New GPU test utilities.

This introduces new functions:
```
// returns kernel(args...) running on the CPU.
Eigen::run_on_cpu(Kernel kernel, Args&&... args);

// returns kernel(args...) running on the GPU.
Eigen::run_on_gpu(Kernel kernel, Args&&... args);
Eigen::run_on_gpu_with_hint(size_t buffer_capacity_hint, Kernel kernel, Args&&... args);

// returns kernel(args...) running on the GPU if using
//   a GPU compiler, or CPU otherwise.
Eigen::run(Kernel kernel, Args&&... args);
Eigen::run_with_hint(size_t buffer_capacity_hint, Kernel kernel, Args&&... args);
```

Running on the GPU is accomplished by:
- Serializing the kernel inputs on the CPU
- Transferring the inputs to the GPU
- Passing the kernel and serialized inputs to a GPU kernel
- Deserializing the inputs on the GPU
- Running `kernel(inputs...)` on the GPU
- Serializing all output parameters and the return value
- Transferring the serialized outputs back to the CPU
- Deserializing the outputs and return value on the CPU
- Returning the deserialized return value

All inputs must be serializable (currently POD types, `Eigen::Matrix`
and `Eigen::Array`).  The kernel must also  be POD (though usually
contains no actual data).

Tested on CUDA 9.1, 10.2, 11.3, with g++-6, g++-8, g++-10 respectively.

This MR depends on !622, !623, !624.
This commit is contained in:
Antonio Sanchez 2021-08-26 14:48:09 -07:00
parent d7d0bf832d
commit bf66137efc
4 changed files with 616 additions and 11 deletions

View File

@ -412,6 +412,7 @@ if(CUDA_FOUND)
string(APPEND CUDA_NVCC_FLAGS " ${EIGEN_CUDA_RELAXED_CONSTEXPR}") string(APPEND CUDA_NVCC_FLAGS " ${EIGEN_CUDA_RELAXED_CONSTEXPR}")
set(EIGEN_ADD_TEST_FILENAME_EXTENSION "cu") set(EIGEN_ADD_TEST_FILENAME_EXTENSION "cu")
ei_add_test(gpu_example)
ei_add_test(gpu_basic) ei_add_test(gpu_basic)
unset(EIGEN_ADD_TEST_FILENAME_EXTENSION) unset(EIGEN_ADD_TEST_FILENAME_EXTENSION)
@ -442,6 +443,7 @@ if (EIGEN_TEST_HIP)
set(EIGEN_ADD_TEST_FILENAME_EXTENSION "cu") set(EIGEN_ADD_TEST_FILENAME_EXTENSION "cu")
ei_add_test(gpu_basic) ei_add_test(gpu_basic)
ei_add_test(gpu_example)
unset(EIGEN_ADD_TEST_FILENAME_EXTENSION) unset(EIGEN_ADD_TEST_FILENAME_EXTENSION)
elseif ((${HIP_PLATFORM} STREQUAL "nvcc") OR (${HIP_PLATFORM} STREQUAL "nvidia")) elseif ((${HIP_PLATFORM} STREQUAL "nvcc") OR (${HIP_PLATFORM} STREQUAL "nvidia"))

