mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-08 17:59:00 +08:00
Fixing potential race condition on sycl device.
This commit is contained in:
parent
f84963ed95
commit
e2e3f78533
@ -41,6 +41,7 @@ namespace Eigen {
|
|||||||
size_t m_i;
|
size_t m_i;
|
||||||
size_t m_offset;
|
size_t m_offset;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename AccType>
|
template<typename AccType>
|
||||||
struct memsetkernelFunctor{
|
struct memsetkernelFunctor{
|
||||||
AccType m_acc;
|
AccType m_acc;
|
||||||
@ -54,6 +55,21 @@ template<typename AccType>
|
|||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct memsetCghFunctor{
|
||||||
|
cl::sycl::buffer<uint8_t, 1>& m_buf;
|
||||||
|
const ptrdiff_t& buff_offset;
|
||||||
|
const size_t& rng , GRange, tileSize;
|
||||||
|
const int &c;
|
||||||
|
memsetCghFunctor(cl::sycl::buffer<uint8_t, 1>& buff, const ptrdiff_t& buff_offset_, const size_t& rng_, const size_t& GRange_, const size_t& tileSize_, const int& c_)
|
||||||
|
:m_buf(buff), buff_offset(buff_offset_), rng(rng_), GRange(GRange_), tileSize(tileSize_), c(c_){}
|
||||||
|
|
||||||
|
void operator()(cl::sycl::handler &cgh) const {
|
||||||
|
auto buf_acc = m_buf.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
|
||||||
|
typedef decltype(buf_acc) AccType;
|
||||||
|
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), memsetkernelFunctor<AccType>(buf_acc, buff_offset, rng, c));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
//get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU and intel GPU)
|
//get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU and intel GPU)
|
||||||
EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device::get_devices()){
|
EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device::get_devices()){
|
||||||
auto devices = cl::sycl::device::get_devices();
|
auto devices = cl::sycl::device::get_devices();
|
||||||
@ -75,18 +91,8 @@ EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device
|
|||||||
return devices;
|
return devices;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct QueueInterface {
|
class QueueInterface {
|
||||||
/// class members:
|
public:
|
||||||
bool exception_caught_ = false;
|
|
||||||
|
|
||||||
mutable std::mutex mutex_;
|
|
||||||
|
|
||||||
/// std::map is the container used to make sure that we create only one buffer
|
|
||||||
/// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
|
|
||||||
/// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
|
|
||||||
mutable std::map<const uint8_t *, cl::sycl::buffer<uint8_t, 1>> buffer_map;
|
|
||||||
/// sycl queue
|
|
||||||
mutable cl::sycl::queue m_queue;
|
|
||||||
/// creating device by using cl::sycl::selector or cl::sycl::device both are the same and can be captured through dev_Selector typename
|
/// creating device by using cl::sycl::selector or cl::sycl::device both are the same and can be captured through dev_Selector typename
|
||||||
/// SyclStreamDevice is not owned. it is the caller's responsibility to destroy it.
|
/// SyclStreamDevice is not owned. it is the caller's responsibility to destroy it.
|
||||||
template<typename dev_Selector> explicit QueueInterface(const dev_Selector& s):
|
template<typename dev_Selector> explicit QueueInterface(const dev_Selector& s):
|
||||||
@ -115,16 +121,53 @@ m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
|
|||||||
}))
|
}))
|
||||||
#endif
|
#endif
|
||||||
{}
|
{}
|
||||||
|
/// Allocating device pointer. This pointer is actually an 8 bytes host pointer used as key to access the sycl device buffer.
|
||||||
|
/// The reason is that we cannot use device buffer as a pointer as a m_data in Eigen leafNode expressions. So we create a key
|
||||||
|
/// pointer to be used in Eigen expression construction. When we convert the Eigen construction into the sycl construction we
|
||||||
|
/// use this pointer as a key in our buffer_map and we make sure that we dedicate only one buffer only for this pointer.
|
||||||
|
/// The device pointer would be deleted by calling deallocate function.
|
||||||
|
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
|
auto buf = cl::sycl::buffer<uint8_t,1>(cl::sycl::range<1>(num_bytes));
|
||||||
|
auto ptr =buf.get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>().get_pointer();
|
||||||
|
buf.set_final_data(nullptr);
|
||||||
|
buffer_map.insert(std::pair<const uint8_t *, cl::sycl::buffer<uint8_t, 1>>(static_cast<const uint8_t*>(ptr),buf));
|
||||||
|
return static_cast<void*>(ptr);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This is used to deallocate the device pointer. p is used as a key inside
|
||||||
|
/// the map to find the device buffer and delete it.
