_sparse cholmod_map_eigen_to_sparse(_MatrixType& mat)
|
||||
} // namespace internal
|
||||
|
||||
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
|
||||
* Note that the data are shared.
|
||||
*/
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
|
||||
{
|
||||
typedef typename _MatrixType::Scalar Scalar;
|
||||
typedef SparseMatrix<_Scalar,_Options,_Index> MatrixType;
|
||||
cholmod_sparse res;
|
||||
res.nzmax = mat.nonZeros();
|
||||
res.nrow = mat.rows();;
|
||||
@ -67,35 +72,47 @@ cholmod_sparse cholmod_map_eigen_to_sparse(_MatrixType& mat)
|
||||
res.p = mat._outerIndexPtr();
|
||||
res.i = mat._innerIndexPtr();
|
||||
res.x = mat._valuePtr();
|
||||
res.xtype = CHOLMOD_REAL;
|
||||
res.itype = CHOLMOD_INT;
|
||||
res.sorted = 1;
|
||||
res.packed = 1;
|
||||
res.dtype = 0;
|
||||
res.stype = -1;
|
||||
|
||||
cholmod_configure_matrix<Scalar>(res);
|
||||
|
||||
|
||||
if (_MatrixType::Flags & SelfAdjoint)
|
||||
|
||||
if (internal::is_same<_Index,int>::value)
|
||||
{
|
||||
if (_MatrixType::Flags & Upper)
|
||||
res.stype = 1;
|
||||
else if (_MatrixType::Flags & Lower)
|
||||
res.stype = -1;
|
||||
else
|
||||
res.stype = 0;
|
||||
res.itype = CHOLMOD_INT;
|
||||
}
|
||||
else
|
||||
res.stype = -1; // by default we consider the lower part
|
||||
{
|
||||
eigen_assert(false && "Index type different than int is not supported yet");
|
||||
}
|
||||
|
||||
// setup res.xtype
|
||||
internal::cholmod_configure_matrix<_Scalar>(res);
|
||||
|
||||
res.stype = 0;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
|
||||
* The data are not copied but shared. */
|
||||
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
|
||||
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
|
||||
{
|
||||
cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
|
||||
|
||||
if(UpLo==Upper) res.stype = 1;
|
||||
if(UpLo==Lower) res.stype = -1;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
|
||||
* The data are not copied but shared. */
|
||||
template<typename Derived>
|
||||
cholmod_dense cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
|
||||
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
||||
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
cholmod_dense res;
|
||||
@ -106,412 +123,242 @@ cholmod_dense cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
|
||||
res.x = mat.derived().data();
|
||||
res.z = 0;
|
||||
|
||||
cholmod_configure_matrix<Scalar>(res);
|
||||
internal::cholmod_configure_matrix<Scalar>(res);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
|
||||
* The data are not copied but shared. */
|
||||
template<typename Scalar, int Flags, typename Index>
|
||||
MappedSparseMatrix<Scalar,Flags,Index> map_cholmod_sparse_to_eigen(cholmod_sparse& cm)
|
||||
MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
|
||||
{
|
||||
return MappedSparseMatrix<Scalar,Flags,Index>
|
||||
(cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol],
|
||||
reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) );
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename _MatrixType>
|
||||
class SparseLLT<_MatrixType, Cholmod> : public SparseLLT<_MatrixType>
|
||||
{
|
||||
protected:
|
||||
typedef SparseLLT<_MatrixType> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
typedef typename Base::CholMatrixType CholMatrixType;
|
||||
using Base::MatrixLIsDirty;
|
||||
using Base::SupernodalFactorIsDirty;
|
||||
using Base::m_flags;
|
||||
using Base::m_matrix;
|
||||
using Base::m_status;
|
||||
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
SparseLLT(int flags = 0)
|
||||
: Base(flags), m_cholmodFactor(0)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
}
|
||||
|
||||
SparseLLT(const MatrixType& matrix, int flags = 0)
|
||||
: Base(flags), m_cholmodFactor(0)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~SparseLLT()
|
||||
{
|
||||
if (m_cholmodFactor)
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
cholmod_finish(&m_cholmod);
|
||||
}
|
||||
|
||||
inline const CholMatrixType& matrixL() const;
|
||||
|
||||
template<typename Derived>
|
||||
bool solveInPlace(MatrixBase<Derived> &b) const;
|
||||
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(true && "SparseLLT is not initialized.");