130
test/gpu_example.cu Normal file
View File

@ -0,0 +1,130 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2021 The Eigen Team.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// The following is an example GPU test.
#include "main.h" // Include the main test utilities.
// Define a kernel functor.
//
// The kernel must be a POD type and implement operator().
struct AddKernel {
// Parameters must be POD or serializable Eigen types (e.g. Matrix,
// Array). The return value must be a POD or serializable value type.
template<typename Type1, typename Type2, typename Type3>
EIGEN_DEVICE_FUNC
Type3 operator()(const Type1& A, const Type2& B, Type3& C) const {
C = A + B; // Populate output parameter.
Type3 D = A + B; // Populate return value.
return D;
}
};
// Define a sub-test that uses the kernel.
template <typename T>
void test_add(const T& type) {
const Index rows = type.rows();
const Index cols = type.cols();
// Create random inputs.
const T A = T::Random(rows, cols);
const T B = T::Random(rows, cols);
T C; // Output parameter.
// Create kernel.
AddKernel add_kernel;
// Run add_kernel(A, B, C) via run(...).
// This will run on the GPU if using a GPU compiler, or CPU otherwise,
// facilitating generic tests that can run on either.
T D = run(add_kernel, A, B, C);
// Check that both output parameter and return value are correctly populated.
const T expected = A + B;
VERIFY_IS_CWISE_EQUAL(C, expected);
VERIFY_IS_CWISE_EQUAL(D, expected);
// In a GPU-only test, we can verify that the CPU and GPU produce the
// same results.
T C_cpu, C_gpu;
T D_cpu = run_on_cpu(add_kernel, A, B, C_cpu); // Runs on CPU.
T D_gpu = run_on_gpu(add_kernel, A, B, C_gpu); // Runs on GPU.
VERIFY_IS_CWISE_EQUAL(C_cpu, C_gpu);
VERIFY_IS_CWISE_EQUAL(D_cpu, D_gpu);
};
struct MultiplyKernel {
template<typename Type1, typename Type2, typename Type3>
EIGEN_DEVICE_FUNC
Type3 operator()(const Type1& A, const Type2& B, Type3& C) const {
C = A * B;
return A * B;
}
};
template <typename T1, typename T2, typename T3>
void test_multiply(const T1& type1, const T2& type2, const T3& type3) {
const T1 A = T1::Random(type1.rows(), type1.cols());
const T2 B = T2::Random(type2.rows(), type2.cols());
T3 C;
MultiplyKernel multiply_kernel;
// The run(...) family of functions uses a memory buffer to transfer data back
// and forth to and from the device. The size of this buffer is estimated
// from the size of all input parameters. If the estimated buffer size is
// not sufficient for transferring outputs from device-to-host, then an
// explicit buffer size needs to be specified.
// 2 outputs of size (A * B). For each matrix output, the buffer will store
// the number of rows, columns, and the data.
size_t buffer_capacity_hint = 2 * ( // 2 output parameters
2 * sizeof(typename T3::Index) // # Rows, # Cols
+ A.rows() * B.cols() * sizeof(typename T3::Scalar)); // Output data
T3 D = run_with_hint(buffer_capacity_hint, multiply_kernel, A, B, C);
const T3 expected = A * B;
VERIFY_IS_CWISE_APPROX(C, expected);
VERIFY_IS_CWISE_APPROX(D, expected);
T3 C_cpu, C_gpu;
T3 D_cpu = run_on_cpu(multiply_kernel, A, B, C_cpu);
T3 D_gpu = run_on_gpu_with_hint(buffer_capacity_hint,
multiply_kernel, A, B, C_gpu);
VERIFY_IS_CWISE_APPROX(C_cpu, C_gpu);
VERIFY_IS_CWISE_APPROX(D_cpu, D_gpu);
}
// Declare the test fixture.
EIGEN_DECLARE_TEST(gpu_example)
{
// For the number of repeats, call the desired subtests.
for(int i = 0; i < g_repeat; i++) {
// Call subtests with different sized/typed inputs.
CALL_SUBTEST( test_add(Eigen::Vector3f()) );
CALL_SUBTEST( test_add(Eigen::Matrix3d()) );
CALL_SUBTEST( test_add(Eigen::MatrixX<int>(10, 10)) );
CALL_SUBTEST( test_add(Eigen::Array44f()) );
CALL_SUBTEST( test_add(Eigen::ArrayXd(20)) );
CALL_SUBTEST( test_add(Eigen::ArrayXXi(13, 17)) );
CALL_SUBTEST( test_multiply(Eigen::Matrix3d(),
Eigen::Matrix3d(),
Eigen::Matrix3d()) );
CALL_SUBTEST( test_multiply(Eigen::MatrixX<int>(10, 10),
Eigen::MatrixX<int>(10, 10),
Eigen::MatrixX<int>()) );
CALL_SUBTEST( test_multiply(Eigen::MatrixXf(12, 1),
Eigen::MatrixXf(1, 32),
Eigen::MatrixXf()) );
}
}

