mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-08 09:49:03 +08:00
Split the computation of the ILUT into two steps
This commit is contained in:
parent
a815d962da
commit
edbebb14de
@ -35,9 +35,10 @@ namespace internal {
|
||||
* approximation of Ax=b (regardless of b)
|
||||
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||||
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||||
* \return false in the case of numerical issue, for example a break down of BiCGSTAB.
|
||||
*/
|
||||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||
void bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
const Preconditioner& precond, int& iters,
|
||||
typename Dest::RealScalar& tol_error)
|
||||
{
|
||||
@ -46,7 +47,6 @@ void bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
|
||||
RealScalar tol = tol_error;
|
||||
int maxIters = iters;
|
||||
|
||||
@ -70,10 +70,11 @@ void bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
|
||||
while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters )
|
||||
{
|
||||
// std::cout<<i<<" : Relative residual norm " << sqrt(r.squaredNorm()/r0_sqnorm)<<"\n";
|
||||
Scalar rho_old = rho;
|
||||
|
||||
rho = r0.dot(r);
|
||||
eigen_assert((rho != Scalar(0)) && "BiCGSTAB BROKE DOWN !!!");
|
||||
if (rho == Scalar(0)) return false; /* New search directions cannot be found */
|
||||
Scalar beta = (rho/rho_old) * (alpha / w);
|
||||
p = r + beta * (p - w * v);
|
||||
|
||||
@ -94,6 +95,7 @@ void bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
}
|
||||
tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
|
||||
iters = i;
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
@ -214,17 +216,18 @@ public:
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solveWithGuess(const Rhs& b, Dest& x) const
|
||||
{
|
||||
bool ok;
|
||||
for(int j=0; j<b.cols(); ++j)
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
||||
ok = internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
|
||||
}
|
||||
|
||||
if (ok == false) m_info = NumericalIssue;
|
||||
else m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
||||
m_isInitialized = true;
|
||||
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
|
@ -63,220 +63,237 @@ class IncompleteLUT
|
||||
public:
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
|
||||
|
||||
IncompleteLUT() : m_droptol(NumTraits<Scalar>::dummy_precision()),m_fillfactor(50),m_isInitialized(false) {};
|
||||
IncompleteLUT() : m_droptol(NumTraits<Scalar>::dummy_precision()),m_fillfactor(10),m_isInitialized(false),m_analysisIsOk(false),m_factorizationIsOk(false) {};
|
||||
|
||||
template<typename MatrixType>
|
||||
IncompleteLUT(const MatrixType& mat, RealScalar droptol, int fillfactor)
|
||||
: m_droptol(droptol),m_fillfactor(fillfactor),m_isInitialized(false)
|
||||
: m_droptol(droptol),m_fillfactor(fillfactor),m_isInitialized(false),m_analysisIsOk(false),m_factorizationIsOk(false)
|
||||
{
|
||||
compute(mat);
|
||||
eigen_assert(fillfactor != 0);
|
||||
compute(mat);
|
||||
}
|
||||
|
||||
Index rows() const { return m_lu.rows(); }
|
||||
|
||||
Index cols() const { return m_lu.cols(); }
|
||||
|
||||
|
||||
/**
|
||||
* Compute an incomplete LU factorization with dual threshold on the matrix mat
|
||||
* No pivoting is done in this version
|
||||
*
|
||||
**/
|
||||
template<typename MatrixType>
|
||||
IncompleteLUT<Scalar>& compute(const MatrixType& amat)
|
||||
{
|
||||
int n = amat.cols(); /* Size of the matrix */
|
||||
m_lu.resize(n,n);
|
||||
int fill_in; /* Number of largest elements to keep in each row */
|
||||
int nnzL, nnzU; /* Number of largest nonzero elements to keep in the L and the U part of the current row */
|
||||
/* Declare Working vectors and variables */
|