|
||||
return internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
|
||||
inline const cholmod_factor* cholmodFactor() const
|
||||
{ return m_cholmodFactor; }
|
||||
|
||||
inline cholmod_common* cholmodCommon() const
|
||||
{ return &m_cholmod; }
|
||||
|
||||
bool succeeded() const;
|
||||
|
||||
protected:
|
||||
mutable cholmod_common m_cholmod;
|
||||
cholmod_factor* m_cholmodFactor;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType, typename Rhs>
|
||||
struct internal::solve_retval<SparseLLT<_MatrixType, Cholmod>, Rhs>
|
||||
: internal::solve_retval_base<SparseLLT<_MatrixType, Cholmod>, Rhs>
|
||||
{
|
||||
typedef SparseLLT<_MatrixType, Cholmod> SpLLTDecType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(SpLLTDecType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
//Index size = dec().cholmodFactor()->n;
|
||||
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
|
||||
|
||||
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
|
||||
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
|
||||
// this uses Eigen's triangular sparse solver
|
||||
// if (m_status & MatrixLIsDirty)
|
||||
// matrixL();
|
||||
// Base::solveInPlace(b);
|
||||
// as long as our own triangular sparse solver is not fully optimal,
|
||||
// let's use CHOLMOD's one:
|
||||
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_A, cholmodFactor, &cdb, cholmodCommon);
|
||||
|
||||
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
|
||||
|
||||
cholmod_free_dense(&x, cholmodCommon);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
void SparseLLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
|
||||
{
|
||||
if (m_cholmodFactor)
|
||||
{
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
m_cholmodFactor = 0;
|
||||
}
|
||||
|
||||
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
|
||||
// m_cholmod.supernodal = CHOLMOD_AUTO;
|
||||
// TODO
|
||||
// if (m_flags&IncompleteFactorization)
|
||||
// {
|
||||
// m_cholmod.nmethods = 1;
|
||||
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
||||
// m_cholmod.postorder = 0;
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// m_cholmod.nmethods = 1;
|
||||
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
||||
// m_cholmod.postorder = 0;
|
||||
// }
|
||||
// m_cholmod.final_ll = 1;
|
||||
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
|
||||
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
|
||||
|
||||
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
|
||||
}
|
||||
|
||||
|
||||
// TODO
|
||||
template<typename _MatrixType>
|
||||
bool SparseLLT<_MatrixType,Cholmod>::succeeded() const
|
||||
{ return true; }
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
inline const typename SparseLLT<_MatrixType,Cholmod>::CholMatrixType&
|
||||
SparseLLT<_MatrixType,Cholmod>::matrixL() const
|
||||
{
|
||||
if (m_status & MatrixLIsDirty)
|
||||
{
|
||||
eigen_assert(!(m_status & SupernodalFactorIsDirty));
|
||||
|
||||
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
|
||||
const_cast<typename Base::CholMatrixType&>(m_matrix) =
|
||||
internal::map_cholmod_sparse_to_eigen<Scalar,ColMajor,Index>(*cmRes);
|
||||
free(cmRes);
|
||||
|
||||
m_status = (m_status & ~MatrixLIsDirty);
|
||||
}
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
template<typename Derived>
|
||||
bool SparseLLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
{
|
||||
//Index size = m_cholmodFactor->n;
|
||||
eigen_assert((Index)m_cholmodFactor->n==b.rows());
|
||||
|
||||
// this uses Eigen's triangular sparse solver
|
||||
// if (m_status & MatrixLIsDirty)
|
||||
// matrixL();
|
||||
// Base::solveInPlace(b);
|
||||
// as long as our own triangular sparse solver is not fully optimal,
|
||||
// let's use CHOLMOD's one:
|
||||
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
|
||||
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
|
||||
eigen_assert(x && "Eigen: cholmod_solve failed.");
|
||||
|
||||
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
|
||||
cholmod_free_dense(&x, &m_cholmod);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
class SparseLDLT<_MatrixType,Cholmod> : public SparseLDLT<_MatrixType>
|
||||
class SparseSolverBase