464
test/gpu_test_helper.h Normal file
View File

@ -0,0 +1,464 @@
#ifndef GPU_TEST_HELPER_H
#define GPU_TEST_HELPER_H
#include <Eigen/Core>
#ifdef EIGEN_GPUCC
#define EIGEN_USE_GPU
#include "../unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h"
#endif // EIGEN_GPUCC
// std::tuple cannot be used on device, and there is a bug in cuda < 9.2 that
// doesn't allow std::tuple to compile for host code either. In these cases,
// use our custom implementation.
#if defined(EIGEN_GPU_COMPILE_PHASE) || (defined(EIGEN_CUDACC) && EIGEN_CUDA_SDK_VER < 92000)
#define EIGEN_USE_CUSTOM_TUPLE 1
#else
#define EIGEN_USE_CUSTOM_TUPLE 0
#endif
#if EIGEN_USE_CUSTOM_TUPLE
#include "../Eigen/src/Core/arch/GPU/Tuple.h"
#else
#include <tuple>
#endif
namespace Eigen {
namespace internal {
namespace tuple_impl {
// Use std::tuple on CPU, otherwise use the GPU-specific versions.
#if !EIGEN_USE_CUSTOM_TUPLE
using std::tuple;
using std::get;
using std::make_tuple;
using std::tie;
#endif
#undef EIGEN_USE_CUSTOM_TUPLE
}
template<size_t N, size_t Idx, typename OutputIndexSequence, typename... Ts>
struct extract_output_indices_helper;
/**
* Extracts a set of indices corresponding to non-const l-value reference
* output types.
*
* \internal
* \tparam N the number of types {T1, Ts...}.
* \tparam Idx the "index" to append if T1 is an output type.
* \tparam OutputIndices the current set of output indices.
* \tparam T1 the next type to consider, with index Idx.
* \tparam Ts the remaining types.
*/
template<size_t N, size_t Idx, size_t... OutputIndices, typename T1, typename... Ts>
struct extract_output_indices_helper<N, Idx, index_sequence<OutputIndices...>, T1, Ts...> {
using type = typename
extract_output_indices_helper<
N - 1, Idx + 1,
typename std::conditional<
// If is a non-const l-value reference, append index.
std::is_lvalue_reference<T1>::value
&& !std::is_const<typename std::remove_reference<T1>::type>::value,
index_sequence<OutputIndices..., Idx>,
index_sequence<OutputIndices...> >::type,
Ts...>::type;
};
// Base case.
template<size_t Idx, size_t... OutputIndices>
struct extract_output_indices_helper<0, Idx, index_sequence<OutputIndices...> > {
using type = index_sequence<OutputIndices...>;
};
// Extracts a set of indices into Types... that correspond to non-const
// l-value references.
template<typename... Types>
using extract_output_indices = typename extract_output_indices_helper<sizeof...(Types), 0, index_sequence<>, Types...>::type;
// Helper struct for dealing with Generic functors that may return void.
struct void_helper {
struct Void {};
// Converts void -> Void, T otherwise.
template<typename T>
using ReturnType = typename std::conditional<std::is_same<T, void>::value, Void, T>::type;
// Non-void return value.
template<typename Func, typename... Args>
static EIGEN_ALWAYS_INLINE EIGEN_DEVICE_FUNC
auto call(Func&& func, Args&&... args) ->
typename std::enable_if<!std::is_same<decltype(func(args...)), void>::value,
decltype(func(args...))>::type {
return func(std::forward<Args>(args)...);
}
// Void return value.
template<typename Func, typename... Args>
static EIGEN_ALWAYS_INLINE EIGEN_DEVICE_FUNC
auto call(Func&& func, Args&&... args) ->
typename std::enable_if<std::is_same<decltype(func(args...)), void>::value,
Void>::type {
func(std::forward<Args>(args)...);
return Void{};
}
// Restores the original return type, Void -> void, T otherwise.
template<typename T>
static EIGEN_ALWAYS_INLINE EIGEN_DEVICE_FUNC
typename std::enable_if<!std::is_same<typename std::decay<T>::type, Void>::value, T>::type
restore(T&& val) {
return val;
}
// Void case.
template<typename T = void>
static EIGEN_ALWAYS_INLINE EIGEN_DEVICE_FUNC
void restore(const Void&) {}
};
// Runs a kernel via serialized buffer. Does this by deserializing the buffer
// to construct the arguments, calling the kernel, then re-serialing the outputs.
// The buffer contains
// [ input_buffer_size, args ]
