add option to compute thin U/V.

By default nothing is computed. You have to ask explicitly for thin/full U/V if you want them.
This commit is contained in:
Benoit Jacob 2010-10-08 10:42:40 -04:00
parent 6fad2eb97b
commit 8ba8d90063
3 changed files with 186 additions and 68 deletions

View File

@ -242,8 +242,10 @@ enum AccessorLevels {
enum DecompositionOptions { enum DecompositionOptions {
Pivoting = 0x01, // LDLT, Pivoting = 0x01, // LDLT,
NoPivoting = 0x02, // LDLT, NoPivoting = 0x02, // LDLT,
ComputeU = 0x10, // SVD, ComputeFullU = 0x04, // SVD,
ComputeV = 0x20, // SVD, ComputeThinU = 0x08, // SVD,
ComputeFullV = 0x10, // SVD,
ComputeThinV = 0x20, // SVD,
EigenvaluesOnly = 0x40, // all eigen solvers EigenvaluesOnly = 0x40, // all eigen solvers
ComputeEigenvectors = 0x80, // all eigen solvers ComputeEigenvectors = 0x80, // all eigen solvers
EigVecMask = EigenvaluesOnly | ComputeEigenvectors, EigVecMask = EigenvaluesOnly | ComputeEigenvectors,

View File

@ -81,10 +81,12 @@ struct ei_qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner,
{ {
if(matrix.rows() > matrix.cols()) if(matrix.rows() > matrix.cols())
{ {
ei_assert(!svd.m_computeThinU && "JacobiSVD: can't compute a thin U with the FullPivHouseholderQR preconditioner. "
"Use the ColPivHouseholderQR preconditioner instead.");
FullPivHouseholderQR<MatrixType> qr(matrix); FullPivHouseholderQR<MatrixType> qr(matrix);
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeU) svd.m_matrixU = qr.matrixQ(); if(svd.m_computeFullU) svd.m_matrixU = qr.matrixQ();
if(svd.m_computeV) svd.m_matrixV = qr.colsPermutation(); if(svd.computeV()) svd.m_matrixV = qr.colsPermutation();
return true; return true;
} }
return false; return false;
@ -98,13 +100,15 @@ struct ei_qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner,
{ {
if(matrix.cols() > matrix.rows()) if(matrix.cols() > matrix.rows())
{ {
ei_assert(!svd.m_computeThinV && "JacobiSVD: can't compute a thin V with the FullPivHouseholderQR preconditioner. "
"Use the ColPivHouseholderQR preconditioner instead.");
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime, typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime> MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder; TransposeTypeWithSameStorageOrder;
FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint()); FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeV) svd.m_matrixV = qr.matrixQ(); if(svd.m_computeFullV) svd.m_matrixV = qr.matrixQ();
if(svd.m_computeU) svd.m_matrixU = qr.colsPermutation(); if(svd.computeU()) svd.m_matrixU = qr.colsPermutation();
return true; return true;
} }
else return false; else return false;
@ -120,8 +124,12 @@ struct ei_qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner,
{ {
ColPivHouseholderQR<MatrixType> qr(matrix); ColPivHouseholderQR<MatrixType> qr(matrix);
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeU) svd.m_matrixU = qr.householderQ(); if(svd.m_computeFullU) svd.m_matrixU = qr.householderQ();
if(svd.m_computeV) svd.m_matrixV = qr.colsPermutation(); else if(svd.m_computeThinU) {
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
qr.householderQ().applyThisOnTheLeft(svd.m_matrixU);
}
if(svd.computeV()) svd.m_matrixV = qr.colsPermutation();
return true; return true;
} }
return false; return false;
@ -140,8 +148,12 @@ struct ei_qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner,
TransposeTypeWithSameStorageOrder; TransposeTypeWithSameStorageOrder;
ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint()); ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeV) svd.m_matrixV = qr.householderQ(); if(svd.m_computeFullV) svd.m_matrixV = qr.householderQ();
if(svd.m_computeU) svd.m_matrixU = qr.colsPermutation(); else if(svd.m_computeThinV) {
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
qr.householderQ().applyThisOnTheLeft(svd.m_matrixV);
}
if(svd.computeU()) svd.m_matrixU = qr.colsPermutation();
return true; return true;
} }
else return false; else return false;
@ -157,8 +169,12 @@ struct ei_qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, Precon
{ {
HouseholderQR<MatrixType> qr(matrix); HouseholderQR<MatrixType> qr(matrix);
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeU) svd.m_matrixU = qr.householderQ(); if(svd.m_computeFullU) svd.m_matrixU = qr.householderQ();
if(svd.m_computeV) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); else if(svd.m_computeThinU) {
