Fixing potential race condition on sycl device.

This commit is contained in:
Mehdi Goli 2017-03-07 17:48:15 +00:00
parent f84963ed95
commit e2e3f78533

View File

@ -41,6 +41,7 @@ namespace Eigen {
size_t m_i; size_t m_i;
size_t m_offset; size_t m_offset;
}; };
template<typename AccType> template<typename AccType>
struct memsetkernelFunctor{ struct memsetkernelFunctor{
AccType m_acc; AccType m_acc;
@ -54,6 +55,21 @@ template<typename AccType>
}; };
struct memsetCghFunctor{
cl::sycl::buffer<uint8_t, 1>& m_buf;
const ptrdiff_t& buff_offset;
const size_t& rng , GRange, tileSize;
const int &c;
memsetCghFunctor(cl::sycl::buffer<uint8_t, 1>& buff, const ptrdiff_t& buff_offset_, const size_t& rng_, const size_t& GRange_, const size_t& tileSize_, const int& c_)
:m_buf(buff), buff_offset(buff_offset_), rng(rng_), GRange(GRange_), tileSize(tileSize_), c(c_){}
void operator()(cl::sycl::handler &cgh) const {
auto buf_acc = m_buf.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
typedef decltype(buf_acc) AccType;
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), memsetkernelFunctor<AccType>(buf_acc, buff_offset, rng, c));
}
};
//get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU and intel GPU) //get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU and intel GPU)
EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device::get_devices()){ EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device::get_devices()){
auto devices = cl::sycl::device::get_devices(); auto devices = cl::sycl::device::get_devices();
@ -75,18 +91,8 @@ EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device
return devices; return devices;
} }
struct QueueInterface { class QueueInterface {
/// class members: public:
bool exception_caught_ = false;
mutable std::mutex mutex_;
/// std::map is the container used to make sure that we create only one buffer
/// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
/// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
mutable std::map<const uint8_t *, cl::sycl::buffer<uint8_t, 1>> buffer_map;
/// sycl queue
mutable cl::sycl::queue m_queue;
/// creating device by using cl::sycl::selector or cl::sycl::device both are the same and can be captured through dev_Selector typename /// creating device by using cl::sycl::selector or cl::sycl::device both are the same and can be captured through dev_Selector typename
/// SyclStreamDevice is not owned. it is the caller's responsibility to destroy it. /// SyclStreamDevice is not owned. it is the caller's responsibility to destroy it.
template<typename dev_Selector> explicit QueueInterface(const dev_Selector& s): template<typename dev_Selector> explicit QueueInterface(const dev_Selector& s):
@ -115,21 +121,58 @@ m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
})) }))
#endif #endif
{} {}
//FIXME: currently we have to switch back to write as discard_write doesnot work in forloop /// Allocating device pointer. This pointer is actually an 8 bytes host pointer used as key to access the sycl device buffer.
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const { /// The reason is that we cannot use device buffer as a pointer as a m_data in Eigen leafNode expressions. So we create a key
/// pointer to be used in Eigen expression construction. When we convert the Eigen construction into the sycl construction we
/// use this pointer as a key in our buffer_map and we make sure that we dedicate only one buffer only for this pointer.
/// The device pointer would be deleted by calling deallocate function.
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
std::lock_guard<std::mutex> lock(mutex_);
auto buf = cl::sycl::buffer<uint8_t,1>(cl::sycl::range<1>(num_bytes));
auto ptr =buf.get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>().get_pointer();
buf.set_final_data(nullptr);
buffer_map.insert(std::pair<const uint8_t *, cl::sycl::buffer<uint8_t, 1>>(static_cast<const uint8_t*>(ptr),buf));
return static_cast<void*>(ptr);
}
/// This is used to deallocate the device pointer. p is used as a key inside
/// the map to find the device buffer and delete it.