||||
int sizeu; /* number of nonzero elements in the upper part of the current row */
|
||||
int sizel; /* number of nonzero elements in the lower part of the current row */
|
||||
Vector u(n) ; /* real values of the row -- maximum size is n -- */
|
||||
VectorXi ju(n); /*column position of the values in u -- maximum size is n*/
|
||||
VectorXi jr(n); /* Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1*/
|
||||
int j, k, ii, jj, jpos, minrow, len;
|
||||
Scalar fact, prod;
|
||||
RealScalar rownorm;
|
||||
|
||||
/* Compute the Fill-reducing permutation */
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
|
||||
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 * mat1; /* Symmetrize the pattern */
|
||||
AtA.prune(keep_diag());
|
||||
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); /* Then compute the AMD ordering... */
|
||||
|
||||
m_Pinv = m_P.inverse(); /* ... and the inverse permutation */
|
||||
|
||||
// m_Pinv.indices().setLinSpaced(0,n);
|
||||
// m_P.indices().setLinSpaced(0,n);
|
||||
|
||||
SparseMatrix<Scalar,RowMajor, Index> mat;
|
||||
mat = amat.twistedBy(m_Pinv);
|
||||
/* Initialization */
|
||||
fact = 0;
|
||||
jr.fill(-1);
|
||||
ju.fill(0);
|
||||
u.fill(0);
|
||||
fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
|
||||
if (fill_in > n) fill_in = n;
|
||||
nnzL = fill_in/2;
|
||||
nnzU = nnzL;
|
||||
m_lu.reserve(n * (nnzL + nnzU + 1));
|
||||
for (int ii = 0; ii < n; ii++)
|
||||
{ /* global loop over the rows of the sparse matrix */
|
||||
|
||||
/* Copy the lower and the upper part of the row i of mat in the working vector u */
|
||||
sizeu = 1;
|
||||
sizel = 0;
|
||||
ju(ii) = ii;
|
||||
u(ii) = 0;
|
||||
jr(ii) = ii;
|
||||
rownorm = 0;
|
||||
|
||||
typename FactorType::InnerIterator j_it(mat, ii); /* Iterate through the current row ii */
|
||||
for (; j_it; ++j_it)
|
||||
template<typename MatrixType>
|
||||
void analyzePattern(const MatrixType& amat)
|
||||
{
|
||||
k = j_it.index();
|
||||
if (k < ii)
|
||||
{ /* Copy the lower part */
|
||||
ju(sizel) = k;
|
||||
u(sizel) = j_it.value();
|
||||
jr(k) = sizel;
|
||||
++sizel;
|
||||
}
|
||||
else if (k == ii)
|
||||
{
|
||||
u(ii) = j_it.value();
|
||||
}
|
||||
else
|
||||
{ /* Copy the upper part */
|
||||
jpos = ii + sizeu;
|
||||
ju(jpos) = k;
|
||||
u(jpos) = j_it.value();
|
||||
jr(k) = jpos;
|
||||
++sizeu;
|
||||
}
|
||||
rownorm += internal::abs2(j_it.value());
|
||||
} /* end copy of the row */
|
||||
/* detect possible zero row */
|
||||
if (rownorm == 0) eigen_internal_assert(false);
|
||||
rownorm = std::sqrt(rownorm); /* Take the 2-norm of the current row as a relative tolerance */
|
||||
|
||||
/* Now, eliminate the previous nonzero rows */
|
||||
jj = 0; len = 0;
|
||||
while (jj < sizel)
|
||||
{ /* In order to eliminate in the correct order, we must select first the smallest column index among ju(jj:sizel) */
|
||||
|
||||
minrow = ju.segment(jj,sizel-jj).minCoeff(&k); /* k est relatif au segment */
|
||||
k += jj;
|
||||
if (minrow != ju(jj)) { /* swap the two locations */
|
||||
j = ju(jj);
|
||||
std::swap(ju(jj), ju(k));
|
||||
jr(minrow) = jj; jr(j) = k;
|
||||
std::swap(u(jj), u(k));
|
||||
}
|
||||
/* Reset this location to zero */
|
||||
jr(minrow) = -1;
|
||||
/* Compute the Fill-reducing permutation */
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
|
||||
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 * mat1; /* Symmetrize the pattern */
|
||||
AtA.prune(keep_diag());
|
||||
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); /* Then compute the AMD ordering... */
|
||||
|
||||
/* Start elimination */
|
||||
typename FactorType::InnerIterator ki_it(m_lu, minrow);
|
||||
while (ki_it && ki_it.index() < minrow) ++ki_it;
