mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 01:29:35 +08:00
Change Eigen's ColPivHouseholderQR to use the numerically stable norm downdate formula from http://www.netlib.org/lapack/lawnspdf/lawn176.pdf, which has been used in LAPACK's xGEQPF and xGEQP3 since 2006. With the old formula, the code chooses the wrong pivots and fails to correctly determine rank on graded matrices.
This change also adds additional checks for non-increasing diagonal in R11 to existing unit tests, and adds a new unit test with the Kahan matrix, which consistently fails for the original code. Benchmark timings on Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz. Code compiled with AVX & FMA. I just ran on square matrices of 3 difference sizes. Benchmark Time(ns) CPU(ns) Iterations ------------------------------------------------------- Before: BM_EigencolPivQR/64 53677 53627 12890 BM_EigencolPivQR/512 15265408 15250784 46 BM_EigencolPivQR/4k 15403556228 15388788368 2 After (non-vectorized version): Benchmark Time(ns) CPU(ns) Iterations Degradation -------------------------------------------------------------------- BM_EigencolPivQR/64 63736 63669 10844 18.5% BM_EigencolPivQR/512 16052546 16037381 43 5.1% BM_EigencolPivQR/4k 15149263620 15132025316 2 -2.0% Performance-wise there seems to be a ~18.5% degradation for small (64x64) matrices, probably due to the cost of more O(min(m,n)^2) sqrt operations that are not needed for the unstable formula.
This commit is contained in:
parent
b908e071a8
commit
acce4dd050
@ -86,7 +86,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
||||
m_colsPermutation(),
|
||||
m_colsTranspositions(),
|
||||
m_temp(),
|
||||
m_colSqNorms(),
|
||||
m_colNorms(),
|
||||
m_isInitialized(false),
|
||||
m_usePrescribedThreshold(false) {}
|
||||
|
||||
@ -102,7 +102,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
||||
m_colsPermutation(PermIndexType(cols)),
|
||||
m_colsTranspositions(cols),
|
||||
m_temp(cols),
|
||||
m_colSqNorms(cols),
|
||||
m_colNorms(cols),
|
||||
m_isInitialized(false),
|
||||
m_usePrescribedThreshold(false) {}
|
||||
|
||||
@ -125,7 +125,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
||||
m_colsPermutation(PermIndexType(matrix.cols())),
|
||||
m_colsTranspositions(matrix.cols()),
|
||||
m_temp(matrix.cols()),
|
||||
m_colSqNorms(matrix.cols()),
|
||||
m_colNorms(matrix.cols()),
|
||||
m_isInitialized(false),
|
||||
m_usePrescribedThreshold(false)
|
||||
{
|
||||
@ -413,7 +413,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
||||
PermutationType m_colsPermutation;
|
||||
IntRowVectorType m_colsTranspositions;
|
||||
RowVectorType m_temp;
|
||||
RealRowVectorType m_colSqNorms;
|
||||
RealRowVectorType m_colNorms;
|
||||
bool m_isInitialized, m_usePrescribedThreshold;
|
||||
RealScalar m_prescribedThreshold, m_maxpivot;
|
||||
Index m_nonzero_pivots;
|
||||
@ -463,6 +463,7 @@ template<typename MatrixType>
|
||||
void ColPivHouseholderQR<MatrixType>::computeInPlace()
|
||||
{
|
||||
using std::abs;
|
||||
|
||||
Index rows = m_qr.rows();
|
||||
Index cols = m_qr.cols();
|
||||
Index size = m_qr.diagonalSize();
|
||||
@ -474,31 +475,24 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
|
||||
m_colsTranspositions.resize(m_qr.cols());
|
||||
Index number_of_transpositions = 0;
|
||||
|
||||
m_colSqNorms.resize(cols);
|
||||
m_colNorms.resize(cols);
|
||||
for (Index k = 0; k < cols; ++k)
|
||||
m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
|
||||
m_colNorms.coeffRef(k) = m_qr.col(k).norm();
|
||||
RealRowVectorType colNormsMostRecentDirect(m_colNorms);
|
||||
|
||||
RealScalar threshold_helper = m_colSqNorms.maxCoeff() * numext::abs2(NumTraits<Scalar>::epsilon()) / RealScalar(rows);
|
||||
RealScalar threshold_helper = numext::abs2(m_colNorms.maxCoeff() * NumTraits<Scalar>::epsilon()) / RealScalar(rows);
|
||||
RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<Scalar>::epsilon());
|
||||
|
||||
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
|
||||
m_maxpivot = RealScalar(0);
|
||||
|
||||
for(Index k = 0; k < size; ++k)
|
||||
{
|
||||
// first, we look up in our table m_colSqNorms which column has the biggest squared norm
|
||||
// first, we look up in our table m_colNorms which column has the biggest norm
|
||||
Index biggest_col_index;
|
||||
RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index);
|
||||
RealScalar biggest_col_sq_norm = numext::abs2(m_colNorms.tail(cols-k).maxCoeff(&biggest_col_index));
|
||||
biggest_col_index += k;
|
||||
|
||||
// since our table m_colSqNorms accumulates imprecision at every step, we must now recompute
|
||||
// the actual squared norm of the selected column.