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
qr.householderQ().applyThisOnTheLeft(svd.m_matrixU);
}
if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
return true; return true;
} }
return false; return false;
@ -177,8 +193,12 @@ struct ei_qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, Precon
TransposeTypeWithSameStorageOrder; TransposeTypeWithSameStorageOrder;
HouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint()); HouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeV) svd.m_matrixV = qr.householderQ(); if(svd.m_computeFullV) svd.m_matrixV = qr.householderQ();
if(svd.m_computeU) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); else if(svd.m_computeThinV) {
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
qr.householderQ().applyThisOnTheLeft(svd.m_matrixV);
}
if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
return true; return true;
} }
else return false; else return false;
@ -195,13 +215,21 @@ struct ei_qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, Precon
* \brief Jacobi SVD decomposition of a square matrix * \brief Jacobi SVD decomposition of a square matrix
* *
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param QRPreconditioner the type of QR decomposition that will be used internally for the R-SVD step * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
* for non-square matrices. The default, FullPivHouseholderQR, is safest but slow. * for the R-SVD step for non-square matrices. See discussion of possible values below.
* Consider using ColPivHouseholderQR instead of greater speed while still being *
* quite safe, or even HouseholderQR to get closer to the speed and unsafety of * The possible values for QRPreconditioner are:
* bidiagonalizing SVD implementations. Finally, if you don't need to handle non-square matrices, * \li FullPivHouseholderQRPreconditioner (the default), is the safest and slowest. It uses full-pivoting QR.
* you don't need any QR decomposition; you can then pass the dummy type NoQRDecomposition, * We make it the default so that JacobiSVD is guaranteed to be entirely, uncompromisingly safe by default.
* which will result in smaller executable size and shorter compilation times. * Contrary to other QRs, it doesn't allow computing thin unitaries.
* \li ColPivHouseholderQRPreconditioner is faster, and in practice still very safe, although theoretically not as safe as the default
* full-pivoting preconditioner. It uses column-pivoting QR.
* \li HouseholderQRPreconditioner is even faster, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
* is inherently non-pivoting).
* \li NoQRPreconditioner allows to not use a QR preconditioner at all. This is useful if you know that you will only be computing
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
* faster compilation and smaller executable code.
* *
* \sa MatrixBase::jacobiSvd() * \sa MatrixBase::jacobiSvd()
*/ */
@ -256,6 +284,21 @@ template<typename MatrixType, int QRPreconditioner> class JacobiSVD
m_workMatrix(rows, cols), m_workMatrix(rows, cols),
m_isInitialized(false) {} m_isInitialized(false) {}
/** \brief Constructor performing the decomposition of given matrix.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU,
* ComputeFullV, ComputeThinV.
*
* Thin unitaries are not available with the default FullPivHouseholderQRPreconditioner, see class documentation for details.
* If you want thin unitaries, use another preconditioner, for example:
* \code
* JacobiSVD<MatrixXf, ColPivHouseholderQRPreconditioner> svd(matrix, ComputeThinU);
* \endcode
*
* Thin unitaries also are only available if your matrix type has a Dynamic number of columns (for example MatrixXf).
*/
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
: m_matrixU(matrix.rows(), matrix.rows()), : m_matrixU(matrix.rows(), matrix.rows()),
m_matrixV(matrix.cols(), matrix.cols()), m_matrixV(matrix.cols(), matrix.cols()),
@ -269,11 +312,27 @@ template<typename MatrixType, int QRPreconditioner> class JacobiSVD
compute(matrix, computationOptions); compute(matrix, computationOptions);
} }
/** \brief Method performing the decomposition of given matrix.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU,
* ComputeFullV, ComputeThinV.
*
* Thin unitaries are not available with the default FullPivHouseholderQRPreconditioner, see class documentation for details.