EIGEN_STRONG_INLINE void deallocate(void *p) const {
std::lock_guard<std::mutex> lock(mutex_);
auto it = buffer_map.find(static_cast<const uint8_t*>(p));
if (it != buffer_map.end()) {
buffer_map.erase(it);
}
}
EIGEN_STRONG_INLINE void deallocate_all() const {
std::lock_guard<std::mutex> lock(mutex_);
buffer_map.clear();
}
//FIXME: currently we have to switch back to write as discard_write doesnot work in forloop
/// The memcpyHostToDevice is used to copy the device only pointer to a host pointer. Using the device
/// pointer created as a key we find the sycl buffer and get the host accessor with discard_write mode
/// on it. Using a discard_write accessor guarantees that we do not bring back the current value of the
/// buffer to host. Then we use the memcpy to copy the data to the host accessor. The first time that
/// this buffer is accessed, the data will be copied to the device.
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
std::lock_guard<std::mutex> lock(mutex_); std::lock_guard<std::mutex> lock(mutex_);
auto host_acc= find_buffer(dst)->second. template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::host_buffer>(); auto host_acc= find_buffer(dst)->second. template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::host_buffer>();
::memcpy(host_acc.get_pointer(), src, n); ::memcpy(host_acc.get_pointer(), src, n);
} }
/// The memcpyDeviceToHost is used to copy the data from host to device. Here, in order to avoid double copying the data. We create a sycl
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const { /// buffer with map_allocator for the destination pointer with a discard_write accessor on it. The lifespan of the buffer is bound to the
/// lifespan of the memcpyDeviceToHost function. We create a kernel to copy the data, from the device- only source buffer to the destination
/// buffer with map_allocator on the gpu in parallel. At the end of the function call the destination buffer would be destroyed and the data
/// would be available on the dst pointer using fast copy technique (map_allocator). In this case we can make sure that we copy the data back
/// to the cpu only once per function call.
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
std::lock_guard<std::mutex> lock(mutex_); std::lock_guard<std::mutex> lock(mutex_);
// Assuming that the dst is the start of the destination pointer auto it =find_buffer(src);
auto it =find_buffer(src); auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first;
auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first; offset/=sizeof(Index);
offset/=sizeof(Index); size_t rng, GRange, tileSize;
size_t rng, GRange, tileSize; parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
auto dest_buf = cl::sycl::buffer<uint8_t, 1, cl::sycl::map_allocator<uint8_t> >(static_cast<uint8_t*>(dst), cl::sycl::range<1>(n)); auto dest_buf = cl::sycl::buffer<uint8_t, 1, cl::sycl::map_allocator<uint8_t> >(static_cast<uint8_t*>(dst), cl::sycl::range<1>(n));
m_queue.submit([&](cl::sycl::handler &cgh) { m_queue.submit([&](cl::sycl::handler &cgh) {
auto src_acc= it->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh); auto src_acc= it->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
@ -139,23 +182,71 @@ parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, 0, offset)); cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, 0, offset));
}); });
synchronize(); synchronize();
}
} /// the memcpy function
template<typename Index> EIGEN_STRONG_INLINE void memcpy(void *dst, const Index *src, size_t n) const {
EIGEN_STRONG_INLINE void synchronize() const {
std::lock_guard<std::mutex> lock(mutex_); std::lock_guard<std::mutex> lock(mutex_);
auto it1 = find_buffer(static_cast<const void*>(src));
auto it2 = find_buffer(dst);
auto offset= (static_cast<const uint8_t*>(static_cast<const void*>(src))) - it1->first;
auto i= (static_cast<const uint8_t*>(dst)) - it2->first;
offset/=sizeof(Index);
i/=sizeof(Index);
size_t rng, GRange, tileSize;
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
m_queue.submit([&](cl::sycl::handler &cgh) {
auto src_acc =it1->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
auto dst_acc =it2->second.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
typedef decltype(src_acc) read_accessor;
typedef decltype(dst_acc) write_accessor;
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, i, offset));
});
synchronize();
}
EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const {
std::lock_guard<std::mutex> lock(mutex_);
size_t rng, GRange, tileSize;
parallel_for_setup(n, tileSize, rng, GRange);
auto it1 = find_buffer(static_cast<const void*>(data));
ptrdiff_t buff_offset= (static_cast<const uint8_t*>(data)) - it1->first;
m_queue.submit(memsetCghFunctor(it1->second, buff_offset, rng, GRange, tileSize, c ));
synchronize();
}
/// Creation of sycl accessor for a buffer. This function first tries to find
/// the buffer in the buffer_map. If found it gets the accessor from it, if not,
/// the function then adds an entry by creating a sycl buffer for that particular pointer.
