mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-20 08:39:37 +08:00
Various documentation improvements, in particualr in Cholesky and Geometry module.
Added doxygen groups for Matrix typedefs and the Geometry module
This commit is contained in:
parent
269f683902
commit
ce425d92f1
@ -5,7 +5,16 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \defgroup Geometry */
|
||||
/** \defgroup Geometry
|
||||
* This module provides support for:
|
||||
* - fixed-size homogeneous transformations
|
||||
* - 2D and 3D rotations
|
||||
* - \ref MatrixBase::cross() "cross product"
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/Geometry>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/Geometry/Cross.h"
|
||||
#include "src/Geometry/Quaternion.h"
|
||||
|
@ -42,7 +42,7 @@
|
||||
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
|
||||
* the strict lower part does not have to store correct values.
|
||||
*
|
||||
* \sa class CholeskyWithoutSquareRoot
|
||||
* \sa MatrixBase::cholesky(), class CholeskyWithoutSquareRoot
|
||||
*/
|
||||
template<typename MatrixType> class Cholesky
|
||||
{
|
||||
@ -107,20 +107,22 @@ void Cholesky<MatrixType>::compute(const MatrixType& a)
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns the solution of A x = \a b using the current decomposition of A.
|
||||
* In other words, it returns \code A^-1 b \endcode computing
|
||||
* \code L^-* L^1 b \endcode from right to left.
|
||||
/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
|
||||
* In other words, it returns \f$ A^{-1} b \f$ computing
|
||||
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
|
||||
* \param b the column vector \f$ b \f$, which can also be a matrix.
|
||||
*
|
||||
* Example: \include Cholesky_solve.cpp
|
||||
* Output: \verbinclude Cholesky_solve.out
|
||||
*
|
||||
* \sa MatrixBase::cholesky(), CholeskyWithoutSquareRoot::solve()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename Derived>
|
||||
typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b) const
|
||||
{
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size==b.size());
|
||||
ei_assert(size==b.rows());
|
||||
|
||||
return m_matrix.adjoint().template extract<Upper>().inverseProduct(matrixL().inverseProduct(b));
|
||||
}
|
||||
|
@ -32,8 +32,8 @@
|
||||
* \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
|
||||
*
|
||||
* This class performs a Cholesky decomposition without square root of a symmetric, positive definite
|
||||
* matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal and D is a diagonal
|
||||
* matrix.
|
||||
* matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal
|
||||
* and D is a diagonal matrix.
|
||||
*
|
||||
* Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more
|
||||
* stable computation.
|
||||
@ -41,7 +41,7 @@
|
||||
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
|
||||
* the strict lower part does not have to store correct values.
|
||||
*
|
||||
* \sa class Cholesky
|
||||
* \sa MatrixBase::choleskyNoSqrt(), class Cholesky
|
||||
*/
|
||||
template<typename MatrixType> class CholeskyWithoutSquareRoot
|
||||
{
|
||||
@ -123,19 +123,23 @@ void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
|
||||
/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
|
||||
* In other words, it returns \f$ A^{-1} b \f$ computing
|
||||
* \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
|
||||
* \param vecB the vector \f$ b \f$ (or an array of vectors)
|
||||
* \param b the column vector \f$ b \f$, which can also be a matrix.
|
||||
*
|
||||
* See Cholesky::solve() for a example.
|
||||
*
|
||||
* \sa MatrixBase::choleskyNoSqrt()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
template<typename Derived>
|
||||
typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(const MatrixBase<Derived> &vecB) const
|
||||
typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(const MatrixBase<Derived> &b) const
|
||||
{
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size==vecB.size());
|
||||
ei_assert(size==b.rows());
|
||||
|
||||
return m_matrix.adjoint().template extract<UnitUpper>()
|
||||
.inverseProduct(
|
||||
(matrixL()
|
||||
.inverseProduct(vecB))
|
||||
.inverseProduct(b))
|
||||
.cwise()/m_matrix.diagonal()
|
||||
);
|
||||
}
|
||||
|
@ -72,9 +72,9 @@ void MatrixBase<Derived>::inverseProductInPlace(MatrixBase<OtherDerived>& other)
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns the product of the inverse of \c *this with \a other.