* If you want thin unitaries, use another preconditioner, for example:
* \code
* JacobiSVD<MatrixXf, ColPivHouseholderQRPreconditioner> svd(matrix, ComputeThinU);
* \endcode
*
* Thin unitaries also are only available if your matrix type has a Dynamic number of columns (for example MatrixXf).
*/
JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions = 0); JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions = 0);
const MatrixUType& matrixU() const const MatrixUType& matrixU() const
{ {
ei_assert(m_isInitialized && "JacobiSVD is not initialized."); ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
ei_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
return m_matrixU; return m_matrixU;
} }
@ -286,15 +345,21 @@ template<typename MatrixType, int QRPreconditioner> class JacobiSVD
const MatrixVType& matrixV() const const MatrixVType& matrixV() const
{ {
ei_assert(m_isInitialized && "JacobiSVD is not initialized."); ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
ei_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
return m_matrixV; return m_matrixV;
} }
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
protected: protected:
MatrixUType m_matrixU; MatrixUType m_matrixU;
MatrixVType m_matrixV; MatrixVType m_matrixV;
SingularValuesType m_singularValues; SingularValuesType m_singularValues;
WorkMatrixType m_workMatrix; WorkMatrixType m_workMatrix;
bool m_isInitialized, m_computeU, m_computeV; bool m_isInitialized;
bool m_computeFullU, m_computeThinU;
bool m_computeFullV, m_computeThinV;
template<typename _MatrixType, int _QRPreconditioner, bool _IsComplex> template<typename _MatrixType, int _QRPreconditioner, bool _IsComplex>
friend struct ei_svd_precondition_2x2_block_to_be_real; friend struct ei_svd_precondition_2x2_block_to_be_real;
@ -326,28 +391,28 @@ struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, tr
{ {
z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z; work_matrix.row(p) *= z;
if(svd.m_computeU) svd.m_matrixU.col(p) *= ei_conj(z); if(svd.computeU()) svd.m_matrixU.col(p) *= ei_conj(z);
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z; work_matrix.row(q) *= z;
if(svd.m_computeU) svd.m_matrixU.col(q) *= ei_conj(z); if(svd.computeU()) svd.m_matrixU.col(q) *= ei_conj(z);
} }
else else
{ {
rot.c() = ei_conj(work_matrix.coeff(p,p)) / n; rot.c() = ei_conj(work_matrix.coeff(p,p)) / n;
rot.s() = work_matrix.coeff(q,p) / n; rot.s() = work_matrix.coeff(q,p) / n;
work_matrix.applyOnTheLeft(p,q,rot); work_matrix.applyOnTheLeft(p,q,rot);
if(svd.m_computeU) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
if(work_matrix.coeff(p,q) != Scalar(0)) if(work_matrix.coeff(p,q) != Scalar(0))
{ {
Scalar z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); Scalar z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.col(q) *= z; work_matrix.col(q) *= z;
if(svd.m_computeV) svd.m_matrixV.col(q) *= z; if(svd.computeV()) svd.m_matrixV.col(q) *= z;
} }
if(work_matrix.coeff(q,q) != Scalar(0)) if(work_matrix.coeff(q,q) != Scalar(0))
{ {
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z; work_matrix.row(q) *= z;
if(svd.m_computeU) svd.m_matrixU.col(q) *= ei_conj(z); if(svd.computeU()) svd.m_matrixU.col(q) *= ei_conj(z);
} }
} }
} }
@ -384,8 +449,14 @@ template<typename MatrixType, int QRPreconditioner>
JacobiSVD<MatrixType, QRPreconditioner>& JacobiSVD<MatrixType, QRPreconditioner>&
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
{ {
m_computeU = computationOptions & ComputeU; m_computeFullU = computationOptions & ComputeFullU;
m_computeV = computationOptions & ComputeV; m_computeThinU = computationOptions & ComputeThinU;
m_computeFullV = computationOptions & ComputeFullV;
m_computeThinV = computationOptions & ComputeThinV;
ei_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
ei_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
ei_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
"JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
Index rows = matrix.rows(); Index rows = matrix.rows();
Index cols = matrix.cols(); Index cols = matrix.cols();