|
||||
{
|
||||
public:
|
||||
|
||||
SparseSolverBase()
|
||||
: m_info(Success), m_isInitialized(false)
|
||||
{}
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
void compute(const typename Derived::MatrixType& matrix)
|
||||
{
|
||||
derived().compute(matrix);
|
||||
}
|
||||
#endif // EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<Derived, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
// eigen_assert(m_matrix.rows()==b.rows()
|
||||
// && "LLT::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
|
||||
}
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef SparseLDLT<_MatrixType> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
using Base::MatrixLIsDirty;
|
||||
using Base::SupernodalFactorIsDirty;
|
||||
using Base::m_flags;
|
||||
using Base::m_matrix;
|
||||
using Base::m_status;
|
||||
|
||||
mutable ComputationInfo m_info;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
enum CholmodMode {
|
||||
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
|
||||
};
|
||||
|
||||
/** \brief A Cholesky factorization and solver based on Cholmod
|
||||
*
|
||||
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
|
||||
* using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
*
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo = Lower>
|
||||
class CholmodDecomposition : public SparseSolverBase<CholmodDecomposition<_MatrixType,_UpLo> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum { UpLo = _UpLo };
|
||||
protected:
|
||||
typedef SparseSolverBase<MatrixType> Base;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef MatrixType CholMatrixType;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
SparseLDLT(int flags = 0)
|
||||
: Base(flags), m_cholmodFactor(0)
|
||||
public:
|
||||
|
||||
CholmodDecomposition()
|
||||
: m_cholmodFactor(0)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
}
|
||||
|
||||
SparseLDLT(const _MatrixType& matrix, int flags = 0)
|
||||
: Base(flags), m_cholmodFactor(0)
|
||||
CholmodDecomposition(const MatrixType& matrix)
|
||||
: m_cholmodFactor(0)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~SparseLDLT()
|
||||
~CholmodDecomposition()
|
||||
{
|
||||
if (m_cholmodFactor)
|
||||
if(m_cholmodFactor)
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
cholmod_finish(&m_cholmod);
|
||||
}
|
||||
|
||||
inline const typename Base::CholMatrixType& matrixL(void) const;
|
||||
|
||||
template<typename Derived>
|
||||
void solveInPlace(MatrixBase<Derived> &b) const;
|
||||
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
|
||||
int cols() const { return m_cholmodFactor->n; }
|
||||
int rows() const { return m_cholmodFactor->n; }
|
||||
|
||||
void setMode(CholmodMode mode)
|
||||
{
|
||||
eigen_assert(true && "SparseLDLT is not initialized.");
|
||||
return internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
|
||||
switch(mode)
|
||||
{
|
||||
case CholmodAuto:
|
||||
m_cholmod.final_asis = 1;
|
||||
m_cholmod.supernodal = CHOLMOD_AUTO;
|
||||
break;
|
||||
case CholmodSimplicialLLt:
|
||||
m_cholmod.final_asis = 0;
|
||||
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
||||
m_cholmod.final_ll = 1;
|
||||
break;
|
||||
case CholmodSupernodalLLt:
|
||||
m_cholmod.final_asis = 1;
|
||||
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
||||
break;
|
||||
case CholmodLDLt:
|
||||
m_cholmod.final_asis = 1;
|
||||
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void compute(const _MatrixType& matrix);
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
void compute(const MatrixType& matrix)
|
||||
{
|
||||
analyzePattern(matrix);
|
||||
factorize(matrix);
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
*
|
||||
* \sa factorize()
|
||||
*/
|
||||
void analyzePattern(const MatrixType& matrix)
|
||||
{
|
||||
if(m_cholmodFactor)
|
||||
{
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
m_cholmodFactor = 0;
|
||||
}
|
||||
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
||||
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
|
||||
|
||||
this->m_isInitialized = true;
|
||||
this->m_info = Success;
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
}
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