template <cl::sycl::access::mode AcMd> EIGEN_STRONG_INLINE cl::sycl::accessor<uint8_t, 1, AcMd, cl::sycl::access::target::global_buffer>
get_sycl_accessor(cl::sycl::handler &cgh, const void* ptr) const {
std::lock_guard<std::mutex> lock(mutex_);
return (find_buffer(ptr)->second.template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh));
}
/// Accessing the created sycl device buffer for the device pointer
EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const {
std::lock_guard<std::mutex> lock(mutex_);
return find_buffer(ptr)->second;
}
EIGEN_STRONG_INLINE ptrdiff_t get_offset(const void *ptr) const {
std::lock_guard<std::mutex> lock(mutex_);
return (static_cast<const uint8_t*>(ptr))-(find_buffer(ptr)->first);
}
EIGEN_STRONG_INLINE void synchronize() const {
m_queue.wait_and_throw(); //pass m_queue.wait_and_throw(); //pass
} }
EIGEN_STRONG_INLINE void asynchronousExec() const {
EIGEN_STRONG_INLINE void asynchronousExec() const {
///FIXEDME:: currently there is a race condition regarding the asynch scheduler. ///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
//sycl_queue().throw_asynchronous();// does not pass. Temporarily disabled //sycl_queue().throw_asynchronous();// FIXME::does not pass. Temporarily disabled
std::lock_guard<std::mutex> lock(mutex_);
m_queue.wait_and_throw(); //pass m_queue.wait_and_throw(); //pass
}
} template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng, Index &GRange) const {
template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng, Index &GRange) const {
tileSize =static_cast<Index>(m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()); tileSize =static_cast<Index>(m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>());
auto s= m_queue.get_device().template get_info<cl::sycl::info::device::vendor>(); auto s= m_queue.get_device().template get_info<cl::sycl::info::device::vendor>();
std::transform(s.begin(), s.end(), s.begin(), ::tolower); std::transform(s.begin(), s.end(), s.begin(), ::tolower);
@ -170,11 +261,11 @@ EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng
Index xMode = static_cast<Index>(GRange % tileSize); Index xMode = static_cast<Index>(GRange % tileSize);
if (xMode != 0) GRange += static_cast<Index>(tileSize - xMode); if (xMode != 0) GRange += static_cast<Index>(tileSize - xMode);
} }
} }
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels /// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
template<typename Index> template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1, Index &tileSize0, Index &tileSize1, Index &rng0, Index &rng1, Index &GRange0, Index &GRange1) const { EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1, Index &tileSize0, Index &tileSize1, Index &rng0, Index &rng1, Index &GRange0, Index &GRange1) const {
Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock()); Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size)); max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size));
@ -198,13 +289,11 @@ EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1, Index &tileS
Index xMode = static_cast<Index>(GRange0 % tileSize0); Index xMode = static_cast<Index>(GRange0 % tileSize0);
if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode); if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
} }
} }
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
template<typename Index>
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock()); Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size)); max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size));
@ -238,63 +327,55 @@ EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, I
Index xMode = static_cast<Index>(GRange0 % tileSize0); Index xMode = static_cast<Index>(GRange0 % tileSize0);
if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode); if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
} }
} }
EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
std::lock_guard<std::mutex> lock(mutex_);
return m_queue.get_device(). template get_info<cl::sycl::info::device::max_compute_units>(); return m_queue.get_device(). template get_info<cl::sycl::info::device::max_compute_units>();
// return stream_->deviceProperties().multiProcessorCount; }
}
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const { EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
std::lock_guard<std::mutex> lock(mutex_);
return m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>(); return m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
}
// return stream_->deviceProperties().maxThreadsPerBlock; /// No need for sycl it should act the same as CPU version
} EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; }
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
std::lock_guard<std::mutex> lock(mutex_); EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
// OpenCL doesnot have such concept // OpenCL doesnot have such concept
return 2;//sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>(); return 2;
// return stream_->deviceProperties().maxThreadsPerMultiProcessor; }
}
EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const { EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
std::lock_guard<std::mutex> lock(mutex_);
return m_queue.get_device(). template get_info<cl::sycl::info::device::local_mem_size>(); return m_queue.get_device(). template get_info<cl::sycl::info::device::local_mem_size>();
// return stream_->deviceProperties().sharedMemPerBlock;
}
/// Allocating device pointer. This pointer is actually an 8 bytes host pointer used as key to access the sycl device buffer.