|
||||||
|
EIGEN_STRONG_INLINE void deallocate(void *p) const {
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
|
auto it = buffer_map.find(static_cast<const uint8_t*>(p));
|
||||||
|
if (it != buffer_map.end()) {
|
||||||
|
buffer_map.erase(it);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_STRONG_INLINE void deallocate_all() const {
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
|
buffer_map.clear();
|
||||||
|
}
|
||||||
//FIXME: currently we have to switch back to write as discard_write doesnot work in forloop
|
//FIXME: currently we have to switch back to write as discard_write doesnot work in forloop
|
||||||
|
/// The memcpyHostToDevice is used to copy the device only pointer to a host pointer. Using the device
|
||||||
|
/// pointer created as a key we find the sycl buffer and get the host accessor with discard_write mode
|
||||||
|
/// on it. Using a discard_write accessor guarantees that we do not bring back the current value of the
|
||||||
|
/// buffer to host. Then we use the memcpy to copy the data to the host accessor. The first time that
|
||||||
|
/// this buffer is accessed, the data will be copied to the device.
|
||||||
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
|
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
auto host_acc= find_buffer(dst)->second. template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::host_buffer>();
|
auto host_acc= find_buffer(dst)->second. template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::host_buffer>();
|
||||||
::memcpy(host_acc.get_pointer(), src, n);
|
::memcpy(host_acc.get_pointer(), src, n);
|
||||||
}
|
}
|
||||||
|
/// The memcpyDeviceToHost is used to copy the data from host to device. Here, in order to avoid double copying the data. We create a sycl
|
||||||
|
/// buffer with map_allocator for the destination pointer with a discard_write accessor on it. The lifespan of the buffer is bound to the
|
||||||
|
/// lifespan of the memcpyDeviceToHost function. We create a kernel to copy the data, from the device- only source buffer to the destination
|
||||||
|
/// buffer with map_allocator on the gpu in parallel. At the end of the function call the destination buffer would be destroyed and the data
|
||||||
|
/// would be available on the dst pointer using fast copy technique (map_allocator). In this case we can make sure that we copy the data back
|
||||||
|
/// to the cpu only once per function call.
|
||||||
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
|
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
// Assuming that the dst is the start of the destination pointer
|
|
||||||
auto it =find_buffer(src);
|
auto it =find_buffer(src);
|
||||||
auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first;
|
auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first;
|
||||||
offset/=sizeof(Index);
|
offset/=sizeof(Index);
|
||||||
@ -139,19 +182,67 @@ parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
|
|||||||
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, 0, offset));
|
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, 0, offset));
|
||||||
});
|
});
|
||||||
synchronize();
|
synchronize();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// the memcpy function
|
||||||
|
template<typename Index> EIGEN_STRONG_INLINE void memcpy(void *dst, const Index *src, size_t n) const {
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
|
auto it1 = find_buffer(static_cast<const void*>(src));
|
||||||
|
auto it2 = find_buffer(dst);
|
||||||
|
auto offset= (static_cast<const uint8_t*>(static_cast<const void*>(src))) - it1->first;
|
||||||
|
auto i= (static_cast<const uint8_t*>(dst)) - it2->first;
|
||||||
|
offset/=sizeof(Index);
|
||||||
|
i/=sizeof(Index);
|
||||||
|
size_t rng, GRange, tileSize;
|
||||||
|
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
|
||||||
|
m_queue.submit([&](cl::sycl::handler &cgh) {
|
||||||
|
auto src_acc =it1->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
|
||||||
|
auto dst_acc =it2->second.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
|
||||||
|
typedef decltype(src_acc) read_accessor;
|
||||||
|
typedef decltype(dst_acc) write_accessor;
|
||||||
|
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, i, offset));
|
||||||
|
});
|
||||||
|
synchronize();
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const {
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
|
size_t rng, GRange, tileSize;
|
||||||
|
parallel_for_setup(n, tileSize, rng, GRange);
|
||||||
|
auto it1 = find_buffer(static_cast<const void*>(data));
|
||||||
|
ptrdiff_t buff_offset= (static_cast<const uint8_t*>(data)) - it1->first;
|
||||||
|
m_queue.submit(memsetCghFunctor(it1->second, buff_offset, rng, GRange, tileSize, c ));
|
||||||
|
synchronize();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Creation of sycl accessor for a buffer. This function first tries to find
|
||||||
|
/// the buffer in the buffer_map. If found it gets the accessor from it, if not,
|
||||||
|
/// the function then adds an entry by creating a sycl buffer for that particular pointer.