|
||||
if(ki_it && ki_it.col()==minrow) fact = u(jj) / ki_it.value();
|
||||
else { eigen_internal_assert(false); }
|
||||
if( std::abs(fact) <= m_droptol ) {
|
||||
jj++;
|
||||
continue ; /* This element is been dropped */
|
||||
}
|
||||
/* linear combination of the current row ii and the row minrow */
|
||||
++ki_it;
|
||||
for (; ki_it; ++ki_it) {
|
||||
prod = fact * ki_it.value();
|
||||
j = ki_it.index();
|
||||
jpos = jr(j);
|
||||
if (j >= ii) { /* Dealing with the upper part */
|
||||
if (jpos == -1) { /* Fill-in element */
|
||||
int newpos = ii + sizeu;
|
||||
ju(newpos) = j;
|
||||
u(newpos) = - prod;
|
||||
jr(j) = newpos;
|
||||
sizeu++;
|
||||
if (sizeu > n) { eigen_internal_assert(false);}
|
||||
m_Pinv = m_P.inverse(); /* ... and the inverse permutation */
|
||||
m_analysisIsOk = true;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void factorize(const MatrixType& amat)
|
||||
{
|
||||
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
|
||||
int n = amat.cols(); /* Size of the matrix */
|
||||
m_lu.resize(n,n);
|
||||
int fill_in; /* Number of largest elements to keep in each row */
|
||||
int nnzL, nnzU; /* Number of largest nonzero elements to keep in the L and the U part of the current row */
|
||||
/* Declare Working vectors and variables */
|
||||
int sizeu; /* number of nonzero elements in the upper part of the current row */
|
||||
int sizel; /* number of nonzero elements in the lower part of the current row */
|
||||
Vector u(n) ; /* real values of the row -- maximum size is n -- */
|
||||
VectorXi ju(n); /*column position of the values in u -- maximum size is n*/
|
||||
VectorXi jr(n); /* Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1*/
|
||||
int j, k, ii, jj, jpos, minrow, len;
|
||||
Scalar fact, prod;
|
||||
RealScalar rownorm;
|
||||
|
||||
/* Apply the fill-reducing permutation */
|
||||
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
SparseMatrix<Scalar,RowMajor, Index> mat;
|
||||
mat = amat.twistedBy(m_Pinv);
|
||||
|
||||
/* Initialization */
|
||||
fact = 0;
|
||||
jr.fill(-1);
|
||||
ju.fill(0);
|
||||
u.fill(0);
|
||||
fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
|
||||
if (fill_in > n) fill_in = n;
|
||||
nnzL = fill_in/2;
|
||||
nnzU = nnzL;
|
||||
m_lu.reserve(n * (nnzL + nnzU + 1));
|
||||
for (int ii = 0; ii < n; ii++)
|
||||
{ /* global loop over the rows of the sparse matrix */
|
||||
|
||||
/* Copy the lower and the upper part of the row i of mat in the working vector u */
|
||||
sizeu = 1;
|
||||
sizel = 0;
|
||||
ju(ii) = ii;
|
||||
u(ii) = 0;
|
||||
jr(ii) = ii;
|
||||
rownorm = 0;
|
||||
|
||||
typename FactorType::InnerIterator j_it(mat, ii); /* Iterate through the current row ii */
|
||||
for (; j_it; ++j_it)
|
||||
{
|
||||
k = j_it.index();
|
||||
if (k < ii)
|
||||
{ /* Copy the lower part */
|
||||
ju(sizel) = k;
|
||||
u(sizel) = j_it.value();
|
||||
jr(k) = sizel;
|
||||
++sizel;
|
||||
}
|
||||
else { /* Not a fill_in element */
|
||||
u(jpos) -= prod;
|
||||
else if (k == ii)
|
||||
{
|
||||
u(ii) = j_it.value();
|
||||
}
|
||||
else
|
||||
{ /* Copy the upper part */
|
||||
jpos = ii + sizeu;
|
||||
ju(jpos) = k;
|
||||
u(jpos) = j_it.value();
|
||||
jr(k) = jpos;
|
||||
++sizeu;
|
||||
}
|
||||
rownorm += internal::abs2(j_it.value());
|
||||
} /* end copy of the row */
|
||||
/* detect possible zero row */
|
||||
if (rownorm == 0) eigen_internal_assert(false);
|
||||
rownorm = std::sqrt(rownorm); /* Take the 2-norm of the current row as a relative tolerance */
|
||||
|
||||
/* Now, eliminate the previous nonzero rows */
|
||||
jj = 0; len = 0;
|
||||
while (jj < sizel)
|
||||
{ /* In order to eliminate in the correct order, we must select first the smallest column index among ju(jj:sizel) */