void factorize(const MatrixType& matrix)
|
||||
{
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
||||
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
|
||||
|
||||
this->m_info = Success;
|
||||
m_factorizationIsOk = true;
|
||||
}
|
||||
|
||||
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
|
||||
* See the Cholmod user guide for details. */
|
||||
cholmod_common& cholmod() { return m_cholmod; }
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
|
||||
{
|
||||
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
||||
const Index size = m_cholmodFactor->n;
|
||||
eigen_assert(size==b.rows());
|
||||
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
|
||||
inline const cholmod_factor* cholmodFactor() const
|
||||
{ return m_cholmodFactor; }
|
||||
|
||||
inline cholmod_common* cholmodCommon() const
|
||||
{ return &m_cholmod; }
|
||||
|
||||
bool succeeded() const;
|
||||
// note: cd stands for Cholmod Dense
|
||||
cholmod_dense b_cd = viewAsCholmod(b.const_cast_derived());
|
||||
cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
|
||||
if(!x_cd)
|
||||
{
|
||||
this->m_info = NumericalIssue;
|
||||
}
|
||||
dest = Matrix<Scalar,Dynamic,1>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows());
|
||||
cholmod_free_dense(&x_cd, &m_cholmod);
|
||||
}
|
||||
|
||||
protected:
|
||||
mutable cholmod_common m_cholmod;
|
||||
cholmod_factor* m_cholmodFactor;
|
||||
int m_factorizationIsOk;
|
||||
int m_analysisIsOk;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType, typename Rhs>
|
||||
struct internal::solve_retval<SparseLDLT<_MatrixType, Cholmod>, Rhs>
|
||||
: internal::solve_retval_base<SparseLDLT<_MatrixType, Cholmod>, Rhs>
|
||||
{
|
||||
typedef SparseLDLT<_MatrixType, Cholmod> SpLDLTDecType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(SpLDLTDecType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
//Index size = dec().cholmodFactor()->n;
|
||||
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
|
||||
|
||||
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
|
||||
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
|
||||
// this uses Eigen's triangular sparse solver
|
||||
// if (m_status & MatrixLIsDirty)
|
||||
// matrixL();
|
||||
// Base::solveInPlace(b);
|
||||
// as long as our own triangular sparse solver is not fully optimal,
|
||||
// let's use CHOLMOD's one:
|
||||
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, cholmodFactor, &cdb, cholmodCommon);
|
||||
|
||||
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
|
||||
cholmod_free_dense(&x, cholmodCommon);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
void SparseLDLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
|
||||
{
|
||||
if (m_cholmodFactor)
|
||||
{
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
m_cholmodFactor = 0;
|
||||
}
|
||||
|
||||
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
|
||||
|
||||
//m_cholmod.supernodal = CHOLMOD_AUTO;
|
||||
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
||||
//m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
||||
// TODO
|
||||
if (m_flags & IncompleteFactorization)
|
||||
{
|
||||
m_cholmod.nmethods = 1;
|
||||
//m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
||||
m_cholmod.method[0].ordering = CHOLMOD_COLAMD;
|
||||
m_cholmod.postorder = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_cholmod.nmethods = 1;
|
||||
m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
||||
m_cholmod.postorder = 0;
|
||||
}
|
||||
m_cholmod.final_ll = 0;
|
||||
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
|
||||
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
|
||||
namespace internal {
|
||||
|
||||
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
|
||||
}
|
||||
|
||||
|
||||
// TODO
|
||||
template<typename _MatrixType>
|
||||
bool SparseLDLT<_MatrixType,Cholmod>::succeeded() const
|
||||
{ return true; }
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
inline const typename SparseLDLT<_MatrixType>::CholMatrixType&
|
||||
SparseLDLT<_MatrixType,Cholmod>::matrixL() const
|
||||
template<typename _MatrixType, int _UpLo, typename Rhs>
|
||||
struct solve_retval<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