// After the kernel call, it is then populated with
// [ output_buffer_size, output_parameters, return_value ]
// If the output_buffer_size exceeds the buffer's capacity, then only the
// output_buffer_size is populated.
template<typename Kernel, typename... Args, size_t... Indices, size_t... OutputIndices>
EIGEN_DEVICE_FUNC
void run_serialized(index_sequence<Indices...>, index_sequence<OutputIndices...>,
Kernel kernel, uint8_t* buffer, size_t capacity) {
using Eigen::internal::tuple_impl::get;
using Eigen::internal::tuple_impl::make_tuple;
using Eigen::internal::tuple_impl::tuple;
// Deserialize input size and inputs.
size_t input_size;
uint8_t* buff_ptr = Eigen::deserialize(buffer, input_size);
// Create value-type instances to populate.
auto args = make_tuple(typename std::decay<Args>::type{}...);
EIGEN_UNUSED_VARIABLE(args) // Avoid NVCC compile warning.
// NVCC 9.1 requires us to spell out the template parameters explicitly.
buff_ptr = Eigen::deserialize(buff_ptr, get<Indices, typename std::decay<Args>::type...>(args)...);
// Call function, with void->Void conversion so we are guaranteed a complete
// output type.
auto result = void_helper::call(kernel, get<Indices, typename std::decay<Args>::type...>(args)...);
// Determine required output size.
size_t output_size = Eigen::serialize_size(capacity);
output_size += Eigen::serialize_size(get<OutputIndices, typename std::decay<Args>::type...>(args)...);
output_size += Eigen::serialize_size(result);
// Always serialize required buffer size.
buff_ptr = Eigen::serialize(buffer, output_size);
// Serialize outputs if they fit in the buffer.
if (output_size <= capacity) {
// Collect outputs and result.
buff_ptr = Eigen::serialize(buff_ptr, get<OutputIndices, typename std::decay<Args>::type...>(args)...);
buff_ptr = Eigen::serialize(buff_ptr, result);
}
}
template<typename Kernel, typename... Args>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void run_serialized(Kernel kernel, uint8_t* buffer, size_t capacity) {
run_serialized<Kernel, Args...> (make_index_sequence<sizeof...(Args)>{},
extract_output_indices<Args...>{},
kernel, buffer, capacity);
}
#ifdef EIGEN_GPUCC
// Checks for GPU errors and asserts / prints the error message.
#define GPU_CHECK(expr) \
do { \
gpuError_t err = expr; \
if (err != gpuSuccess) { \
printf("%s: %s\n", gpuGetErrorName(err), gpuGetErrorString(err)); \
gpu_assert(false); \
} \
} while(0)
// Calls run_serialized on the GPU.
template<typename Kernel, typename... Args>
__global__
EIGEN_HIP_LAUNCH_BOUNDS_1024
void run_serialized_on_gpu_meta_kernel(const Kernel kernel, uint8_t* buffer, size_t capacity) {
run_serialized<Kernel, Args...>(kernel, buffer, capacity);
}
// Runs kernel(args...) on the GPU via the serialization mechanism.
//
// Note: this may end up calling the kernel multiple times if the initial output
// buffer is not large enough to hold the outputs.
template<typename Kernel, typename... Args, size_t... Indices, size_t... OutputIndices>
auto run_serialized_on_gpu(size_t buffer_capacity_hint,
index_sequence<Indices...>,
index_sequence<OutputIndices...>,
Kernel kernel, Args&&... args) -> decltype(kernel(args...)) {
// Compute the required serialization buffer capacity.
// Round up input size to next power of two to give a little extra room
// for outputs.
size_t input_data_size = sizeof(size_t) + Eigen::serialize_size(args...);
size_t capacity;
if (buffer_capacity_hint == 0) {
// Estimate as the power of two larger than the total input size.
capacity = sizeof(size_t);
while (capacity <= input_data_size) {
capacity *= 2;
}
} else {
// Use the larger of the hint and the total input size.
// Add sizeof(size_t) to the hint to account for storing the buffer capacity
// itself so the user doesn't need to think about this.
capacity = std::max<size_t>(buffer_capacity_hint + sizeof(size_t),
input_data_size);
}
std::vector<uint8_t> buffer(capacity);
uint8_t* host_data = nullptr;
uint8_t* host_ptr = nullptr;