|
||||||
|
template <cl::sycl::access::mode AcMd> EIGEN_STRONG_INLINE cl::sycl::accessor<uint8_t, 1, AcMd, cl::sycl::access::target::global_buffer>
|
||||||
|
get_sycl_accessor(cl::sycl::handler &cgh, const void* ptr) const {
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
|
return (find_buffer(ptr)->second.template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh));
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Accessing the created sycl device buffer for the device pointer
|
||||||
|
EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const {
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
|
return find_buffer(ptr)->second;
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_STRONG_INLINE ptrdiff_t get_offset(const void *ptr) const {
|
||||||
|
std::lock_guard<std::mutex> lock(mutex_);
|
||||||
|
return (static_cast<const uint8_t*>(ptr))-(find_buffer(ptr)->first);
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE void synchronize() const {
|
EIGEN_STRONG_INLINE void synchronize() const {
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
|
||||||
m_queue.wait_and_throw(); //pass
|
m_queue.wait_and_throw(); //pass
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE void asynchronousExec() const {
|
EIGEN_STRONG_INLINE void asynchronousExec() const {
|
||||||
///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
|
///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
|
||||||
//sycl_queue().throw_asynchronous();// does not pass. Temporarily disabled
|
//sycl_queue().throw_asynchronous();// FIXME::does not pass. Temporarily disabled
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
|
||||||
m_queue.wait_and_throw(); //pass
|
m_queue.wait_and_throw(); //pass
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename Index>
|
template<typename Index>
|
||||||
@ -200,8 +291,6 @@ EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1, Index &tileS
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
||||||
template<typename Index>
|
template<typename Index>
|
||||||
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
|
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
|
||||||
@ -240,61 +329,53 @@ EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, I
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
|
EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
|
||||||
return m_queue.get_device(). template get_info<cl::sycl::info::device::max_compute_units>();
|
return m_queue.get_device(). template get_info<cl::sycl::info::device::max_compute_units>();
|
||||||
// return stream_->deviceProperties().multiProcessorCount;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
|
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
|
||||||
return m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
|
return m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
|
||||||
|
|
||||||
// return stream_->deviceProperties().maxThreadsPerBlock;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// No need for sycl it should act the same as CPU version
|
||||||
|
EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; }
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
|
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
|
||||||
// OpenCL doesnot have such concept
|
// OpenCL doesnot have such concept
|
||||||
return 2;//sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
|
return 2;
|
||||||
// return stream_->deviceProperties().maxThreadsPerMultiProcessor;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
|
EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
|
||||||
return m_queue.get_device(). template get_info<cl::sycl::info::device::local_mem_size>();
|
return m_queue.get_device(). template get_info<cl::sycl::info::device::local_mem_size>();
|
||||||
// return stream_->deviceProperties().sharedMemPerBlock;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Allocating device pointer. This pointer is actually an 8 bytes host pointer used as key to access the sycl device buffer.
|
EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue;}
|
||||||
/// The reason is that we cannot use device buffer as a pointer as a m_data in Eigen leafNode expressions. So we create a key
|
|
||||||
/// pointer to be used in Eigen expression construction. When we convert the Eigen construction into the sycl construction we
|
// This function checks if the runtime recorded an error for the
|
||||||
/// use this pointer as a key in our buffer_map and we make sure that we dedicate only one buffer only for this pointer.
|
// underlying stream device.
|
||||||
/// The device pointer would be deleted by calling deallocate function.
|
EIGEN_STRONG_INLINE bool ok() const {
|
||||||
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
|
if (!exception_caught_) {
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
m_queue.wait_and_throw();
|
||||||
auto buf = cl::sycl::buffer<uint8_t,1>(cl::sycl::range<1>(num_bytes));
|
}
|
||||||
auto ptr =buf.get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>().get_pointer();
|
return !exception_caught_;
|
||||||
buf.set_final_data(nullptr);
|
|
||||||
buffer_map.insert(std::pair<const uint8_t *, cl::sycl::buffer<uint8_t, 1>>(static_cast<const uint8_t*>(ptr),buf));
|
|
||||||
return static_cast<void*>(ptr);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// This is used to deallocate the device pointer. p is used as a key inside
|
// destructor
|
||||||
/// the map to find the device buffer and delete it.