|
||||
: solve_retval_base<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
|
||||
{
|
||||
if (m_status & MatrixLIsDirty)
|
||||
typedef CholmodDecomposition<_MatrixType,_UpLo> Dec;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
eigen_assert(!(m_status & SupernodalFactorIsDirty));
|
||||
|
||||
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
|
||||
const_cast<typename Base::CholMatrixType&>(m_matrix) = MappedSparseMatrix<Scalar>(*cmRes);
|
||||
free(cmRes);
|
||||
|
||||
m_status = (m_status & ~MatrixLIsDirty);
|
||||
dec().derived()._solve(rhs(),dst);
|
||||
}
|
||||
return m_matrix;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
template<typename Derived>
|
||||
void SparseLDLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
{
|
||||
//Index size = m_cholmodFactor->n;
|
||||
eigen_assert((Index)m_cholmodFactor->n == b.rows());
|
||||
|
||||
// this uses Eigen's triangular sparse solver
|
||||
// if (m_status & MatrixLIsDirty)
|
||||
// matrixL();
|
||||
// Base::solveInPlace(b);
|
||||
// as long as our own triangular sparse solver is not fully optimal,
|
||||
// let's use CHOLMOD's one:
|
||||
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
|
||||
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
|
||||
cholmod_free_dense(&x, &m_cholmod);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif // EIGEN_CHOLMODSUPPORT_H
|
||||
|
517
unsupported/Eigen/src/SparseExtra/CholmodSupportLegacy.h
Normal file
517
unsupported/Eigen/src/SparseExtra/CholmodSupportLegacy.h
Normal file
@ -0,0 +1,517 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_CHOLMODSUPPORT_LEGACY_H
|
||||
#define EIGEN_CHOLMODSUPPORT_LEGACY_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar, typename CholmodType>
|
||||
void cholmod_configure_matrix_legacy(CholmodType& mat)
|
||||
{
|
||||
if (internal::is_same<Scalar,float>::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_REAL;
|
||||
mat.dtype = CHOLMOD_SINGLE;
|
||||
}
|
||||
else if (internal::is_same<Scalar,double>::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_REAL;
|
||||
mat.dtype = CHOLMOD_DOUBLE;
|
||||
}
|
||||
else if (internal::is_same<Scalar,std::complex<float> >::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_COMPLEX;
|
||||
mat.dtype = CHOLMOD_SINGLE;
|
||||
}
|
||||
else if (internal::is_same<Scalar,std::complex<double> >::value)
|
||||
{
|
||||
mat.xtype = CHOLMOD_COMPLEX;
|
||||
mat.dtype = CHOLMOD_DOUBLE;
|
||||
}
|
||||
else
|
||||
{
|
||||
eigen_assert(false && "Scalar type not supported by CHOLMOD");
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _MatrixType>
|
||||
cholmod_sparse cholmod_map_eigen_to_sparse(_MatrixType& mat)
|
||||
{
|
||||
typedef typename _MatrixType::Scalar Scalar;
|
||||
cholmod_sparse res;
|
||||
res.nzmax = mat.nonZeros();
|
||||
res.nrow = mat.rows();;
|
||||
res.ncol = mat.cols();
|
||||
res.p = mat._outerIndexPtr();
|
||||
res.i = mat._innerIndexPtr();
|
||||
res.x = mat._valuePtr();
|
||||
res.xtype = CHOLMOD_REAL;
|
||||
res.itype = CHOLMOD_INT;
|
||||
res.sorted = 1;
|
||||
res.packed = 1;
|
||||
res.dtype = 0;
|
||||
res.stype = -1;
|
||||
|
||||
internal::cholmod_configure_matrix_legacy<Scalar>(res);
|
||||
|
||||
|
||||
if (_MatrixType::Flags & SelfAdjoint)
|
||||
{
|
||||
if (_MatrixType::Flags & Upper)
|
||||
res.stype = 1;
|
||||
else if (_MatrixType::Flags & Lower)
|
||||
res.stype = -1;
|
||||
else
|
||||
res.stype = 0;
|
||||
}
|
||||
else
|
||||
res.stype = -1; // by default we consider the lower part
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
cholmod_dense cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
cholmod_dense res;
|
||||
res.nrow = mat.rows();
|
||||
res.ncol = mat.cols();
|
||||
res.nzmax = res.nrow * res.ncol;
|
||||
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
|
||||
res.x = mat.derived().data();
|
||||
res.z = 0;
|
||||
|
||||
internal::cholmod_configure_matrix_legacy<Scalar>(res);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Scalar, int Flags, typename Index>
|
||||
MappedSparseMatrix<Scalar,Flags,Index> map_cholmod_sparse_to_eigen(cholmod_sparse& cm)
|
||||
{
|
||||
return MappedSparseMatrix<Scalar,Flags,Index>
|
||||
(cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol],
|
||||
reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) );
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
template<typename _MatrixType>
|
||||
class SparseLLT<_MatrixType, Cholmod> : public SparseLLT<_MatrixType>
|
||||
{
|
||||
protected:
|
||||
typedef SparseLLT<_MatrixType> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
typedef typename Base::CholMatrixType CholMatrixType;
|
||||
using Base::MatrixLIsDirty;
|
||||
using Base::SupernodalFactorIsDirty;
|
||||
using Base::m_flags;
|
||||
using Base::m_matrix;
|
||||
using Base::m_status;
|
||||
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
SparseLLT(int flags = 0)
|
||||
: Base(flags), m_cholmodFactor(0)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
}
|
||||
|
||||
SparseLLT(const MatrixType& matrix, int flags = 0)
|
||||
: Base(flags), m_cholmodFactor(0)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~SparseLLT()
|
||||
{
|
||||
if (m_cholmodFactor)
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
cholmod_finish(&m_cholmod);
|
||||
}
|
||||
|
||||
inline const CholMatrixType& matrixL() const;
|
||||
|
||||
template<typename Derived>
|
||||
bool solveInPlace(MatrixBase<Derived> &b) const;
|
||||
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(true && "SparseLLT is not initialized.");
|
||||
return internal::solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
|
||||
inline const cholmod_factor* cholmodFactor() const
|
||||
{ return m_cholmodFactor; }
|
||||
|
||||
inline cholmod_common* cholmodCommon() const
|
||||
{ return &m_cholmod; }
|
||||
|
||||
bool succeeded() const;
|
||||
|
||||
protected:
|
||||
mutable cholmod_common m_cholmod;
|
||||
cholmod_factor* m_cholmodFactor;
|
||||
};
|
||||
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, typename Rhs>
|
||||
struct solve_retval<SparseLLT<_MatrixType, Cholmod>, Rhs>
|
||||
: solve_retval_base<SparseLLT<_MatrixType, Cholmod>, Rhs>
|
||||
{
|
||||
typedef SparseLLT<_MatrixType, Cholmod> SpLLTDecType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(SpLLTDecType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
//Index size = dec().cholmodFactor()->n;
|
||||
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
|
||||
|
||||
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
|
||||
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
|
||||
// this uses Eigen's triangular sparse solver
|
||||
// if (m_status & MatrixLIsDirty)
|
||||
// matrixL();
|
||||
// Base::solveInPlace(b);
|
||||
// as long as our own triangular sparse solver is not fully optimal,
|
||||
// let's use CHOLMOD's one:
|
||||
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_A, cholmodFactor, &cdb, cholmodCommon);
|
||||
|
||||
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
|
||||
|
||||
cholmod_free_dense(&x, cholmodCommon);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
void SparseLLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
|
||||
{
|
||||
if (m_cholmodFactor)
|
||||
{
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
m_cholmodFactor = 0;
|
||||
}
|
||||
|
||||
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
|
||||
// m_cholmod.supernodal = CHOLMOD_AUTO;
|
||||
// TODO
|
||||
// if (m_flags&IncompleteFactorization)
|
||||
// {
|
||||
// m_cholmod.nmethods = 1;
|
||||
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
||||
// m_cholmod.postorder = 0;
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// m_cholmod.nmethods = 1;
|
||||
// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
||||
// m_cholmod.postorder = 0;
|
||||
// }
|
||||
// m_cholmod.final_ll = 1;
|
||||
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
|
||||
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
|
||||
|
||||
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
|
||||
}
|
||||
|
||||
|
||||
// TODO
|
||||
template<typename _MatrixType>
|
||||
bool SparseLLT<_MatrixType,Cholmod>::succeeded() const
|
||||
{ return true; }
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
inline const typename SparseLLT<_MatrixType,Cholmod>::CholMatrixType&
|
||||
SparseLLT<_MatrixType,Cholmod>::matrixL() const
|
||||
{
|
||||
if (m_status & MatrixLIsDirty)