uint8_t* device_data = nullptr;
size_t output_data_size = 0;
// Allocate buffers and copy input data.
capacity = std::max<size_t>(capacity, output_data_size);
buffer.resize(capacity);
host_data = buffer.data();
host_ptr = Eigen::serialize(host_data, input_data_size);
host_ptr = Eigen::serialize(host_ptr, args...);
// Copy inputs to host.
gpuFree(device_data);
gpuMalloc((void**)(&device_data), capacity);
gpuMemcpy(device_data, buffer.data(), input_data_size, gpuMemcpyHostToDevice);
GPU_CHECK(gpuDeviceSynchronize());
// Run kernel.
#ifdef EIGEN_USE_HIP
hipLaunchKernelGGL(
HIP_KERNEL_NAME(run_serialized_on_gpu_meta_kernel<Kernel, Args...>),
1, 1, 0, 0, kernel, device_data, capacity);
#else
run_serialized_on_gpu_meta_kernel<Kernel, Args...><<<1,1>>>(
kernel, device_data, capacity);
#endif
// Check pre-launch and kernel execution errors.
GPU_CHECK(gpuGetLastError());
GPU_CHECK(gpuDeviceSynchronize());
// Copy back new output to host.
gpuMemcpy(host_data, device_data, capacity, gpuMemcpyDeviceToHost);
gpuFree(device_data);
GPU_CHECK(gpuDeviceSynchronize());
// Determine output buffer size.
host_ptr = Eigen::deserialize(host_data, output_data_size);
// If the output doesn't fit in the buffer, spit out warning and fail.
if (output_data_size > capacity) {
std::cerr << "The serialized output does not fit in the output buffer, "
<< output_data_size << " vs capacity " << capacity << "."
<< std::endl
<< "Try specifying a minimum buffer capacity: " << std::endl
<< " run_with_hint(" << output_data_size << ", ...)"
<< std::endl;
VERIFY(false);
}
// Deserialize outputs.
auto args_tuple = Eigen::internal::tuple_impl::tie(args...);
EIGEN_UNUSED_VARIABLE(args_tuple) // Avoid NVCC compile warning.
host_ptr = Eigen::deserialize(host_ptr, Eigen::internal::tuple_impl::get<OutputIndices, Args&...>(args_tuple)...);
// Maybe deserialize return value, properly handling void.
typename void_helper::ReturnType<decltype(kernel(args...))> result;
host_ptr = Eigen::deserialize(host_ptr, result);
return void_helper::restore(result);
}
#endif // EIGEN_GPUCC
} // namespace internal
/**
* Runs a kernel on the CPU, returning the results.
* \param kernel kernel to run.
* \param args ... input arguments.
* \return kernel(args...).
*/
template<typename Kernel, typename... Args>
auto run_on_cpu(Kernel kernel, Args&&... args) -> decltype(kernel(args...)){
return kernel(std::forward<Args>(args)...);
}
#ifdef EIGEN_GPUCC
/**
* Runs a kernel on the GPU, returning the results.
*
* The kernel must be able to be passed directly as an input to a global
* function (i.e. empty or POD). Its inputs must be "Serializable" so we
* can transfer them to the device, and the output must be a Serializable value
* type so it can be transfered back from the device.
*
* \param kernel kernel to run.
* \param args ... input arguments, must be "Serializable".
* \return kernel(args...).
*/
template<typename Kernel, typename... Args>
auto run_on_gpu(Kernel kernel, Args&&... args) -> decltype(kernel(args...)){
return internal::run_serialized_on_gpu<Kernel, Args...>(
/*buffer_capacity_hint=*/ 0,
internal::make_index_sequence<sizeof...(Args)>{},
internal::extract_output_indices<Args...>{},
kernel, std::forward<Args>(args)...);
}
/**
* Runs a kernel on the GPU, returning the results.
*
* This version allows specifying a minimum buffer capacity size required for
* serializing the puts to transfer results from device to host. Use this when
* `run_on_gpu(...)` fails to determine an appropriate capacity by default.
*
* \param buffer_capacity_hint minimum required buffer size for serializing
* outputs.
* \param kernel kernel to run.
* \param args ... input arguments, must be "Serializable".
* \return kernel(args...).
* \sa run_on_gpu
*/
template<typename Kernel, typename... Args>
auto run_on_gpu_with_hint(size_t buffer_capacity_hint,
Kernel kernel, Args&&... args) -> decltype(kernel(args...)){
return internal::run_serialized_on_gpu<Kernel, Args...>(