Index diagSize = std::min(rows, cols); Index diagSize = std::min(rows, cols);
@ -396,8 +467,10 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
&& !ei_qr_preconditioner_impl<MatrixType, QRPreconditioner, PreconditionIfMoreRowsThanCols>::run(*this, matrix)) && !ei_qr_preconditioner_impl<MatrixType, QRPreconditioner, PreconditionIfMoreRowsThanCols>::run(*this, matrix))
{ {
m_workMatrix = matrix.block(0,0,diagSize,diagSize); m_workMatrix = matrix.block(0,0,diagSize,diagSize);
if(m_computeU) m_matrixU.setIdentity(rows,rows); if(m_computeFullU) m_matrixU.setIdentity(rows,rows);
if(m_computeV) m_matrixV.setIdentity(cols,cols); if(m_computeThinU) m_matrixU.setIdentity(rows,diagSize);
if(m_computeFullV) m_matrixV.setIdentity(cols,cols);
if(m_computeThinV) m_matrixV.setIdentity(diagSize,cols);
} }
bool finished = false; bool finished = false;
@ -418,10 +491,10 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
ei_real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); ei_real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
m_workMatrix.applyOnTheLeft(p,q,j_left); m_workMatrix.applyOnTheLeft(p,q,j_left);
if(m_computeU) m_matrixU.applyOnTheRight(p,q,j_left.transpose()); if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
m_workMatrix.applyOnTheRight(p,q,j_right); m_workMatrix.applyOnTheRight(p,q,j_right);
if(m_computeV) m_matrixV.applyOnTheRight(p,q,j_right); if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
} }
} }
} }
@ -431,7 +504,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
{ {
RealScalar a = ei_abs(m_workMatrix.coeff(i,i)); RealScalar a = ei_abs(m_workMatrix.coeff(i,i));
m_singularValues.coeffRef(i) = a; m_singularValues.coeffRef(i) = a;
if(m_computeU && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
} }
for(Index i = 0; i < diagSize; i++) for(Index i = 0; i < diagSize; i++)
@ -442,8 +515,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
{ {
pos += i; pos += i;
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos)); std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
if(m_computeU) m_matrixU.col(pos).swap(m_matrixU.col(i)); if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
if(m_computeV) m_matrixV.col(pos).swap(m_matrixV.col(i)); if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
} }
} }

View File

@ -28,7 +28,7 @@
#include <Eigen/LU> #include <Eigen/LU>
template<typename MatrixType, int QRPreconditioner> template<typename MatrixType, int QRPreconditioner>
void svd_with_qr_preconditioner(const MatrixType& m = MatrixType(), bool pickrandom = true) void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
{ {
typedef typename MatrixType::Index Index; typedef typename MatrixType::Index Index;
Index rows = m.rows(); Index rows = m.rows();
@ -46,33 +46,76 @@ void svd_with_qr_preconditioner(const MatrixType& m = MatrixType(), bool pickran
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType; typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType; typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType;
MatrixType a;
if(pickrandom) a = MatrixType::Random(rows,cols);
else a = m;
JacobiSVD<MatrixType, QRPreconditioner> svd(a, ComputeU|ComputeV);
MatrixType sigma = MatrixType::Zero(rows,cols); MatrixType sigma = MatrixType::Zero(rows,cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>(); sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU(); MatrixUType u = svd.matrixU();
MatrixVType v = svd.matrixV(); MatrixVType v = svd.matrixV();
//std::cout << "a\n" << a << std::endl; VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
//std::cout << "b\n" << u * sigma * v.adjoint() << std::endl;
VERIFY_IS_APPROX(a, u * sigma * v.adjoint());
VERIFY_IS_UNITARY(u); VERIFY_IS_UNITARY(u);
VERIFY_IS_UNITARY(v); VERIFY_IS_UNITARY(v);
} }
template<typename MatrixType> template<typename MatrixType, int QRPreconditioner>
void svd(const MatrixType& m = MatrixType(), bool pickrandom = true) void jacobisvd_compare_to_full(const MatrixType& m,
unsigned int computationOptions,