|
||||
{
|
||||
eigen_assert(!(m_status & SupernodalFactorIsDirty));
|
||||
|
||||
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
|
||||
const_cast<typename Base::CholMatrixType&>(m_matrix) =
|
||||
internal::map_cholmod_sparse_to_eigen<Scalar,ColMajor,Index>(*cmRes);
|
||||
free(cmRes);
|
||||
|
||||
m_status = (m_status & ~MatrixLIsDirty);
|
||||
}
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
template<typename Derived>
|
||||
bool SparseLLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
{
|
||||
//Index size = m_cholmodFactor->n;
|
||||
eigen_assert((Index)m_cholmodFactor->n==b.rows());
|
||||
|
||||
// this uses Eigen's triangular sparse solver
|
||||
// if (m_status & MatrixLIsDirty)
|
||||
// matrixL();
|
||||
// Base::solveInPlace(b);
|
||||
// as long as our own triangular sparse solver is not fully optimal,
|
||||
// let's use CHOLMOD's one:
|
||||
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
|
||||
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
|
||||
eigen_assert(x && "Eigen: cholmod_solve failed.");
|
||||
|
||||
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
|
||||
cholmod_free_dense(&x, &m_cholmod);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
class SparseLDLT<_MatrixType,Cholmod> : public SparseLDLT<_MatrixType>
|
||||
{
|
||||
protected:
|
||||
typedef SparseLDLT<_MatrixType> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
using Base::MatrixLIsDirty;
|
||||
using Base::SupernodalFactorIsDirty;
|
||||
using Base::m_flags;
|
||||
using Base::m_matrix;
|
||||
using Base::m_status;
|
||||
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
SparseLDLT(int flags = 0)
|
||||
: Base(flags), m_cholmodFactor(0)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
}
|
||||
|
||||
SparseLDLT(const _MatrixType& matrix, int flags = 0)
|
||||
: Base(flags), m_cholmodFactor(0)
|
||||
{
|
||||
cholmod_start(&m_cholmod);
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~SparseLDLT()
|
||||
{
|
||||
if (m_cholmodFactor)
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
cholmod_finish(&m_cholmod);
|
||||
}
|
||||
|
||||
inline const typename Base::CholMatrixType& matrixL(void) const;
|
||||
|
||||
template<typename Derived>
|
||||
void solveInPlace(MatrixBase<Derived> &b) const;
|
||||
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(true && "SparseLDLT is not initialized.");
|
||||
return internal::solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
void compute(const _MatrixType& matrix);
|
||||
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
|
||||
inline const cholmod_factor* cholmodFactor() const
|
||||
{ return m_cholmodFactor; }
|
||||
|
||||
inline cholmod_common* cholmodCommon() const
|
||||
{ return &m_cholmod; }
|
||||
|
||||
bool succeeded() const;
|
||||
|
||||
protected:
|
||||
mutable cholmod_common m_cholmod;
|
||||
cholmod_factor* m_cholmodFactor;
|
||||
};
|
||||
|
||||
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, typename Rhs>
|
||||
struct solve_retval<SparseLDLT<_MatrixType, Cholmod>, Rhs>
|
||||
: solve_retval_base<SparseLDLT<_MatrixType, Cholmod>, Rhs>
|
||||
{
|
||||
typedef SparseLDLT<_MatrixType, Cholmod> SpLDLTDecType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(SpLDLTDecType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
//Index size = dec().cholmodFactor()->n;
|
||||
eigen_assert((Index)dec().cholmodFactor()->n==rhs().rows());
|
||||
|
||||
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
|
||||
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
|
||||
// this uses Eigen's triangular sparse solver
|
||||
// if (m_status & MatrixLIsDirty)
|
||||
// matrixL();
|
||||
// Base::solveInPlace(b);
|
||||
// as long as our own triangular sparse solver is not fully optimal,
|
||||
// let's use CHOLMOD's one:
|
||||
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(rhs().const_cast_derived());
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, cholmodFactor, &cdb, cholmodCommon);
|
||||
|
||||
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
|
||||
cholmod_free_dense(&x, cholmodCommon);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
} // namespace internal
|
||||
|
||||