|
~QueueInterface() { buffer_map.clear(); }
|
||||||
EIGEN_STRONG_INLINE void deallocate(void *p) const {
|
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
|
||||||
auto it = buffer_map.find(static_cast<const uint8_t*>(p));
|
|
||||||
if (it != buffer_map.end()) {
|
|
||||||
buffer_map.erase(it);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE void deallocate_all() const {
|
private:
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
/// class members:
|
||||||
buffer_map.clear();
|
bool exception_caught_ = false;
|
||||||
}
|
|
||||||
|
|
||||||
|
mutable std::mutex mutex_;
|
||||||
|
|
||||||
|
/// std::map is the container used to make sure that we create only one buffer
|
||||||
|
/// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
|
||||||
|
/// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
|
||||||
|
mutable std::map<const uint8_t *, cl::sycl::buffer<uint8_t, 1>> buffer_map;
|
||||||
|
/// sycl queue
|
||||||
|
mutable cl::sycl::queue m_queue;
|
||||||
EIGEN_STRONG_INLINE std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator find_buffer(const void* ptr) const {
|
EIGEN_STRONG_INLINE std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator find_buffer(const void* ptr) const {
|
||||||
std::lock_guard<std::mutex> lock(mutex_);
|
|
||||||
auto it1 = buffer_map.find(static_cast<const uint8_t*>(ptr));
|
auto it1 = buffer_map.find(static_cast<const uint8_t*>(ptr));
|
||||||
if (it1 != buffer_map.end()){
|
if (it1 != buffer_map.end()){
|
||||||
return it1;
|
return it1;
|
||||||
@ -308,37 +389,25 @@ EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
|
|||||||
std::cerr << "No sycl buffer found. Make sure that you have allocated memory for your buffer by calling malloc-ed function."<< std::endl;
|
std::cerr << "No sycl buffer found. Make sure that you have allocated memory for your buffer by calling malloc-ed function."<< std::endl;
|
||||||
abort();
|
abort();
|
||||||
}
|
}
|
||||||
|
|
||||||
// This function checks if the runtime recorded an error for the
|
|
||||||
// underlying stream device.
|
|
||||||
EIGEN_STRONG_INLINE bool ok() const {
|
|
||||||
if (!exception_caught_) {
|
|
||||||
m_queue.wait_and_throw();
|
|
||||||
}
|
|
||||||
return !exception_caught_;
|
|
||||||
}
|
|
||||||
|
|
||||||
// destructor
|
|
||||||
~QueueInterface() { buffer_map.clear(); }
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// Here is a sycl deviuce struct which accept the sycl queue interface
|
||||||
|
// as an input
|
||||||
struct SyclDevice {
|
struct SyclDevice {
|
||||||
// class member.
|
// class member.
|
||||||
QueueInterface* m_queue_stream;
|
QueueInterface* m_queue_stream;
|
||||||
/// QueueInterface is not owned. it is the caller's responsibility to destroy it.
|
/// QueueInterface is not owned. it is the caller's responsibility to destroy it.
|
||||||
explicit SyclDevice(QueueInterface* queue_stream) : m_queue_stream(queue_stream){}
|
explicit SyclDevice(QueueInterface* queue_stream) : m_queue_stream(queue_stream){}
|
||||||
|
|
||||||
/// Creation of sycl accessor for a buffer. This function first tries to find
|
// get sycl accessor
|
||||||
/// the buffer in the buffer_map. If found it gets the accessor from it, if not,
|
|
||||||
/// the function then adds an entry by creating a sycl buffer for that particular pointer.