/// The reason is that we cannot use device buffer as a pointer as a m_data in Eigen leafNode expressions. So we create a key
/// pointer to be used in Eigen expression construction. When we convert the Eigen construction into the sycl construction we
/// use this pointer as a key in our buffer_map and we make sure that we dedicate only one buffer only for this pointer.
/// The device pointer would be deleted by calling deallocate function.
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
std::lock_guard<std::mutex> lock(mutex_);
auto buf = cl::sycl::buffer<uint8_t,1>(cl::sycl::range<1>(num_bytes));
auto ptr =buf.get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>().get_pointer();
buf.set_final_data(nullptr);
buffer_map.insert(std::pair<const uint8_t *, cl::sycl::buffer<uint8_t, 1>>(static_cast<const uint8_t*>(ptr),buf));
return static_cast<void*>(ptr);
} }
/// This is used to deallocate the device pointer. p is used as a key inside EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue;}
/// the map to find the device buffer and delete it.
EIGEN_STRONG_INLINE void deallocate(void *p) const { // This function checks if the runtime recorded an error for the
std::lock_guard<std::mutex> lock(mutex_); // underlying stream device.
auto it = buffer_map.find(static_cast<const uint8_t*>(p)); EIGEN_STRONG_INLINE bool ok() const {
if (it != buffer_map.end()) { if (!exception_caught_) {
buffer_map.erase(it); m_queue.wait_and_throw();
} }
return !exception_caught_;
} }
EIGEN_STRONG_INLINE void deallocate_all() const { // destructor
std::lock_guard<std::mutex> lock(mutex_); ~QueueInterface() { buffer_map.clear(); }
buffer_map.clear();
}
private:
/// class members:
bool exception_caught_ = false;
mutable std::mutex mutex_;
/// std::map is the container used to make sure that we create only one buffer
/// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
/// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
mutable std::map<const uint8_t *, cl::sycl::buffer<uint8_t, 1>> buffer_map;
/// sycl queue
mutable cl::sycl::queue m_queue;
EIGEN_STRONG_INLINE std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator find_buffer(const void* ptr) const { EIGEN_STRONG_INLINE std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator find_buffer(const void* ptr) const {
std::lock_guard<std::mutex> lock(mutex_);
auto it1 = buffer_map.find(static_cast<const uint8_t*>(ptr)); auto it1 = buffer_map.find(static_cast<const uint8_t*>(ptr));
if (it1 != buffer_map.end()){ if (it1 != buffer_map.end()){
return it1; return it1;
@ -308,37 +389,25 @@ EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
std::cerr << "No sycl buffer found. Make sure that you have allocated memory for your buffer by calling malloc-ed function."<< std::endl; std::cerr << "No sycl buffer found. Make sure that you have allocated memory for your buffer by calling malloc-ed function."<< std::endl;
abort(); abort();
} }
// This function checks if the runtime recorded an error for the
// underlying stream device.
EIGEN_STRONG_INLINE bool ok() const {
if (!exception_caught_) {
m_queue.wait_and_throw();
}
return !exception_caught_;
}
// destructor
~QueueInterface() { buffer_map.clear(); }
}; };
// Here is a sycl deviuce struct which accept the sycl queue interface
// as an input
struct SyclDevice { struct SyclDevice {
// class member. // class member.
