mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 10:09:36 +08:00
Use unblocked version if the matrix is too small, plus some cleaning.
This commit is contained in:
parent
5864e3fbd5
commit
94a7a1ec00
@ -86,15 +86,71 @@ template<typename _MatrixType> class UpperBidiagonalization
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
// Standard upper bidiagonalization without fancy optimizations
|
||||
// This version should be faster for small matrix size
|
||||
template<typename MatrixType>
|
||||
void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
|
||||
typename MatrixType::RealScalar *diagonal,
|
||||
typename MatrixType::RealScalar *upper_diagonal,
|
||||
typename MatrixType::Scalar* tempData = 0)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
Index rows = mat.rows();
|
||||
Index cols = mat.cols();
|
||||
Index size = (std::min)(rows, cols);
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType;
|
||||
TempType tempVector;
|
||||
if(tempData==0)
|
||||
{
|
||||
tempVector.resize(rows);
|
||||
tempData = tempVector.data();
|
||||
}
|
||||
|
||||
for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
|
||||
{
|
||||
Index remainingRows = rows - k;
|
||||
Index remainingCols = cols - k - 1;
|
||||
|
||||
// construct left householder transform in-place in A
|
||||
mat.col(k).tail(remainingRows)
|
||||
.makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]);
|
||||
// apply householder transform to remaining part of A on the left
|
||||
mat.bottomRightCorner(remainingRows, remainingCols)
|
||||
.applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
|
||||
|
||||
if(k == cols-1) break;
|
||||
|
||||
// construct right householder transform in-place in mat
|
||||
mat.row(k).tail(remainingCols)
|
||||
.makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
|
||||
// apply householder transform to remaining part of mat on the left
|
||||
mat.bottomRightCorner(remainingRows-1, remainingCols)
|
||||
.applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData);
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Helper routine for the block bidiagonal reduction.
|
||||
* This function reduces to bidiagonal form the left \c rows x \a blockSize vertical
|
||||
* and \a blockSize x \c cols horizontal panels of the \a A. The bottom-right block
|
||||
* is left unchanged, and the Arices X and Y.
|
||||
* Helper routine for the block reduction to upper bidiagonal form.
|
||||
*
|
||||
* Let's partition the matrix A:
|
||||
*
|
||||
* | A00 A01 |
|
||||
* A = | |
|
||||
* | A10 A11 |
|
||||
*
|
||||
* This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10]
|
||||
* and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11
|
||||
* is updated using matrix-matrix products:
|
||||
* A22 -= V * Y^T - X * U^T
|
||||
* where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01
|
||||
* respectively, and the update matrices X and Y are computed during the reduction.
|
||||
*
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void upperbidiagonalization_inplace_helper(MatrixType& A,
|
||||
void upperbidiagonalization_blocked_helper(MatrixType& A,
|
||||
typename MatrixType::RealScalar *diagonal,
|
||||
typename MatrixType::RealScalar *upper_diagonal,
|
||||
typename MatrixType::Index bs,
|
||||
@ -145,10 +201,10 @@ void upperbidiagonalization_inplace_helper(MatrixType& A,
|
||||
// let's use the begining of column k of Y as a temporary vector
|
||||
SubColumnType tmp( Y.col(k).head(k) );
|
||||
y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
|
||||