buffer_capacity_hint,
internal::make_index_sequence<sizeof...(Args)>{},
internal::extract_output_indices<Args...>{},
kernel, std::forward<Args>(args)...);
}
/**
* Kernel for determining basic Eigen compile-time information
* (i.e. the cuda/hip arch)
*/
struct CompileTimeDeviceInfoKernel {
struct Info {
int cuda;
int hip;
};
EIGEN_DEVICE_FUNC
Info operator()() const
{
Info info = {-1, -1};
#if defined(__CUDA_ARCH__)
info.cuda = static_cast<int>(__CUDA_ARCH__ +0);
#endif
#if defined(EIGEN_HIP_DEVICE_COMPILE)
info.hip = static_cast<int>(EIGEN_HIP_DEVICE_COMPILE +0);
#endif
return info;
}
};
/**
* Queries and prints the compile-time and runtime GPU info.
*/
void print_gpu_device_info()
{
int device = 0;
gpuDeviceProp_t deviceProp;
gpuGetDeviceProperties(&deviceProp, device);
auto info = run_on_gpu(CompileTimeDeviceInfoKernel());
std::cout << "GPU compile-time info:\n";
#ifdef EIGEN_CUDACC
std::cout << " EIGEN_CUDACC: " << int(EIGEN_CUDACC) << std::endl;
#endif
#ifdef EIGEN_CUDA_SDK_VER
std::cout << " EIGEN_CUDA_SDK_VER: " << int(EIGEN_CUDA_SDK_VER) << std::endl;
#endif
#ifdef EIGEN_COMP_NVCC
std::cout << " EIGEN_COMP_NVCC: " << int(EIGEN_COMP_NVCC) << std::endl;
#endif
#ifdef EIGEN_HIPCC
std::cout << " EIGEN_HIPCC: " << int(EIGEN_HIPCC) << std::endl;
#endif
std::cout << " EIGEN_CUDA_ARCH: " << info.cuda << std::endl;
std::cout << " EIGEN_HIP_DEVICE_COMPILE: " << info.hip << std::endl;
std::cout << "GPU device info:\n";
std::cout << " name: " << deviceProp.name << std::endl;
std::cout << " capability: " << deviceProp.major << "." << deviceProp.minor << std::endl;
std::cout << " multiProcessorCount: " << deviceProp.multiProcessorCount << std::endl;
std::cout << " maxThreadsPerMultiProcessor: " << deviceProp.maxThreadsPerMultiProcessor << std::endl;
std::cout << " warpSize: " << deviceProp.warpSize << std::endl;
std::cout << " regsPerBlock: " << deviceProp.regsPerBlock << std::endl;
std::cout << " concurrentKernels: " << deviceProp.concurrentKernels << std::endl;
std::cout << " clockRate: " << deviceProp.clockRate << std::endl;
std::cout << " canMapHostMemory: " << deviceProp.canMapHostMemory << std::endl;
std::cout << " computeMode: " << deviceProp.computeMode << std::endl;
}
#endif // EIGEN_GPUCC
/**
* Runs a kernel on the GPU (if EIGEN_GPUCC), or CPU otherwise.
*
* This is to better support creating generic tests.
*
* The kernel must be able to be passed directly as an input to a global
* function (i.e. empty or POD). Its inputs must be "Serializable" so we
* can transfer them to the device, and the output must be a Serializable value
* type so it can be transfered back from the device.
*
* \param kernel kernel to run.
* \param args ... input arguments, must be "Serializable".
* \return kernel(args...).
*/
template<typename Kernel, typename... Args>
auto run(Kernel kernel, Args&&... args) -> decltype(kernel(args...)){
#ifdef EIGEN_GPUCC
return run_on_gpu(kernel, std::forward<Args>(args)...);
#else
return run_on_cpu(kernel, std::forward<Args>(args)...);
#endif
}
/**
* Runs a kernel on the GPU (if EIGEN_GPUCC), or CPU otherwise.
*
* This version allows specifying a minimum buffer capacity size required for
* serializing the puts to transfer results from device to host. Use this when
* `run(...)` fails to determine an appropriate capacity by default.
*
* \param buffer_capacity_hint minimum required buffer size for serializing
* outputs.
* \param kernel kernel to run.
* \param args ... input arguments, must be "Serializable".
* \return kernel(args...).
* \sa run
*/
template<typename Kernel, typename... Args>
auto run_with_hint(size_t buffer_capacity_hint,
Kernel kernel, Args&&... args) -> decltype(kernel(args...)){
#ifdef EIGEN_GPUCC
return run_on_gpu_with_hint(buffer_capacity_hint, kernel, std::forward<Args>(args)...);
#else
return run_on_cpu(kernel, std::forward<Args>(args)...);
#endif
}
} // namespace Eigen
#endif // GPU_TEST_HELPER_H