|
||||
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
|
||||
*
|
||||
* This function computes the inverse-matrix matrix product inverse(\c*this) * \a other
|
||||
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other
|
||||
* It works as a forward (resp. backward) substitution if \c *this is an upper (resp. lower)
|
||||
* triangular matrix.
|
||||
*
|
||||
|
@ -71,6 +71,8 @@
|
||||
* \li \c VectorXf is a typedef for \c Matrix<float,Dynamic,1>
|
||||
* \li \c RowVector3i is a typedef for \c Matrix<int,1,3>
|
||||
*
|
||||
* See \ref matrixtypedefs for an explicit list of all matrix typedefs.
|
||||
*
|
||||
* Of course these typedefs do not exhaust all the possibilities offered by the Matrix class
|
||||
* template, they only address some of the most common cases. For instance, if you want a
|
||||
* fixed-size matrix with 3 rows and 5 columns, there is no typedef for that, so you should use
|
||||
@ -355,9 +357,18 @@ class Matrix : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCol
|
||||
}
|
||||
};
|
||||
|
||||
/** \defgroup matrixtypedefs Global matrix typedefs
|
||||
* Eigen defines several typedef shortcuts for most common matrix types.
|
||||
* Here is the explicit list.
|
||||
* \sa class Matrix
|
||||
*/
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
|
||||
|
@ -262,6 +262,8 @@ inline void Part<MatrixType, Mode>::setRandom()
|
||||
* The \a Mode parameter can have the following values: \c Upper, \c StrictlyUpper, \c Lower,
|
||||
* \c StrictlyLower, \c SelfAdjoint.
|
||||
*
|
||||
* \addexample PartExample \label How to write to a triangular part of a matrix
|
||||
*
|
||||
* Example: \include MatrixBase_part.cpp
|
||||
* Output: \verbinclude MatrixBase_part.out
|
||||
*
|
||||
|
@ -76,6 +76,9 @@ struct ei_visitor_impl<Visitor, Derived, Dynamic>
|
||||
* };
|
||||
* \endcode
|
||||
*
|
||||
* \note compared to one or two \em for \em loops, visitors offer automatic
|
||||
* unrolling for small fixed size matrix.
|
||||
*
|
||||
* \sa minCoeff(int*,int*), maxCoeff(int*,int*), MatrixBase::redux()
|
||||
*/
|
||||
template<typename Derived>
|
||||
|
@ -28,9 +28,7 @@
|
||||
|
||||
const int Dynamic = 10000;
|
||||
|
||||
/** \defgroup flags */
|
||||
|
||||
/** \name flags
|
||||
/** \defgroup flags
|
||||
*
|
||||
* These are the possible bits which can be OR'ed to constitute the flags of a matrix or
|
||||
* expression.
|
||||
|
@ -64,10 +64,15 @@ protected:
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor without initialization. */
|
||||
AngleAxis() {}
|
||||
/** Constructs and initialize the angle-axis rotation from an \a angle in radian
|
||||
* and an \a axis which must be normalized. */
|
||||
template<typename Derived>
|
||||
inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
|
||||
/** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
|
||||
inline AngleAxis(const QuaternionType& q) { *this = q; }
|
||||
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
|
||||
template<typename Derived>
|
||||
inline AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
|
||||
|
||||
@ -77,6 +82,8 @@ public:
|
||||
const Vector3& axis() const { return m_axis; }
|
||||
Vector3& axis() { return m_axis; }
|
||||
|
||||
/** Automatic conversion to a 3x3 rotation matrix.