|
|
||||||
template <cl::sycl::access::mode AcMd> EIGEN_STRONG_INLINE cl::sycl::accessor<uint8_t, 1, AcMd, cl::sycl::access::target::global_buffer>
|
template <cl::sycl::access::mode AcMd> EIGEN_STRONG_INLINE cl::sycl::accessor<uint8_t, 1, AcMd, cl::sycl::access::target::global_buffer>
|
||||||
get_sycl_accessor(cl::sycl::handler &cgh, const void* ptr) const {
|
get_sycl_accessor(cl::sycl::handler &cgh, const void* ptr) const {
|
||||||
return (get_sycl_buffer(ptr).template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh));
|
return m_queue_stream->template get_sycl_accessor<AcMd>(cgh, ptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Accessing the created sycl device buffer for the device pointer
|
/// Accessing the created sycl device buffer for the device pointer
|
||||||
EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const {
|
EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const {
|
||||||
return m_queue_stream->find_buffer(ptr)->second;
|
return m_queue_stream->get_sycl_buffer(ptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
||||||
@ -353,8 +422,6 @@ struct SyclDevice {
|
|||||||
m_queue_stream->parallel_for_setup(dim0, dim1, tileSize0, tileSize1, rng0, rng1, GRange0, GRange1);
|
m_queue_stream->parallel_for_setup(dim0, dim1, tileSize0, tileSize1, rng0, rng1, GRange0, GRange1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
||||||
template<typename Index>
|
template<typename Index>
|
||||||
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
|
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
|
||||||
@ -375,72 +442,27 @@ struct SyclDevice {
|
|||||||
|
|
||||||
/// the memcpy function
|
/// the memcpy function
|
||||||
template<typename Index> EIGEN_STRONG_INLINE void memcpy(void *dst, const Index *src, size_t n) const {
|
template<typename Index> EIGEN_STRONG_INLINE void memcpy(void *dst, const Index *src, size_t n) const {
|
||||||
auto it1 = m_queue_stream->find_buffer(static_cast<const void*>(src));
|
m_queue_stream->memcpy(dst,src,n);
|
||||||
auto it2 = m_queue_stream->find_buffer(dst);
|
|
||||||
auto offset= (static_cast<const uint8_t*>(static_cast<const void*>(src))) - it1->first;
|
|
||||||
auto i= (static_cast<const uint8_t*>(dst)) - it2->first;
|
|
||||||
offset/=sizeof(Index);
|
|
||||||
i/=sizeof(Index);
|
|
||||||
size_t rng, GRange, tileSize;
|
|
||||||
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
|
|
||||||
sycl_queue().submit([&](cl::sycl::handler &cgh) {
|
|
||||||
auto src_acc =it1->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
|
|
||||||
auto dst_acc =it2->second.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
|
|
||||||
typedef decltype(src_acc) read_accessor;
|
|
||||||
typedef decltype(dst_acc) write_accessor;
|
|
||||||
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, i, offset));
|
|
||||||
});
|
|
||||||
synchronize();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE ptrdiff_t get_offset(const void *ptr) const {
|
EIGEN_STRONG_INLINE ptrdiff_t get_offset(const void *ptr) const {
|
||||||
auto it = m_queue_stream->find_buffer(ptr);
|
return m_queue_stream->get_offset(ptr);
|
||||||
return (static_cast<const uint8_t*>(ptr))-it->first;
|
|
||||||
|
|
||||||
}
|
}
|
||||||
/// The memcpyHostToDevice is used to copy the device only pointer to a host pointer. Using the device
|
// memcpyHostToDevice
|
||||||
/// pointer created as a key we find the sycl buffer and get the host accessor with discard_write mode
|
|
||||||
/// on it. Using a discard_write accessor guarantees that we do not bring back the current value of the
|
|
||||||
/// buffer to host. Then we use the memcpy to copy the data to the host accessor. The first time that
|
|
||||||
/// this buffer is accessed, the data will be copied to the device.
|
|
||||||
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
|
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
|
||||||
m_queue_stream->memcpyHostToDevice(dst,src,n);
|
m_queue_stream->memcpyHostToDevice(dst,src,n);
|
||||||
}
|
}
|
||||||
/// The memcpyDeviceToHost is used to copy the data from host to device. Here, in order to avoid double copying the data. We create a sycl
|
/// here is the memcpyDeviceToHost
|
||||||
/// buffer with map_allocator for the destination pointer with a discard_write accessor on it. The lifespan of the buffer is bound to the
|
|
||||||
/// lifespan of the memcpyDeviceToHost function. We create a kernel to copy the data, from the device- only source buffer to the destination
|
|
||||||
/// buffer with map_allocator on the gpu in parallel. At the end of the function call the destination buffer would be destroyed and the data
|
|
||||||
/// would be available on the dst pointer using fast copy technique (map_allocator). In this case we can make sure that we copy the data back
|
|
||||||
/// to the cpu only once per function call.
|
|
||||||
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
|
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
|
||||||
m_queue_stream->memcpyDeviceToHost(dst,src,n);
|
m_queue_stream->memcpyDeviceToHost(dst,src,n);
|
||||||
}
|
}
|
||||||
/// returning the sycl queue
|
|
||||||
EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue_stream->m_queue;}
|
|
||||||
/// Here is the implementation of memset function on sycl.
|
/// Here is the implementation of memset function on sycl.