View File

@ -55,19 +55,26 @@
#endif #endif
#endif #endif
// Same for cuda_fp16.h // Configure GPU.
#if defined(__CUDACC__) && !defined(EIGEN_NO_CUDA) #if defined(EIGEN_USE_HIP)
// Means the compiler is either nvcc or clang with CUDA enabled #if defined(__HIPCC__) && !defined(EIGEN_NO_HIP)
#define EIGEN_HIPCC __HIPCC__
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#endif
#elif defined(__CUDACC__) && !defined(EIGEN_NO_CUDA)
#define EIGEN_CUDACC __CUDACC__ #define EIGEN_CUDACC __CUDACC__
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#if CUDA_VERSION >= 7050
#include <cuda_fp16.h>
#endif
#endif #endif
#if defined(EIGEN_CUDACC)
#include <cuda.h> #if defined(EIGEN_CUDACC) || defined(EIGEN_HIPCC)
#define EIGEN_CUDA_SDK_VER (CUDA_VERSION * 10) #define EIGEN_TEST_NO_LONGDOUBLE
#else #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_CUDA_SDK_VER 0
#endif
#if EIGEN_CUDA_SDK_VER >= 70500
#include <cuda_fp16.h>
#endif #endif
// To test that all calls from Eigen code to std::min() and std::max() are // To test that all calls from Eigen code to std::min() and std::max() are
@ -1081,3 +1088,5 @@ int main(int argc, char *argv[])
// 4503 - decorated name length exceeded, name was truncated // 4503 - decorated name length exceeded, name was truncated
#pragma warning( disable : 4503) #pragma warning( disable : 4503)
#endif #endif
#include "gpu_test_helper.h"