tmp.noalias() = V_k1.adjoint() * v_k;
|
||||
tmp.noalias() = V_k1.adjoint() * v_k;
|
||||
y_k.noalias() -= Y_k.leftCols(k) * tmp;
|
||||
tmp.noalias() = X_k1.adjoint() * v_k;
|
||||
y_k.noalias() -= U_k1.adjoint() * tmp;
|
||||
tmp.noalias() = X_k1.adjoint() * v_k;
|
||||
y_k.noalias() -= U_k1.adjoint() * tmp;
|
||||
y_k *= numext::conj(tau_v);
|
||||
}
|
||||
|
||||
@ -201,14 +257,14 @@ void upperbidiagonalization_inplace_helper(MatrixType& A,
|
||||
// update A22
|
||||
if(bcols>bs && brows>bs)
|
||||
{
|
||||
SubMatType A22( A.bottomRightCorner(brows-bs,bcols-bs) );
|
||||
SubMatType A21( A.block(bs,0, brows-bs,bs) );
|
||||
SubMatType A12( A.block(0,bs, bs, bcols-bs) );
|
||||
Scalar tmp = A12(bs-1,0);
|
||||
A12(bs-1,0) = 1;
|
||||
A22.noalias() -= A21 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
|
||||
A22.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A12;
|
||||
A12(bs-1,0) = tmp;
|
||||
SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) );
|
||||
SubMatType A10( A.block(bs,0, brows-bs,bs) );
|
||||
SubMatType A01( A.block(0,bs, bs,bcols-bs) );
|
||||
Scalar tmp = A01(bs-1,0);
|
||||
A01(bs-1,0) = 1;
|
||||
A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
|
||||
A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01;
|
||||
A01(bs-1,0) = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
@ -223,7 +279,7 @@ void upperbidiagonalization_inplace_helper(MatrixType& A,
|
||||
template<typename MatrixType, typename BidiagType>
|
||||
void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal,
|
||||
typename MatrixType::Index maxBlockSize=32,
|
||||
typename MatrixType::Scalar* tempData = 0)
|
||||
typename MatrixType::Scalar* /*tempData*/ = 0)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
@ -233,28 +289,14 @@ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagona
|
||||
Index cols = A.cols();
|
||||
Index size = (std::min)(rows, cols);
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxColsAtCompileTime,1> TempType;
|
||||
TempType tempVector;
|
||||
if(tempData==0)
|
||||
{
|
||||
tempVector.resize(cols);
|
||||
tempData = tempVector.data();
|
||||
}
|
||||
|
||||
Matrix<Scalar,Dynamic,Dynamic,ColMajor> X(rows,maxBlockSize), Y(cols, maxBlockSize);
|
||||
X.setOnes();
|
||||
Y.setOnes();
|
||||
|
||||
Matrix<Scalar,MatrixType::RowsAtCompileTime,Dynamic,ColMajor,MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
|
||||
Matrix<Scalar,MatrixType::ColsAtCompileTime,Dynamic,ColMajor,MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
|
||||
Index blockSize = (std::min)(maxBlockSize,size);
|
||||
|
||||
|
||||
|
||||
Index k = 0;
|
||||
for (k = 0; k < size; k += blockSize)
|
||||
for(k = 0; k < size; k += blockSize)
|
||||
{
|
||||
Index bs = (std::min)(size-k,blockSize); // actual size of the block
|
||||
Index tcols = cols - k - bs; // trailing columns
|
||||
Index trows = rows - k - bs; // trailing rows
|
||||
Index brows = rows - k; // rows of the block
|
||||
Index bcols = cols - k; // columns of the block
|
||||
|
||||
@ -267,72 +309,36 @@ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagona
|
||||
// | A20 A21 A22 |
|
||||
//
|
||||
// where A11 is a bs x bs diagonal block,
|
||||
// and performs the bidiagonalization of A11, A21, A12, without updating A22.
|
||||
//
|
||||
// A22 will be updated in a second stage using matrices X and Y and level 3 operations:
|
||||
// A22 -= V*Y^T - X*U^T
|
||||
// where V and U contains the left and right Householder vectors
|
||||
//
|
||||
// Finally, the algorithm continue on the updated A22.
