Update documentation to clarify cross product for complex numbers.

This commit is contained in:
Antonio Sánchez 2025-01-16 00:52:40 +00:00 committed by Charles Schlosser
parent 2e76277bd0
commit abac563f5d

View File

@ -78,8 +78,10 @@ struct cross_impl<Derived, OtherDerived, 2> {
* spanned by the two vectors.
*
* \note With complex numbers, the cross product is implemented as
* \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times
* \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})\f$
* \f[ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times
* \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c}).\f]
* This definition preserves the orthogonality condition that \f$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) =
* \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0\f$.
*
* \sa MatrixBase::cross3()
*/