|
||||
* \sa toRotationMatrix() */
|
||||
operator Matrix3 () const { return toRotationMatrix(); }
|
||||
|
||||
inline QuaternionType operator* (const AngleAxis& other) const
|
||||
@ -105,7 +112,11 @@ public:
|
||||
Matrix3 toRotationMatrix(void) const;
|
||||
};
|
||||
|
||||
/** \ingroup Geometry
|
||||
* single precision angle-axis type */
|
||||
typedef AngleAxis<float> AngleAxisf;
|
||||
/** \ingroup Geometry
|
||||
* double precision angle-axis type */
|
||||
typedef AngleAxis<double> AngleAxisd;
|
||||
|
||||
/** Set \c *this from a quaternion.
|
||||
|
@ -38,13 +38,12 @@ struct ei_quaternion_assign_impl;
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
||||
*
|
||||
* This class represents a quaternion that is a convenient representation of
|
||||
* orientations and rotations of objects in three dimensions. Compared to other
|
||||
* representations like Euler angles or 3x3 matrices, quatertions offer the
|
||||
* following advantages:
|
||||
* \li \c compact storage (4 scalars)
|
||||
* \li \c efficient to compose (28 flops),
|
||||
* \li \c stable spherical interpolation
|
||||
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
|
||||
* orientations and rotations of objects in three dimensions. Compared to other representations
|
||||
* like Euler angles or 3x3 matrices, quatertions offer the following advantages:
|
||||
* \li \b compact storage (4 scalars)
|
||||
* \li \b efficient to compose (28 flops),
|
||||
* \li \b stable spherical interpolation
|
||||
*
|
||||
* The following two typedefs are provided for convenience:
|
||||
* \li \c Quaternionf for \c float
|
||||
@ -63,18 +62,29 @@ public:
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
|
||||
/** the type of a 3D vector */
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
/** the equivalent rotation matrix type */
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
/** the equivalent angle-axis type */
|
||||
typedef AngleAxis<Scalar> AngleAxisType;
|
||||
|
||||
/** \returns the \c x coefficient */
|
||||
inline Scalar x() const { return m_coeffs.coeff(0); }
|
||||
/** \returns the \c y coefficient */
|
||||
inline Scalar y() const { return m_coeffs.coeff(1); }
|
||||
/** \returns the \c z coefficient */
|
||||
inline Scalar z() const { return m_coeffs.coeff(2); }
|
||||
/** \returns the \c w coefficient */
|
||||
inline Scalar w() const { return m_coeffs.coeff(3); }
|
||||
|
||||
/** \returns a reference to the \c x coefficient */
|
||||
inline Scalar& x() { return m_coeffs.coeffRef(0); }
|
||||
/** \returns a reference to the \c y coefficient */
|
||||
inline Scalar& y() { return m_coeffs.coeffRef(1); }
|
||||
/** \returns a reference to the \c z coefficient */
|
||||
inline Scalar& z() { return m_coeffs.coeffRef(2); }
|
||||
/** \returns a reference to the \c w coefficient */
|
||||
inline Scalar& w() { return m_coeffs.coeffRef(3); }
|
||||
|
||||
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
|
||||
@ -83,25 +93,33 @@ public:
|
||||
/** \returns a vector expression of the imaginary part (x,y,z) */
|
||||
inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
|
||||
|
||||
/** \returns a read-only vector expression of the coefficients */
|
||||
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
|
||||
inline const Coefficients& coeffs() const { return m_coeffs; }
|
||||
|
||||
/** \returns a vector expression of the coefficients */
|
||||
/** \returns a vector expression of the coefficients (x,y,z,w) */
|
||||
inline Coefficients& coeffs() { return m_coeffs; }
|
||||
|
||||
/** Default constructor and initializing an identity quaternion. */
|
||||
inline Quaternion()
|
||||
{ m_coeffs << 0, 0, 0, 1; }
|
||||
|
||||
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
|
||||
* its four coefficients \a w, \a x, \a y and \a z.
|
||||
*/
|
||||
// FIXME what is the prefered order: w x,y,z or x,y,z,w ?