const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
{ {
svd_with_qr_preconditioner<MatrixType, FullPivHouseholderQRPreconditioner>(m, pickrandom); typedef typename MatrixType::Index Index;
svd_with_qr_preconditioner<MatrixType, ColPivHouseholderQRPreconditioner>(m, pickrandom); Index rows = m.rows();
svd_with_qr_preconditioner<MatrixType, HouseholderQRPreconditioner>(m, pickrandom); Index cols = m.cols();
Index diagSize = std::min(rows, cols);
JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
VERIFY_IS_EQUAL(svd.singularValues(), referenceSvd.singularValues());
if(computationOptions & ComputeFullU)
VERIFY_IS_EQUAL(svd.matrixU(), referenceSvd.matrixU());
if(computationOptions & ComputeThinU)
VERIFY_IS_EQUAL(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if(computationOptions & ComputeFullV)
VERIFY_IS_EQUAL(svd.matrixV(), referenceSvd.matrixV());
if(computationOptions & ComputeThinV)
VERIFY_IS_EQUAL(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
} }
template<typename MatrixType> void svd_verify_assert() template<typename MatrixType, int QRPreconditioner>
void jacobisvd_test_all_computation_options(const MatrixType& m)
{
if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
return;
JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
jacobisvd_check_full(m, fullSvd);
if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
return;
jacobisvd_compare_to_full(m, ComputeFullU, fullSvd);
jacobisvd_compare_to_full(m, ComputeFullV, fullSvd);
jacobisvd_compare_to_full(m, 0, fullSvd);
if (MatrixType::ColsAtCompileTime == Dynamic) {
// thin U/V are only available with dynamic number of columns
jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd);
jacobisvd_compare_to_full(m, ComputeThinV, fullSvd);
jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd);
jacobisvd_compare_to_full(m, ComputeThinU , fullSvd);
jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd);
}
}
template<typename MatrixType>
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
{
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
}
template<typename MatrixType> void jacobisvd_verify_assert()
{ {
MatrixType tmp; MatrixType tmp;
@ -93,29 +136,29 @@ void test_jacobisvd()
Matrix2cd m; Matrix2cd m;
m << 0, 1, m << 0, 1,
0, 1; 0, 1;
CALL_SUBTEST_1(( svd(m, false) )); CALL_SUBTEST_1(( jacobisvd(m, false) ));
m << 1, 0, m << 1, 0,
1, 0; 1, 0;
CALL_SUBTEST_1(( svd(m, false) )); CALL_SUBTEST_1(( jacobisvd(m, false) ));
Matrix2d n; Matrix2d n;
n << 1, 1, n << 1, 1,
1, -1; 1, -1;
CALL_SUBTEST_2(( svd(n, false) )); CALL_SUBTEST_2(( jacobisvd(n, false) ));
CALL_SUBTEST_3(( svd<Matrix3f>() )); CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
CALL_SUBTEST_4(( svd<Matrix4d>() )); CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
CALL_SUBTEST_5(( svd<Matrix<float,3,5> >() )); CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
CALL_SUBTEST_6(( svd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) )); CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
CALL_SUBTEST_7(( svd<MatrixXf>(MatrixXf(50,50)) )); CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(50,50)) ));
CALL_SUBTEST_8(( svd<MatrixXcd>(MatrixXcd(14,7)) )); CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(14,7)) ));
} }
CALL_SUBTEST_9(( svd<MatrixXf>(MatrixXf(300,200)) )); CALL_SUBTEST_9(( jacobisvd<MatrixXf>(MatrixXf(300,200)) ));
CALL_SUBTEST_10(( svd<MatrixXcd>(MatrixXcd(100,150)) )); CALL_SUBTEST_10(( jacobisvd<MatrixXcd>(MatrixXcd(100,150)) ));
CALL_SUBTEST_3(( svd_verify_assert<Matrix3f>() )); CALL_SUBTEST_3(( jacobisvd_verify_assert<Matrix3f>() ));
CALL_SUBTEST_3(( svd_verify_assert<Matrix3d>() )); CALL_SUBTEST_3(( jacobisvd_verify_assert<Matrix3d>() ));
CALL_SUBTEST_9(( svd_verify_assert<MatrixXf>() )); CALL_SUBTEST_9(( jacobisvd_verify_assert<MatrixXf>() ));
CALL_SUBTEST_11(( svd_verify_assert<MatrixXd>() )); CALL_SUBTEST_11(( jacobisvd_verify_assert<MatrixXd>() ));
// Test problem size constructors // Test problem size constructors
CALL_SUBTEST_12( JacobiSVD<MatrixXf>(10, 20) ); CALL_SUBTEST_12( JacobiSVD<MatrixXf>(10, 20) );