|
||||
// Note that not doing so does result in solve() sometimes returning inf/nan values
|
||||
// when running the unit test with 1000 repetitions.
|
||||
biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm();
|
||||
|
||||
// we store that back into our table: it can't hurt to correct our table.
|
||||
m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
|
||||
|
||||
// Track the number of meaningful pivots but do not stop the decomposition to make
|
||||
// sure that the initial matrix is properly reproduced. See bug 941.
|
||||
if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
|
||||
@ -508,7 +502,9 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
|
||||
m_colsTranspositions.coeffRef(k) = biggest_col_index;
|
||||
if(k != biggest_col_index) {
|
||||
m_qr.col(k).swap(m_qr.col(biggest_col_index));
|
||||
std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index));
|
||||
std::swap(m_colNorms.coeffRef(k), m_colNorms.coeffRef(biggest_col_index));
|
||||
std::swap(colNormsMostRecentDirect.coeffRef(k),
|
||||
colNormsMostRecentDirect.coeffRef(biggest_col_index));
|
||||
++number_of_transpositions;
|
||||
}
|
||||
|
||||
@ -526,8 +522,29 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
|
||||
m_qr.bottomRightCorner(rows-k, cols-k-1)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
|
||||
|
||||
// update our table of squared norms of the columns
|
||||
m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2();
|
||||
// update our table of norms of the columns
|
||||
for (Index j = k + 1; j < cols; ++j) {
|
||||
// The following implements the stable norm downgrade step discussed in
|
||||
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
|
||||
// and used in LAPACK routines xGEQPF and xGEQP3.
|
||||
// See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html
|
||||
if (m_colNorms.coeffRef(j) != 0) {
|
||||
RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNorms.coeffRef(j);
|
||||
temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
|
||||
temp = temp < 0 ? 0 : temp;
|
||||
RealScalar temp2 =
|
||||
temp * numext::abs2(m_colNorms.coeffRef(j) /
|
||||
colNormsMostRecentDirect.coeffRef(j));
|
||||
if (temp2 <= norm_downdate_threshold) {
|
||||
// The updated norm has become to inaccurate so re-compute the column
|
||||
// norm directly.
|
||||
m_colNorms.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm();
|
||||
colNormsMostRecentDirect.coeffRef(j) = m_colNorms.coeffRef(j);
|
||||
} else {
|
||||
m_colNorms.coeffRef(j) *= numext::sqrt(temp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m_colsPermutation.setIdentity(PermIndexType(cols));
|
||||
|
@ -19,6 +19,7 @@ template<typename MatrixType> void qr()
|
||||
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
|
||||
MatrixType m1;
|
||||
createRandomPIMatrixOfRank(rank,rows,cols,m1);
|
||||
@ -36,6 +37,24 @@ template<typename MatrixType> void qr()
|
||||
MatrixType c = q * r * qr.colsPermutation().inverse();
|
||||
VERIFY_IS_APPROX(m1, c);
|
||||
|
||||
// Verify that the absolute value of the diagonal elements in R are
|
||||
// non-increasing until they reach the singularity threshold.