|
||||
inline Quaternion(Scalar w = 1.0, Scalar x = 0.0, Scalar y = 0.0, Scalar z = 0.0)
|
||||
{
|
||||
m_coeffs.coeffRef(0) = x;
|
||||
m_coeffs.coeffRef(1) = y;
|
||||
m_coeffs.coeffRef(2) = z;
|
||||
m_coeffs.coeffRef(3) = w;
|
||||
}
|
||||
inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
|
||||
{ m_coeffs << x, y, z, w; }
|
||||
|
||||
/** Copy constructor */
|
||||
inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
|
||||
|
||||
/** Constructs and initializes a quaternion from the angle-axis \a aa */
|
||||
explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
|
||||
/** Constructs and initializes a quaternion from either:
|
||||
* - a rotation matrix expression,
|
||||
* - a 4D vector expression representing quaternion coefficients.
|
||||
* \sa operator=(MatrixBase<Derived>)
|
||||
*/
|
||||
template<typename Derived>
|
||||
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
|
||||
|
||||
@ -110,6 +128,7 @@ public:
|
||||
template<typename Derived>
|
||||
Quaternion& operator=(const MatrixBase<Derived>& m);
|
||||
|
||||
/** Automatic conversion to a rotation matrix. */
|
||||
operator Matrix3 () const { return toRotationMatrix(); }
|
||||
|
||||
/** \returns a quaternion representing an identity rotation
|
||||
@ -149,7 +168,11 @@ public:
|
||||
|
||||
};
|
||||
|
||||
/** \ingroup Geometry
|
||||
* single precision quaternion type */
|
||||
typedef Quaternion<float> Quaternionf;
|
||||
/** \ingroup Geometry
|
||||
* double precision quaternion type */
|
||||
typedef Quaternion<double> Quaterniond;
|
||||
|
||||
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
|
||||
@ -165,6 +188,7 @@ inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other
|
||||
);
|
||||
}
|
||||
|
||||
/** \sa operator*(Quaternion) */
|
||||
template <typename Scalar>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
|
||||
{
|
||||
@ -200,8 +224,7 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Set \c *this from an angle-axis \a aa
|
||||
* and returns a reference to \c *this
|
||||
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
|
||||
*/
|
||||
template<typename Scalar>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
|
||||
|
@ -28,7 +28,7 @@
|
||||
// this file aims to contains the various representations of rotation/orientation
|
||||
// in 2D and 3D space excepted Matrix and Quaternion.
|
||||
|
||||
/** \geometry_module
|
||||
/** \internal
|
||||
*
|
||||
* \class ToRotationMatrix
|
||||
*
|
||||
@ -103,7 +103,7 @@ struct ToRotationMatrix<Scalar, Dim, MatrixBase<OtherDerived> >
|
||||
}
|
||||
};
|
||||
|
||||
/** \geometry_module
|
||||
/** \geometry_module \ingroup Geometry
|
||||
*
|
||||
* \class Rotation2D
|
||||
*
|
||||
@ -111,10 +111,10 @@ struct ToRotationMatrix<Scalar, Dim, MatrixBase<OtherDerived> >
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
||||
*
|
||||
* This class is equivalent to a single scalar representing the rotation angle
|
||||
* in radian with some additional features such as the conversion from/to
|
||||
* rotation matrix. Moreover this class aims to provide a similar interface
|
||||
* to Quaternion in order to facilitate the writing of generic algorithm
|
||||
* This class is equivalent to a single scalar representing a counter clock wise rotation
|
||||
* as a single angle in radian. It provides some additional features such as the automatic
|
||||
* conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
|
||||
* interface to Quaternion in order to facilitate the writing of generic algorithm
|
||||
* dealing with rotations.
|
||||
*
|
||||
* \sa class Quaternion, class Transform
|
||||
@ -134,16 +134,22 @@ protected:
|
||||
|
||||
public:
|
||||
|
||||
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
|
||||
inline Rotation2D(Scalar a) : m_angle(a) {}
|
||||
inline operator Scalar& () { return m_angle; }
|
||||
inline operator Scalar () const { return m_angle; }
|
||||
|
||||
/** Automatic convertion to a 2D rotation matrix.