|
||||
|
||||
minrow = ju.segment(jj,sizel-jj).minCoeff(&k); /* k est relatif au segment */
|
||||
k += jj;
|
||||
if (minrow != ju(jj)) { /* swap the two locations */
|
||||
j = ju(jj);
|
||||
std::swap(ju(jj), ju(k));
|
||||
jr(minrow) = jj; jr(j) = k;
|
||||
std::swap(u(jj), u(k));
|
||||
}
|
||||
/* Reset this location to zero */
|
||||
jr(minrow) = -1;
|
||||
|
||||
/* Start elimination */
|
||||
typename FactorType::InnerIterator ki_it(m_lu, minrow);
|
||||
while (ki_it && ki_it.index() < minrow) ++ki_it;
|
||||
if(ki_it && ki_it.col()==minrow) fact = u(jj) / ki_it.value();
|
||||
else { eigen_internal_assert(false); }
|
||||
if( std::abs(fact) <= m_droptol ) {
|
||||
jj++;
|
||||
continue ; /* This element is been dropped */
|
||||
}
|
||||
/* linear combination of the current row ii and the row minrow */
|
||||
++ki_it;
|
||||
for (; ki_it; ++ki_it) {
|
||||
prod = fact * ki_it.value();
|
||||
j = ki_it.index();
|
||||
jpos = jr(j);
|
||||
if (j >= ii) { /* Dealing with the upper part */
|
||||
if (jpos == -1) { /* Fill-in element */
|
||||
int newpos = ii + sizeu;
|
||||
ju(newpos) = j;
|
||||
u(newpos) = - prod;
|
||||
jr(j) = newpos;
|
||||
sizeu++;
|
||||
if (sizeu > n) { eigen_internal_assert(false);}
|
||||
}
|
||||
else { /* Not a fill_in element */
|
||||
u(jpos) -= prod;
|
||||
}
|
||||
}
|
||||
else { /* Dealing with the lower part */
|
||||
if (jpos == -1) { /* Fill-in element */
|
||||
ju(sizel) = j;
|
||||
jr(j) = sizel;
|
||||
u(sizel) = - prod;
|
||||
sizel++;
|
||||
if(sizel > n) { eigen_internal_assert(false);}
|
||||
}
|
||||
else {
|
||||
u(jpos) -= prod;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Store the pivot element */
|
||||
u(len) = fact;
|
||||
ju(len) = minrow;
|
||||
++len;
|
||||
|
||||
jj++;
|
||||
} /* End While loop -- end of the elimination on the row ii*/
|
||||
/* Reset the upper part of the pointer jr to zero */
|
||||
for (k = 0; k <sizeu; k++){
|
||||
jr(ju(ii+k)) = -1;
|
||||
}
|
||||
/* Sort the L-part of the row --use Quicksplit()*/
|
||||
sizel = len;
|
||||
len = std::min(sizel, nnzL );
|
||||
typename Vector::SegmentReturnType ul(u.segment(0, len));
|
||||
typename VectorXi::SegmentReturnType jul(ju.segment(0, len));
|
||||
QuickSplit(ul, jul, len);
|
||||
|
||||
|
||||
/* Store the largest m_fill elements of the L part */
|
||||
m_lu.startVec(ii);
|
||||
for (k = 0; k < len; k++){
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
}
|
||||
|
||||
/* Store the diagonal element */
|
||||
if (u(ii) == Scalar(0))
|
||||
u(ii) = std::sqrt(m_droptol ) * rownorm ; /* NOTE This is used to avoid a zero pivot, because we are doing an incomplete factorization */
|
||||
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
|
||||
/* Sort the U-part of the row -- Use Quicksplit() */
|
||||
len = 0;
|
||||
for (k = 1; k < sizeu; k++) { /* First, drop any element that is below a relative tolerance */
|
||||
if ( std::abs(u(ii+k)) > m_droptol * rownorm ) {
|
||||
++len;
|
||||
u(ii + len) = u(ii + k);
|
||||
ju(ii + len) = ju(ii + k);
|
||||
}
|
||||
}
|
||||
else { /* Dealing with the lower part */
|
||||
if (jpos == -1) { /* Fill-in element */
|
||||
ju(sizel) = j;
|
||||
jr(j) = sizel;
|
||||
u(sizel) = - prod;
|
||||
sizel++;
|
||||
if(sizel > n) { eigen_internal_assert(false);}
|
||||
}
|
||||
else {
|
||||
u(jpos) -= prod;
|
||||
}
|
||||
sizeu = len + 1; /* To take into account the diagonal element */
|
||||
len = std::min(sizeu, nnzU);
|
||||
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
|
||||
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
|
||||
QuickSplit(uu, juu, len);
|
||||
/* Store the largest <fill> elements of the U part */
|
||||
for (k = ii + 1; k < ii + len; k++){