|
||||
|
||||
|
||||
|
||||
// Let:
|
||||
// and let:
|
||||
// | A11 A12 |
|
||||
// B = | |
|
||||
// | A21 A22 |
|
||||
|
||||
BlockType B = A.block(k,k,brows,bcols);
|
||||
upperbidiagonalization_inplace_helper<BlockType>(B,
|
||||
&(bidiagonal.template diagonal<0>().coeffRef(k)),
|
||||
&(bidiagonal.template diagonal<1>().coeffRef(k)),
|
||||
bs,
|
||||
X.topLeftCorner(brows,bs),
|
||||
Y.topLeftCorner(bcols,bs)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Standard upper bidiagonalization without fancy optimizations
|
||||
// This version should be faster for small matrix size
|
||||
template<typename MatrixType, typename BidiagType>
|
||||
void upperbidiagonalization_inplace_unblocked(MatrixType& mat, BidiagType& bidiagonal,
|
||||
typename MatrixType::Scalar* tempData = 0)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
Index rows = mat.rows();
|
||||
Index cols = mat.cols();
|
||||
Index size = (std::min)(rows, cols);
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType;
|
||||
TempType tempVector;
|
||||
if(tempData==0)
|
||||
{
|
||||
tempVector.resize(rows);
|
||||
tempData = tempVector.data();
|
||||
}
|
||||
|
||||
for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
|
||||
{
|
||||
Index remainingRows = rows - k;
|
||||
Index remainingCols = cols - k - 1;
|
||||
|
||||
// construct left householder transform in-place in A
|
||||
mat.col(k).tail(remainingRows)
|
||||
.makeHouseholderInPlace(mat.coeffRef(k,k), bidiagonal.template diagonal<0>().coeffRef(k));
|
||||
// apply householder transform to remaining part of A on the left
|
||||
mat.bottomRightCorner(remainingRows, remainingCols)
|
||||
.applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
|
||||
|
||||
if(k == cols-1) break;
|
||||
|
||||
// construct right householder transform in-place in mat
|
||||
mat.row(k).tail(remainingCols)
|
||||
.makeHouseholderInPlace(mat.coeffRef(k,k+1), bidiagonal.template diagonal<1>().coeffRef(k));
|
||||
// apply householder transform to remaining part of mat on the left
|
||||
mat.bottomRightCorner(remainingRows-1, remainingCols)
|
||||
.applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData);
|
||||
|
||||
// This stage performs the bidiagonalization of A11, A21, A12, and updating of A22.
|
||||
// Finally, the algorithm continue on the updated A22.
|
||||
//
|
||||
// However, if B is too small, or A22 empty, then let's use an unblocked strategy
|
||||
if(k+bs==cols || bcols<48) // somewhat arbitrary threshold
|
||||
{
|
||||
upperbidiagonalization_inplace_unblocked(B,
|
||||
&(bidiagonal.template diagonal<0>().coeffRef(k)),
|
||||
&(bidiagonal.template diagonal<1>().coeffRef(k)),
|
||||
X.data()
|
||||
);
|
||||
break; // We're done
|
||||
}
|
||||
else
|
||||
{
|
||||
upperbidiagonalization_blocked_helper<BlockType>( B,
|
||||
&(bidiagonal.template diagonal<0>().coeffRef(k)),
|
||||
&(bidiagonal.template diagonal<1>().coeffRef(k)),
|
||||
bs,
|
||||
X.topLeftCorner(brows,bs),
|
||||
Y.topLeftCorner(bcols,bs)
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -348,19 +354,10 @@ UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::comput
|
||||
|
||||
ColVectorType temp(rows);
|
||||
|
||||
upperbidiagonalization_inplace_unblocked(m_householder, m_bidiagonal, temp.data());
|
||||
|
||||
MatrixType A = matrix;
|
||||
BidiagonalType B(cols,cols);
|
||||
upperbidiagonalization_inplace_blocked(A, B, 8);
|
||||
|
||||
std::cout << (m_householder-A)/*.maxCoeff()*/ << "\n\n";
|
||||
std::cout << m_householder << "\n\n"
|
||||
<< m_bidiagonal.template diagonal<0>() << "\n"
|
||||
<< m_bidiagonal.template diagonal<1>() << "\n\n";
|
||||
std::cout << A << "\n\n"
|
||||
<< B.template diagonal<0>() << "\n"
|
||||
<< B.template diagonal<1>() << "\n\n";
|
||||
upperbidiagonalization_inplace_unblocked(m_householder,
|
||||
&(m_bidiagonal.template diagonal<0>().coeffRef(0)),
|
||||
&(m_bidiagonal.template diagonal<1>().coeffRef(0)),
|
||||
temp.data());
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
|
Loading…
x
Reference in New Issue
Block a user