|
||||
* \sa toRotationMatrix()
|
||||
*/
|
||||
inline operator Matrix2() const { return toRotationMatrix(); }
|
||||
|
||||
template<typename Derived>
|
||||
Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
|
||||
Matrix2 toRotationMatrix(void) const;
|
||||
|
||||
/** \returns the spherical interpolation between \c *this and \a other using
|
||||
* parameter \a t. It is equivalent to a linear interpolation.
|
||||
* parameter \a t. It is in fact equivalent to a linear interpolation.
|
||||
*/
|
||||
inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
|
||||
{ return m_angle * (1-t) + t * other; }
|
||||
|
@ -50,20 +50,29 @@ struct ei_transform_product_impl;
|
||||
* Conversion methods from/to Qt's QMatrix are available if the preprocessor token
|
||||
* EIGEN_QT_SUPPORT is defined.
|
||||
*
|
||||
* \sa class Matrix, class Quaternion
|
||||
*/
|
||||
template<typename _Scalar, int _Dim>
|
||||
class Transform
|
||||
{
|
||||
public:
|
||||
|
||||
enum { Dim = _Dim, HDim = _Dim+1 };
|
||||
enum {
|
||||
Dim = _Dim, ///< space dimension in which the transformation holds
|
||||
HDim = _Dim+1 ///< size of a respective homogeneous vector
|
||||
};
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
/** type of the matrix used to represent the transformation */
|
||||
typedef Matrix<Scalar,HDim,HDim> MatrixType;
|
||||
/** type of the matrix used to represent the affine part of the transformation */
|
||||
typedef Matrix<Scalar,Dim,Dim> AffineMatrixType;
|
||||
typedef Block<MatrixType,Dim,Dim> AffineMatrixRef;
|
||||
/** type of read/write reference to the affine part of the transformation */
|
||||
typedef Block<MatrixType,Dim,Dim> AffinePart;
|
||||
/** type of a vector */
|
||||
typedef Matrix<Scalar,Dim,1> VectorType;
|
||||
typedef Block<MatrixType,Dim,1> VectorRef;
|
||||
/** type of a read/write reference to the translation part of the rotation */
|
||||
typedef Block<MatrixType,Dim,1> TranslationPart;
|
||||
|
||||
protected:
|
||||
|
||||
@ -80,10 +89,12 @@ public:
|
||||
inline Transform& operator=(const Transform& other)
|
||||
{ m_matrix = other.m_matrix; return *this; }
|
||||
|
||||
/** Constructs and initializes a transformation from a (Dim+1)^2 matrix. */
|
||||
template<typename OtherDerived>
|
||||
inline explicit Transform(const MatrixBase<OtherDerived>& other)
|
||||
{ m_matrix = other; }
|
||||
|
||||
/** Set \c *this from a (Dim+1)^2 matrix. */
|
||||
template<typename OtherDerived>
|
||||
inline Transform& operator=(const MatrixBase<OtherDerived>& other)
|
||||
{ m_matrix = other; return *this; }
|
||||
@ -100,14 +111,14 @@ public:
|
||||
inline MatrixType& matrix() { return m_matrix; }
|
||||
|
||||
/** \returns a read-only expression of the affine (linear) part of the transformation */
|
||||
inline const AffineMatrixRef affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
|
||||
inline const AffinePart affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
|
||||
/** \returns a writable expression of the affine (linear) part of the transformation */
|
||||
inline AffineMatrixRef affine() { return m_matrix.template block<Dim,Dim>(0,0); }
|
||||
inline AffinePart affine() { return m_matrix.template block<Dim,Dim>(0,0); }
|
||||
|
||||
/** \returns a read-only expression of the translation vector of the transformation */
|
||||
inline const VectorRef translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
|
||||
inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
|
||||
/** \returns a writable expression of the translation vector of the transformation */
|
||||
inline VectorRef translation() { return m_matrix.template block<Dim,1>(0,Dim); }
|
||||
inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
|
||||
@ -118,6 +129,7 @@ public:
|
||||
operator * (const Transform& other) const
|
||||
{ return m_matrix * other.matrix(); }
|
||||
|
||||
/** \sa MatrixBase::setIdentity() */
|
||||