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
}
|
||||
}
|
||||
/* Store the pivot element */
|
||||
u(len) = fact;
|
||||
ju(len) = minrow;
|
||||
++len;
|
||||
} /* End global for-loop */
|
||||
m_lu.finalize();
|
||||
m_lu.makeCompressed(); /* NOTE To save the extra space */
|
||||
|
||||
jj++;
|
||||
} /* End While loop -- end of the elimination on the row ii*/
|
||||
/* Reset the upper part of the pointer jr to zero */
|
||||
for (k = 0; k <sizeu; k++){
|
||||
jr(ju(ii+k)) = -1;
|
||||
}
|
||||
/* Sort the L-part of the row --use Quicksplit()*/
|
||||
sizel = len;
|
||||
len = std::min(sizel, nnzL );
|
||||
typename Vector::SegmentReturnType ul(u.segment(0, len));
|
||||
typename VectorXi::SegmentReturnType jul(ju.segment(0, len));
|
||||
QuickSplit(ul, jul, len);
|
||||
|
||||
|
||||
/* Store the largest m_fill elements of the L part */
|
||||
m_lu.startVec(ii);
|
||||
for (k = 0; k < len; k++){
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
m_factorizationIsOk = true;
|
||||
}
|
||||
|
||||
/* Store the diagonal element */
|
||||
if (u(ii) == Scalar(0))
|
||||
u(ii) = std::sqrt(m_droptol ) * rownorm ; /* NOTE This is used to avoid a zero pivot, because we are doing an incomplete factorization */
|
||||
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
|
||||
/* Sort the U-part of the row -- Use Quicksplit() */
|
||||
len = 0;
|
||||
for (k = 1; k < sizeu; k++) { /* First, drop any element that is below a relative tolerance */
|
||||
if ( std::abs(u(ii+k)) > m_droptol * rownorm ) {
|
||||
++len;
|
||||
u(ii + len) = u(ii + k);
|
||||
ju(ii + len) = ju(ii + k);
|
||||
}
|
||||
/**
|
||||
* Compute an incomplete LU factorization with dual threshold on the matrix mat
|
||||
* No pivoting is done in this version
|
||||
*
|
||||
**/
|
||||
template<typename MatrixType>
|
||||
IncompleteLUT<Scalar>& compute(const MatrixType& amat)
|
||||
{
|
||||
analyzePattern(amat);
|
||||
factorize(amat);
|
||||
eigen_assert(m_factorizationIsOk == true);
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
sizeu = len + 1; /* To take into account the diagonal element */
|
||||
len = std::min(sizeu, nnzU);
|
||||
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
|
||||
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
|
||||
QuickSplit(uu, juu, len);
|
||||
/* Store the largest <fill> elements of the U part */
|
||||
for (k = ii + 1; k < ii + len; k++){
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
}
|
||||
} /* End global for-loop */
|
||||
m_lu.finalize();
|
||||
m_lu.makeCompressed(); /* NOTE To save the extra space */
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
void setDroptol(RealScalar droptol);
|
||||
void setFill(int fillfactor);
|
||||
void setFillfactor(int fillfactor);
|
||||
|
||||
|
||||
|
||||
@ -302,8 +319,10 @@ IncompleteLUT<Scalar>& compute(const MatrixType& amat)
|
||||
protected:
|
||||
FactorType m_lu;
|
||||
RealScalar m_droptol;
|
||||
int m_fillfactor;
|
||||
bool m_isInitialized;
|
||||
int m_fillfactor;
|
||||
bool m_factorizationIsOk;
|
||||
bool m_analysisIsOk;
|
||||
bool m_isInitialized;
|
||||
template <typename VectorV, typename VectorI>
|
||||
int QuickSplit(VectorV &row, VectorI &ind, int ncut);
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> m_P; /* Fill-reducing permutation */
|
||||
@ -333,7 +352,7 @@ void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol)
|
||||
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
|
||||
**/
|
||||
template<typename Scalar>
|
||||
void IncompleteLUT<Scalar>::setFill(int fillfactor)
|
||||
void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
|
||||
{
|
||||
this->m_fillfactor = fillfactor;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user