|
||||||
EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const {
|
EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const {
|
||||||
size_t rng, GRange, tileSize;
|
m_queue_stream->memset(data,c,n);
|
||||||
parallel_for_setup(n, tileSize, rng, GRange);
|
|
||||||
auto it1 = m_queue_stream->find_buffer(static_cast<const void*>(data));
|
|
||||||
ptrdiff_t buff_offset= (static_cast<const uint8_t*>(data)) - it1->first;
|
|
||||||
sycl_queue().submit(memsetCghFunctor(it1->second, buff_offset, rng, GRange, tileSize, c ));
|
|
||||||
synchronize();
|
|
||||||
}
|
}
|
||||||
|
/// returning the sycl queue
|
||||||
struct memsetCghFunctor{
|
EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue_stream->sycl_queue();}
|
||||||
cl::sycl::buffer<uint8_t, 1>& m_buf;
|
|
||||||
const ptrdiff_t& buff_offset;
|
|
||||||
const size_t& rng , GRange, tileSize;
|
|
||||||
const int &c;
|
|
||||||
memsetCghFunctor(cl::sycl::buffer<uint8_t, 1>& buff, const ptrdiff_t& buff_offset_, const size_t& rng_, const size_t& GRange_, const size_t& tileSize_, const int& c_)
|
|
||||||
:m_buf(buff), buff_offset(buff_offset_), rng(rng_), GRange(GRange_), tileSize(tileSize_), c(c_){}
|
|
||||||
|
|
||||||
void operator()(cl::sycl::handler &cgh) const {
|
|
||||||
auto buf_acc = m_buf.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
|
|
||||||
typedef decltype(buf_acc) AccType;
|
|
||||||
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), memsetkernelFunctor<AccType>(buf_acc, buff_offset, rng, c));
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
|
EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
|
||||||
// FIXME
|
// FIXME
|
||||||
@ -449,37 +471,31 @@ struct SyclDevice {
|
|||||||
|
|
||||||
EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
|
EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
|
||||||
// We won't try to take advantage of the l2 cache for the time being, and
|
// We won't try to take advantage of the l2 cache for the time being, and
|
||||||
// there is no l3 cache on cuda devices.
|
// there is no l3 cache on sycl devices.
|
||||||
return firstLevelCacheSize();
|
return firstLevelCacheSize();
|
||||||
}
|
}
|
||||||
EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
|
EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
|
||||||
return sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_compute_units>();
|
return m_queue_stream->getNumSyclMultiProcessors();
|
||||||
// return stream_->deviceProperties().multiProcessorCount;
|
|
||||||
}
|
}
|
||||||
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
|
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
|
||||||
return sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
|
return m_queue_stream->maxSyclThreadsPerBlock();
|
||||||
|
|
||||||
// return stream_->deviceProperties().maxThreadsPerBlock;
|
|
||||||
}
|
}
|
||||||
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
|
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
|
||||||
// OpenCL doesnot have such concept
|
// OpenCL doesnot have such concept
|
||||||
return 2;//sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
|
return m_queue_stream->maxSyclThreadsPerMultiProcessor();
|
||||||
// return stream_->deviceProperties().maxThreadsPerMultiProcessor;
|
// return stream_->deviceProperties().maxThreadsPerMultiProcessor;
|
||||||
}
|
}
|
||||||
EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
|
EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
|
||||||
return sycl_queue().get_device(). template get_info<cl::sycl::info::device::local_mem_size>();
|
return m_queue_stream->sharedMemPerBlock();
|
||||||
// return stream_->deviceProperties().sharedMemPerBlock;
|
|
||||||
}
|
}
|
||||||
/// No need for sycl it should act the same as CPU version
|
/// No need for sycl it should act the same as CPU version
|
||||||
EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; }
|
EIGEN_STRONG_INLINE int majorDeviceVersion() const { return m_queue_stream->majorDeviceVersion(); }
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE void synchronize() const {
|
EIGEN_STRONG_INLINE void synchronize() const {
|
||||||
m_queue_stream->synchronize(); //pass
|
m_queue_stream->synchronize(); //pass
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE void asynchronousExec() const {
|
EIGEN_STRONG_INLINE void asynchronousExec() const {
|
||||||
///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
|
|
||||||
//sycl_queue().throw_asynchronous();// does not pass. Temporarily disabled
|
|
||||||
m_queue_stream->asynchronousExec();
|
m_queue_stream->asynchronousExec();
|
||||||
}
|
}
|
||||||
// This function checks if the runtime recorded an error for the
|
// This function checks if the runtime recorded an error for the
|
||||||
|
Loading…
x
Reference in New Issue
Block a user