void setIdentity() { m_matrix.setIdentity(); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
@ -138,10 +150,7 @@ public:
|
||||
template<typename RotationType>
|
||||
Transform& prerotate(const RotationType& rotation);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Transform& shear(Scalar sx, Scalar sy);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Transform& preshear(Scalar sx, Scalar sy);
|
||||
|
||||
AffineMatrixType extractRotation() const;
|
||||
@ -151,6 +160,7 @@ public:
|
||||
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
|
||||
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
|
||||
|
||||
/** \sa MatrixBase::inverse() */
|
||||
const Inverse<MatrixType, false> inverse() const
|
||||
{ return m_matrix.inverse(); }
|
||||
|
||||
@ -158,8 +168,19 @@ protected:
|
||||
|
||||
};
|
||||
|
||||
/** \ingroup Geometry */
|
||||
typedef Transform<float,2> Transform2f;
|
||||
/** \ingroup Geometry */
|
||||
typedef Transform<float,3> Transform3f;
|
||||
/** \ingroup Geometry */
|
||||
typedef Transform<double,2> Transform2d;
|
||||
/** \ingroup Geometry */
|
||||
typedef Transform<double,3> Transform3d;
|
||||
|
||||
#ifdef EIGEN_QT_SUPPORT
|
||||
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
Transform<Scalar,Dim>::Transform(const QMatrix& other)
|
||||
@ -168,6 +189,8 @@ Transform<Scalar,Dim>::Transform(const QMatrix& other)
|
||||
}
|
||||
|
||||
/** Set \c *this from a QMatrix assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
|
||||
@ -180,21 +203,25 @@ Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
|
||||
}
|
||||
|
||||
/** \returns a QMatrix from \c *this assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
|
||||
return QMatrix( other.coeffRef(0,0), other.coeffRef(1,0),
|
||||
return QMatrix(other.coeffRef(0,0), other.coeffRef(1,0),
|
||||
other.coeffRef(0,1), other.coeffRef(1,1),
|
||||
other.coeffRef(0,2), other.coeffRef(1,2),
|
||||
other.coeffRef(0,2), other.coeffRef(1,2));
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \returns an expression of the product between the transform \c *this and a matrix expression \a other
|
||||
*
|
||||
* The right hand side \a other might be a vector of size Dim, an homogeneous vector of size Dim+1
|
||||
* or a transformation matrix of size Dim+1 x Dim+1.
|
||||
* The right hand side \a other might be either:
|
||||
* \li a vector of size Dim,
|
||||
* \li an homogeneous vector of size Dim+1,
|
||||
* \li a transformation matrix of size Dim+1 x Dim+1.
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename OtherDerived>
|
||||
@ -213,8 +240,7 @@ template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
||||
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,Dim);
|
||||
affine() = (affine() * other.asDiagonal()).lazy();
|
||||
return *this;
|
||||
}
|
||||
@ -228,8 +254,7 @@ template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
||||
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,Dim);
|
||||
m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
|
||||
return *this;
|
||||
}
|
||||
@ -243,8 +268,7 @@ template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
||||
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,Dim);
|
||||
translation() += affine() * other;
|
||||
return *this;
|
||||
}
|
||||
@ -258,8 +282,7 @@ template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
||||
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,Dim);
|
||||
translation() += other;
|
||||
return *this;
|
||||
}
|
||||
@ -273,8 +296,8 @@ Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
|
||||
* Natively supported types includes:
|
||||
* - any scalar (2D),
|
||||
* - a Dim x Dim matrix expression,
|
||||
* - Quaternion (3D),
|
||||
* - AngleAxis (3D)
|
||||
* - a Quaternion (3D),
|
||||
* - a AngleAxis (3D)
|
||||
*
|
||||
* This mechanism is easily extendable to support user types such as Euler angles,
|
||||
* or a pair of Quaternion for 4D rotations.
