mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-25 15:53:19 +08:00
working preconditioned MINRES solver
This commit is contained in:
parent
751501eade
commit
8c5e4fae61
@ -34,6 +34,7 @@
|
||||
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
|
||||
#include "src/IterativeLinearSolvers/BiCGSTAB.h"
|
||||
#include "src/IterativeLinearSolvers/IncompleteLUT.h"
|
||||
#include "src/IterativeLinearSolvers/MINRES.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
|
@ -21,7 +21,7 @@ namespace Eigen {
|
||||
* \param mat The matrix A
|
||||
* \param rhs The right hand side vector b
|
||||
* \param x On input and initial solution, on output the computed solution.
|
||||
* \param precond A preconditioner being able to efficiently solve for an
|
||||
* \param precond A right preconditioner being able to efficiently solve for an
|
||||
* approximation of Ax=b (regardless of b)
|
||||
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||||
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||||
@ -36,21 +36,15 @@ namespace Eigen {
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
|
||||
|
||||
// initialize
|
||||
const int maxIters(iters); // initialize maxIters to iters
|
||||
const int N(mat.cols()); // the size of the matrix
|
||||
const RealScalar rhsNorm2(rhs.squaredNorm());
|
||||
// const RealScalar threshold(tol_error); // threshold for original convergence criterion, see below
|
||||
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold
|
||||
|
||||
|
||||
// VectorType v(VectorType::Zero(N));
|
||||
// VectorType v_hat(rhs-mat*x);
|
||||
|
||||
// Compute initial residual
|
||||
VectorType residual(rhs-mat*x);
|
||||
|
||||
const VectorType residual(rhs-mat*x);
|
||||
RealScalar residualNorm2(residual.squaredNorm()); // not needed for original convergnce criterion
|
||||
|
||||
// Initialize preconditioned Lanczos
|
||||
VectorType v_old(N); // will be initialized inside loop
|
||||
@ -59,34 +53,25 @@ namespace Eigen {
|
||||
VectorType w(N); // will be initialized inside loop
|
||||
VectorType w_new = precond.solve(v_new); // initialize w_new
|
||||
RealScalar beta; // will be initialized inside loop
|
||||
RealScalar beta_new = sqrt(v_new.dot(w_new));
|
||||
RealScalar beta_new2 = v_new.dot(w_new);
|
||||
assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
RealScalar beta_new = sqrt(beta_new2);
|
||||
RealScalar beta_one = beta_new;
|
||||
v_new /= beta_new;
|
||||
w_new /= beta_new;
|
||||
|
||||
|
||||
|
||||
// RealScalar beta(v_hat.norm());
|
||||
// Initialize other variables
|
||||
RealScalar c(1.0); // the cosine of the Givens rotation
|
||||
RealScalar c_old(1.0);
|
||||
RealScalar s(0.0); // the sine of the Givens rotation
|
||||
RealScalar s_old(0.0); // the sine of the Givens rotation
|
||||
VectorType p_oold(VectorType::Zero(N)); // initialize p_oold=0
|
||||
VectorType p_old(p_oold); // initialize p_old=0
|
||||
VectorType p(N); // will be initialized in loop
|
||||
|
||||
//RealScalar eta(beta); // CHANGE THIS
|
||||
RealScalar norm_rMR=beta;
|
||||
const RealScalar norm_r0(beta);
|
||||
|
||||
VectorType p_oold(N); // will be initialized in loop
|
||||
VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
|
||||
VectorType p(p_old); // initialize p=0
|
||||
RealScalar eta(1.0);
|
||||
|
||||
// VectorType v_old(N), Av(N), w_oold(N); // preallocate temporaty vectors used in iteration
|
||||
RealScalar residualNorm2; // not needed for original convergnce criterion