|
||||
RealScalar threshold =
|
||||
std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
|
||||
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
|
||||
RealScalar x = (std::abs)(r(i, i));
|
||||
RealScalar y = (std::abs)(r(i + 1, i + 1));
|
||||
if (x < threshold && y < threshold) continue;
|
||||
if (test_isApproxOrLessThan(x, y)) {
|
||||
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
|
||||
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
|
||||
}
|
||||
std::cout << "Failure at i=" << i << ", rank=" << rank
|
||||
<< ", threshold=" << threshold << std::endl;
|
||||
}
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
|
||||
}
|
||||
|
||||
MatrixType m2 = MatrixType::Random(cols,cols2);
|
||||
MatrixType m3 = m1*m2;
|
||||
m2 = MatrixType::Random(cols,cols2);
|
||||
@ -47,6 +66,7 @@ template<typename MatrixType, int Cols2> void qr_fixedsize()
|
||||
{
|
||||
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
|
||||
Matrix<Scalar,Rows,Cols> m1;
|
||||
createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
|
||||
@ -66,6 +86,67 @@ template<typename MatrixType, int Cols2> void qr_fixedsize()
|
||||
m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
|
||||
m2 = qr.solve(m3);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
// Verify that the absolute value of the diagonal elements in R are
|
||||
// non-increasing until they reache the singularity threshold.
|
||||
RealScalar threshold =
|
||||
std::sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
|
||||
for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
|
||||
RealScalar x = (std::abs)(r(i, i));
|
||||
RealScalar y = (std::abs)(r(i + 1, i + 1));
|
||||
if (x < threshold && y < threshold) continue;
|
||||
if (test_isApproxOrLessThan(x, y)) {
|
||||
for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
|
||||
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
|
||||
}
|
||||
std::cout << "Failure at i=" << i << ", rank=" << rank
|
||||
<< ", threshold=" << threshold << std::endl;
|
||||
}
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
|
||||
}
|
||||
}
|
||||
|
||||
// This test is meant to verify that pivots are chosen such that
|
||||
// even for a graded matrix, the diagonal of R falls of roughly
|
||||
// monotonically until it reaches the threshold for singularity.
|
||||
// We use the so-called Kahan matrix, which is a famous counter-example
|
||||
// for rank-revealing QR. See
|
||||
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
|
||||
// page 3 for more detail.
|
||||
template<typename MatrixType> void qr_kahan_matrix()
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
|
||||
Index rows = 300, cols = rows;
|
||||
|
||||
MatrixType m1;
|
||||
m1.setZero(rows,cols);
|
||||
RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
|
||||
RealScalar c = std::sqrt(1 - s*s);
|
||||
for (Index i = 0; i < rows; ++i) {
|
||||
m1(i, i) = pow(s, i);
|
||||
m1.row(i).tail(rows - i - 1) = -pow(s, i) * c * MatrixType::Ones(1, rows - i - 1);
|
||||
}
|
||||
m1 = (m1 + m1.transpose()).eval();
|
||||
ColPivHouseholderQR<MatrixType> qr(m1);
|
||||
MatrixType r = qr.matrixQR().template triangularView<Upper>();
|
||||
|
||||
RealScalar threshold =
|
||||
std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
|
||||
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
|
||||
RealScalar x = (std::abs)(r(i, i));
|
||||
RealScalar y = (std::abs)(r(i + 1, i + 1));
|
||||
if (x < threshold && y < threshold) continue;
|
||||
if (test_isApproxOrLessThan(x, y)) {
|
||||
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
|
||||
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
|
||||
}
|
||||
std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
|
||||
<< ", threshold=" << threshold << std::endl;
|
||||
}
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_invertible()
|
||||
@ -131,6 +212,11 @@ void test_qr_colpivoting()
|
||||
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() ));
|
||||
}
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() );
|
||||
CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() );
|
||||
}
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
|
||||
CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
|
||||
|
Loading…
x
Reference in New Issue
Block a user