QueueInterface* m_queue_stream; QueueInterface* m_queue_stream;
/// QueueInterface is not owned. it is the caller's responsibility to destroy it. /// QueueInterface is not owned. it is the caller's responsibility to destroy it.
explicit SyclDevice(QueueInterface* queue_stream) : m_queue_stream(queue_stream){} explicit SyclDevice(QueueInterface* queue_stream) : m_queue_stream(queue_stream){}
/// Creation of sycl accessor for a buffer. This function first tries to find // get sycl accessor
/// the buffer in the buffer_map. If found it gets the accessor from it, if not,
/// the function then adds an entry by creating a sycl buffer for that particular pointer.
template <cl::sycl::access::mode AcMd> EIGEN_STRONG_INLINE cl::sycl::accessor<uint8_t, 1, AcMd, cl::sycl::access::target::global_buffer> template <cl::sycl::access::mode AcMd> EIGEN_STRONG_INLINE cl::sycl::accessor<uint8_t, 1, AcMd, cl::sycl::access::target::global_buffer>
get_sycl_accessor(cl::sycl::handler &cgh, const void* ptr) const { get_sycl_accessor(cl::sycl::handler &cgh, const void* ptr) const {
return (get_sycl_buffer(ptr).template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh)); return m_queue_stream->template get_sycl_accessor<AcMd>(cgh, ptr);
} }
/// Accessing the created sycl device buffer for the device pointer /// Accessing the created sycl device buffer for the device pointer
EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const { EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const {
return m_queue_stream->find_buffer(ptr)->second; return m_queue_stream->get_sycl_buffer(ptr);
} }
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels /// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
@ -353,8 +422,6 @@ struct SyclDevice {
m_queue_stream->parallel_for_setup(dim0, dim1, tileSize0, tileSize1, rng0, rng1, GRange0, GRange1); m_queue_stream->parallel_for_setup(dim0, dim1, tileSize0, tileSize1, rng0, rng1, GRange0, GRange1);
} }
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels /// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
template<typename Index> template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const { EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
@ -375,72 +442,27 @@ struct SyclDevice {
/// the memcpy function /// the memcpy function
template<typename Index> EIGEN_STRONG_INLINE void memcpy(void *dst, const Index *src, size_t n) const { template<typename Index> EIGEN_STRONG_INLINE void memcpy(void *dst, const Index *src, size_t n) const {
auto it1 = m_queue_stream->find_buffer(static_cast<const void*>(src)); m_queue_stream->memcpy(dst,src,n);
auto it2 = m_queue_stream->find_buffer(dst);
auto offset= (static_cast<const uint8_t*>(static_cast<const void*>(src))) - it1->first;
auto i= (static_cast<const uint8_t*>(dst)) - it2->first;
offset/=sizeof(Index);
i/=sizeof(Index);
size_t rng, GRange, tileSize;
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
sycl_queue().submit([&](cl::sycl::handler &cgh) {
auto src_acc =it1->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
auto dst_acc =it2->second.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
typedef decltype(src_acc) read_accessor;
typedef decltype(dst_acc) write_accessor;
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, i, offset));
});
synchronize();
} }
EIGEN_STRONG_INLINE ptrdiff_t get_offset(const void *ptr) const { EIGEN_STRONG_INLINE ptrdiff_t get_offset(const void *ptr) const {
auto it = m_queue_stream->find_buffer(ptr); return m_queue_stream->get_offset(ptr);
return (static_cast<const uint8_t*>(ptr))-it->first;
} }
/// The memcpyHostToDevice is used to copy the device only pointer to a host pointer. Using the device // memcpyHostToDevice
/// pointer created as a key we find the sycl buffer and get the host accessor with discard_write mode
/// on it. Using a discard_write accessor guarantees that we do not bring back the current value of the
/// buffer to host. Then we use the memcpy to copy the data to the host accessor. The first time that
/// this buffer is accessed, the data will be copied to the device.
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const { template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
m_queue_stream->memcpyHostToDevice(dst,src,n); m_queue_stream->memcpyHostToDevice(dst,src,n);
} }
/// The memcpyDeviceToHost is used to copy the data from host to device. Here, in order to avoid double copying the data. We create a sycl /// here is the memcpyDeviceToHost
/// buffer with map_allocator for the destination pointer with a discard_write accessor on it. The lifespan of the buffer is bound to the
/// lifespan of the memcpyDeviceToHost function. We create a kernel to copy the data, from the device- only source buffer to the destination
/// buffer with map_allocator on the gpu in parallel. At the end of the function call the destination buffer would be destroyed and the data
/// would be available on the dst pointer using fast copy technique (map_allocator). In this case we can make sure that we copy the data back
/// to the cpu only once per function call.