template<typename _MatrixType>
|
||||
void SparseLDLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
|
||||
{
|
||||
if (m_cholmodFactor)
|
||||
{
|
||||
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
|
||||
m_cholmodFactor = 0;
|
||||
}
|
||||
|
||||
cholmod_sparse A = internal::cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
|
||||
|
||||
//m_cholmod.supernodal = CHOLMOD_AUTO;
|
||||
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
|
||||
//m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
|
||||
// TODO
|
||||
if (m_flags & IncompleteFactorization)
|
||||
{
|
||||
m_cholmod.nmethods = 1;
|
||||
//m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
||||
m_cholmod.method[0].ordering = CHOLMOD_COLAMD;
|
||||
m_cholmod.postorder = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_cholmod.nmethods = 1;
|
||||
m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
|
||||
m_cholmod.postorder = 0;
|
||||
}
|
||||
m_cholmod.final_ll = 0;
|
||||
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
|
||||
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
|
||||
|
||||
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
|
||||
}
|
||||
|
||||
|
||||
// TODO
|
||||
template<typename _MatrixType>
|
||||
bool SparseLDLT<_MatrixType,Cholmod>::succeeded() const
|
||||
{ return true; }
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
inline const typename SparseLDLT<_MatrixType>::CholMatrixType&
|
||||
SparseLDLT<_MatrixType,Cholmod>::matrixL() const
|
||||
{
|
||||
if (m_status & MatrixLIsDirty)
|
||||
{
|
||||
eigen_assert(!(m_status & SupernodalFactorIsDirty));
|
||||
|
||||
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
|
||||
const_cast<typename Base::CholMatrixType&>(m_matrix) = MappedSparseMatrix<Scalar>(*cmRes);
|
||||
free(cmRes);
|
||||
|
||||
m_status = (m_status & ~MatrixLIsDirty);
|
||||
}
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename _MatrixType>
|
||||
template<typename Derived>
|
||||
void SparseLDLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
{
|
||||
//Index size = m_cholmodFactor->n;
|
||||
eigen_assert((Index)m_cholmodFactor->n == b.rows());
|
||||
|
||||
// this uses Eigen's triangular sparse solver
|
||||
// if (m_status & MatrixLIsDirty)
|
||||
// matrixL();
|
||||
// Base::solveInPlace(b);
|
||||
// as long as our own triangular sparse solver is not fully optimal,
|
||||
// let's use CHOLMOD's one:
|
||||
cholmod_dense cdb = internal::cholmod_map_eigen_to_dense(b);
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
|
||||
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
|
||||
cholmod_free_dense(&x, &m_cholmod);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif // EIGEN_CHOLMODSUPPORT_LEGACY_H
|
@ -56,6 +56,7 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
|
||||
}
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
// legacy API
|
||||
{
|
||||
// Cholmod, as configured in CholmodSupport.h, only supports self-adjoint matrices
|
||||
SparseMatrix<Scalar> m3 = m2.adjoint()*m2;
|
||||
@ -65,9 +66,24 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
|
||||
|
||||
x = b;
|
||||
SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solveInPlace(x);
|
||||
VERIFY((m3*x).isApprox(b,test_precision<Scalar>()) && "LLT: cholmod solveInPlace");
|
||||
VERIFY((m3*x).isApprox(b,test_precision<Scalar>()) && "LLT legacy: cholmod solveInPlace");
|
||||
|
||||
x = SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solve(b);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT legacy: cholmod solve");
|
||||
}
|
||||
|
||||
// new API
|
||||
{
|
||||
// Cholmod, as configured in CholmodSupport.h, only supports self-adjoint matrices
|
||||
SparseMatrix<Scalar> m3 = m2.adjoint()*m2;
|
||||
DenseMatrix refMat3 = refMat2.adjoint()*refMat2;
|
||||
|
||||
refX = refMat3.template selfadjointView<Lower>().llt().solve(b);
|
||||
|
||||
x = CholmodDecomposition<SparseMatrix<Scalar>, Lower>(m3).solve(b);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve");
|
||||
|
||||
x = CholmodDecomposition<SparseMatrix<Scalar>, Upper>(m3).solve(b);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve");
|
||||
}
|
||||
#endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user