mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-21 09:09:36 +08:00
split and extend eigen-solver tests
This commit is contained in:
parent
fe00e864a1
commit
f4cf5e9b26
@ -113,7 +113,8 @@ ei_add_test(lu ${EI_OFLAG})
|
||||
ei_add_test(determinant)
|
||||
ei_add_test(inverse)
|
||||
ei_add_test(qr)
|
||||
ei_add_test(eigensolver " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(eigensolver_selfadjoint " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(eigensolver_generic " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(svd)
|
||||
ei_add_test(geo_orthomethods)
|
||||
ei_add_test(geo_homogeneous)
|
||||
|
77
test/eigensolver_generic.cpp
Normal file
77
test/eigensolver_generic.cpp
Normal file
@ -0,0 +1,77 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/QR>
|
||||
|
||||
#ifdef HAS_GSL
|
||||
#include "gsl_helper.h"
|
||||
#endif
|
||||
|
||||
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files:
|
||||
EigenSolver.h
|
||||
*/
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
|
||||
// RealScalar largerEps = 10*test_precision<RealScalar>();
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
MatrixType a1 = MatrixType::Random(rows,cols);
|
||||
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
||||
|
||||
EigenSolver<MatrixType> ei0(symmA);
|
||||
VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
|
||||
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
|
||||
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
|
||||
|
||||
EigenSolver<MatrixType> ei1(a);
|
||||
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
|
||||
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
|
||||
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal().eval());
|
||||
|
||||
}
|
||||
|
||||
void test_eigensolver_generic()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( eigensolver(Matrix4f()) );
|
||||
CALL_SUBTEST( eigensolver(MatrixXd(17,17)) );
|
||||
|
||||
// some trivial but implementation-wise tricky cases
|
||||
CALL_SUBTEST( eigensolver(MatrixXd(1,1)) );
|
||||
CALL_SUBTEST( eigensolver(MatrixXd(2,2)) );
|
||||
CALL_SUBTEST( eigensolver(Matrix<double,1,1>()) );
|
||||
CALL_SUBTEST( eigensolver(Matrix<double,2,2>()) );
|
||||
}
|
||||
}
|
||||
|
@ -113,39 +113,7 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt());
|
||||
}
|
||||
|
||||
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files:
|
||||
EigenSolver.h
|
||||
*/
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
|
||||
// RealScalar largerEps = 10*test_precision<RealScalar>();
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
MatrixType a1 = MatrixType::Random(rows,cols);
|
||||
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
||||
|
||||
EigenSolver<MatrixType> ei0(symmA);
|
||||
VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
|
||||
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
|
||||
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
|
||||
|
||||
EigenSolver<MatrixType> ei1(a);
|
||||
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
|
||||
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
|
||||
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal().eval());
|
||||
|
||||
}
|
||||
|
||||
void test_eigensolver()
|
||||
void test_eigensolver_selfadjoint()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
// very important to test a 3x3 matrix since we provide a special path for it
|
||||
@ -155,8 +123,11 @@ void test_eigensolver()
|
||||
CALL_SUBTEST( selfadjointeigensolver(MatrixXcd(5,5)) );
|
||||
CALL_SUBTEST( selfadjointeigensolver(MatrixXd(19,19)) );
|
||||
|
||||
CALL_SUBTEST( eigensolver(Matrix4f()) );
|
||||
CALL_SUBTEST( eigensolver(MatrixXd(17,17)) );
|
||||
// some trivial but implementation-wise tricky cases
|
||||
CALL_SUBTEST( selfadjointeigensolver(MatrixXd(1,1)) );
|
||||
CALL_SUBTEST( selfadjointeigensolver(MatrixXd(2,2)) );
|
||||
CALL_SUBTEST( selfadjointeigensolver(Matrix<double,1,1>()) );
|
||||
CALL_SUBTEST( selfadjointeigensolver(Matrix<double,2,2>()) );
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user