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const { template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
m_queue_stream->memcpyDeviceToHost(dst,src,n); m_queue_stream->memcpyDeviceToHost(dst,src,n);
} }
/// returning the sycl queue
EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue_stream->m_queue;}
/// Here is the implementation of memset function on sycl. /// Here is the implementation of memset function on sycl.
EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const { EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const {
size_t rng, GRange, tileSize; m_queue_stream->memset(data,c,n);
parallel_for_setup(n, tileSize, rng, GRange);
auto it1 = m_queue_stream->find_buffer(static_cast<const void*>(data));
ptrdiff_t buff_offset= (static_cast<const uint8_t*>(data)) - it1->first;
sycl_queue().submit(memsetCghFunctor(it1->second, buff_offset, rng, GRange, tileSize, c ));
synchronize();
} }
/// returning the sycl queue
struct memsetCghFunctor{ EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue_stream->sycl_queue();}
cl::sycl::buffer<uint8_t, 1>& m_buf;
const ptrdiff_t& buff_offset;
const size_t& rng , GRange, tileSize;
const int &c;
memsetCghFunctor(cl::sycl::buffer<uint8_t, 1>& buff, const ptrdiff_t& buff_offset_, const size_t& rng_, const size_t& GRange_, const size_t& tileSize_, const int& c_)
:m_buf(buff), buff_offset(buff_offset_), rng(rng_), GRange(GRange_), tileSize(tileSize_), c(c_){}
void operator()(cl::sycl::handler &cgh) const {
auto buf_acc = m_buf.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
typedef decltype(buf_acc) AccType;
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), memsetkernelFunctor<AccType>(buf_acc, buff_offset, rng, c));
}
};
EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const { EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
// FIXME // FIXME
@ -449,37 +471,31 @@ struct SyclDevice {
EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const { EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
// We won't try to take advantage of the l2 cache for the time being, and // We won't try to take advantage of the l2 cache for the time being, and
// there is no l3 cache on cuda devices. // there is no l3 cache on sycl devices.
return firstLevelCacheSize(); return firstLevelCacheSize();
} }
EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const { EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
return sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_compute_units>(); return m_queue_stream->getNumSyclMultiProcessors();
// return stream_->deviceProperties().multiProcessorCount;
} }
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const { EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
return sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>(); return m_queue_stream->maxSyclThreadsPerBlock();
// return stream_->deviceProperties().maxThreadsPerBlock;
} }
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const { EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
// OpenCL doesnot have such concept // OpenCL doesnot have such concept
return 2;//sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>(); return m_queue_stream->maxSyclThreadsPerMultiProcessor();
// return stream_->deviceProperties().maxThreadsPerMultiProcessor; // return stream_->deviceProperties().maxThreadsPerMultiProcessor;
} }
EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const { EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
return sycl_queue().get_device(). template get_info<cl::sycl::info::device::local_mem_size>(); return m_queue_stream->sharedMemPerBlock();
// return stream_->deviceProperties().sharedMemPerBlock;
} }
/// No need for sycl it should act the same as CPU version /// No need for sycl it should act the same as CPU version
EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; } EIGEN_STRONG_INLINE int majorDeviceVersion() const { return m_queue_stream->majorDeviceVersion(); }
EIGEN_STRONG_INLINE void synchronize() const { EIGEN_STRONG_INLINE void synchronize() const {
m_queue_stream->synchronize(); //pass m_queue_stream->synchronize(); //pass
} }
EIGEN_STRONG_INLINE void asynchronousExec() const { EIGEN_STRONG_INLINE void asynchronousExec() const {
///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
//sycl_queue().throw_asynchronous();// does not pass. Temporarily disabled
m_queue_stream->asynchronousExec(); m_queue_stream->asynchronousExec();
} }
// This function checks if the runtime recorded an error for the // This function checks if the runtime recorded an error for the