|
||||
@ -293,9 +316,9 @@ Transform<Scalar,Dim>::rotate(const RotationType& rotation)
|
||||
/** Applies on the left the rotation represented by the rotation \a rotation
|
||||
* to \c *this and returns a reference to \c *this.
|
||||
*
|
||||
* See rotate(RotationType) for further details.
|
||||
* See rotate() for further details.
|
||||
*
|
||||
* \sa rotate(RotationType), rotate(Scalar)
|
||||
* \sa rotate()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename RotationType>
|
||||
@ -313,12 +336,10 @@ Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
|
||||
* \sa preshear()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
||||
&& int(OtherDerived::SizeAtCompileTime)==int(Dim) && int(Dim)==2, you_did_a_programming_error);
|
||||
EIGEN_STATIC_ASSERT(int(Dim)==2, you_did_a_programming_error);
|
||||
VectorType tmp = affine().col(0)*sy + affine().col(1);
|
||||
affine() << affine().col(0) + affine().col(1)*sx, tmp;
|
||||
return *this;
|
||||
@ -330,18 +351,16 @@ Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
|
||||
* \sa shear()
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
template<typename OtherDerived>
|
||||
Transform<Scalar,Dim>&
|
||||
Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
||||
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
||||
EIGEN_STATIC_ASSERT(int(Dim)==2, you_did_a_programming_error);
|
||||
m_matrix.template block<Dim,HDim>(0,0) = AffineMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns the rotation part of the transformation using a QR decomposition.
|
||||
* \sa extractRotationNoShear()
|
||||
* \sa extractRotationNoShear(), class QR
|
||||
*/
|
||||
template<typename Scalar, int Dim>
|
||||
typename Transform<Scalar,Dim>::AffineMatrixType
|
||||
@ -408,15 +427,15 @@ struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
|
||||
{
|
||||
typedef typename Other::Scalar Scalar;
|
||||
typedef Transform<Scalar,Dim> TransformType;
|
||||
typedef typename TransformType::AffineMatrixRef MatrixType;
|
||||
typedef typename TransformType::AffinePart MatrixType;
|
||||
typedef const CwiseUnaryOp<
|
||||
ei_scalar_multiple_op<Scalar>,
|
||||
NestByValue<CwiseBinaryOp<
|
||||
ei_scalar_sum_op<Scalar>,
|
||||
NestByValue<typename ProductReturnType<NestByValue<MatrixType>,Other>::Type >,
|
||||
NestByValue<typename TransformType::VectorRef> > >
|
||||
NestByValue<typename TransformType::TranslationPart> > >
|
||||
> ResultType;
|
||||
// FIXME shall we offer an optimized version when the last row is known to be 0,0...,0,1 ?
|
||||
// FIXME should we offer an optimized version when the last row is known to be 0,0...,0,1 ?
|
||||
static ResultType run(const TransformType& tr, const Other& other)
|
||||
{ return ((tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
|
||||
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
|
||||
|
@ -1191,7 +1191,9 @@ PREDEFINED = EIGEN_EMPTY_STRUCT \
|
||||
# The macro definition that is found in the sources will be used.
|
||||
# Use the PREDEFINED tag if you want to use a different macro definition.
|
||||
|
||||
EXPAND_AS_DEFINED = EIGEN_MAKE_SCALAR_OPS
|
||||
EXPAND_AS_DEFINED = EIGEN_MAKE_SCALAR_OPS \
|
||||
EIGEN_MAKE_TYPEDEFS \
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES
|
||||
|
||||
# If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then
|
||||
# doxygen's preprocessor will remove all function-like macros that are alone
|
||||
|
@ -1,4 +1,4 @@
|
||||
Matrix3f m = AngleAxisf(0.25*M_PI, Vector3f::UnitX())
|
||||
* AngleAxisf(0.5*M_PI, Vector3f::UnitY())
|
||||
* AngleAxisf(0.33*M_PI, Vector3f::UnitZ());
|
||||
cout << m << endl;
|
||||
cout << m << endl << "is unitary: " << m.isUnitary() << endl;
|
||||
|
Loading…
x
Reference in New Issue
Block a user