|
||||
|
||||
int n = 0;
|
||||
while ( n < maxIters ){
|
||||
|
||||
|
||||
// Preconditioned Lanczos
|
||||
/* Note that there are 4 variants on the Lanczos algorithm. These are
|
||||
* described in Paige, C. C. (1972). Computational variants of
|
||||
@ -105,57 +90,29 @@ namespace Eigen {
|
||||
const RealScalar alpha = v_new.dot(w);
|
||||
v_new -= alpha*v; // overwrite v_new
|
||||
w_new = precond.solve(v_new); // overwrite w_new
|
||||
beta_new = sqrt(v_new.dot(w_new)); // compute beta_new
|
||||
v_new /= beta_new; // overwrite v_new
|
||||
w_new /= beta_new; // overwrite w_new
|
||||
beta_new2 = v_new.dot(w_new); // compute beta_new
|
||||
assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
beta_new = sqrt(beta_new2); // compute beta_new
|
||||
v_new /= beta_new; // overwrite v_new for next iteration
|
||||
w_new /= beta_new; // overwrite w_new for next iteration
|
||||
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
// // VectorType v_old(v); // now pre-allocated
|
||||
// v_old = v;
|
||||
// v=v_hat/beta;
|
||||
//// VectorType Av(mat*v); // now pre-allocated
|
||||
// Av = mat*v;
|
||||
// RealScalar alpha(v.transpose()*Av);
|
||||
// v_hat=Av-alpha*v-beta*v_old;
|
||||
// RealScalar beta_old(beta);
|
||||
// beta=v_hat.norm();
|
||||
|
||||
// Apply QR
|
||||
// RealScalar c_oold(c_old); // store old-old cosine
|
||||
// c_old=c; // store old cosine
|
||||
// RealScalar s_oold(s_old); // store old-old sine
|
||||
// s_old=s; // store old sine
|
||||
// const RealScalar r1_hat=c_old *alpha-c_oold*s_old *beta_old;
|
||||
// const RealScalar r1 =std::pow(std::pow(r1_hat,2)+std::pow(beta,2),0.5);
|
||||
// Givens rotation
|
||||
const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
|
||||
const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
|
||||
|
||||
// Compute new Givens rotation
|
||||
const RealScalar r1_hat=c*alpha-c_old*s*beta;
|
||||
const RealScalar r1 =std::pow(std::pow(r1_hat,2)+std::pow(beta_new,2),0.5);
|
||||
const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) );
|
||||
c_old = c; // store for next iteration
|
||||
s_old = s; // store for next iteration
|
||||
c=r1_hat/r1; // new cosine
|
||||
s=beta/r1; // new sine
|
||||
s=beta_new/r1; // new sine
|
||||
|
||||
// update w
|
||||
// VectorType w_oold(w_old); // now pre-allocated
|
||||
// Update solution
|
||||
p_oold = p_old;
|
||||
p_old = p;
|
||||
p=(w-r2*p_old-r3*p_oold) /r1;
|
||||
// update x
|
||||
x += c*eta*p;
|
||||
norm_rMR *= std::fabs(s);
|
||||
x += beta_one*c*eta*p;
|
||||
residualNorm2 *= s*s;
|
||||
|
||||
residualNorm2 = (mat*x-rhs).squaredNorm(); // DOES mat*x NEED TO BE RECOMPUTED ????
|
||||
//if(norm_rMR/norm_r0 < threshold){ // original convergence criterion, does not require "mat*x"
|
||||
if ( residualNorm2 < threshold2){
|
||||
break;
|
||||
}
|
||||
@ -170,7 +127,8 @@ namespace Eigen {
|
||||
}
|
||||
|
||||
template< typename _MatrixType, int _UpLo=Lower,
|
||||
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||
typename _Preconditioner = IdentityPreconditioner>
|
||||
// typename _Preconditioner = IdentityPreconditioner<typename _MatrixType::Scalar> > // preconditioner must be positive definite
|
||||
class MINRES;
|
||||
|
||||
namespace internal {
|
||||
@ -313,7 +271,7 @@ namespace Eigen {
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x.setOnes();
|
||||
x.setZero();
|
||||
_solveWithGuess(b,x);
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user