mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-10-11 23:51:50 +08:00
Update documentation to clarify cross product for complex numbers.
This commit is contained in:
parent
2e76277bd0
commit
abac563f5d
@ -78,8 +78,10 @@ struct cross_impl<Derived, OtherDerived, 2> {
|
|||||||
* spanned by the two vectors.
|
* spanned by the two vectors.
|
||||||
*
|
*
|
||||||
* \note With complex numbers, the cross product is implemented as
|
* \note With complex numbers, the cross product is implemented as
|
||||||
* \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times
|
* \f[ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times
|
||||||
* \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})\f$
|
* \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c}).\f]
|
||||||
|
* This definition preserves the orthogonality condition that \f$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) =
|
||||||
|
* \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0\f$.
|
||||||
*
|
*
|
||||||
* \sa MatrixBase::cross3()
|
* \sa MatrixBase::cross3()
|
||||||
*/
|
*/
|
||||||
|
Loading…
x
Reference in New Issue
Block a user