mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 01:29:35 +08:00
split and extend eigen-solver tests
This commit is contained in:
parent
fe00e864a1
commit
f4cf5e9b26
@ -113,7 +113,8 @@ ei_add_test(lu ${EI_OFLAG})
|
|||||||
ei_add_test(determinant)
|
ei_add_test(determinant)
|
||||||
ei_add_test(inverse)
|
ei_add_test(inverse)
|
||||||
ei_add_test(qr)
|
ei_add_test(qr)
|
||||||
ei_add_test(eigensolver " " "${GSL_LIBRARIES}")
|
ei_add_test(eigensolver_selfadjoint " " "${GSL_LIBRARIES}")
|
||||||
|
ei_add_test(eigensolver_generic " " "${GSL_LIBRARIES}")
|
||||||
ei_add_test(svd)
|
ei_add_test(svd)
|
||||||
ei_add_test(geo_orthomethods)
|
ei_add_test(geo_orthomethods)
|
||||||
ei_add_test(geo_homogeneous)
|
ei_add_test(geo_homogeneous)
|
||||||
|
77
test/eigensolver_generic.cpp
Normal file
77
test/eigensolver_generic.cpp
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#include "main.h"
|
||||||
|
#include <Eigen/QR>
|
||||||
|
|
||||||
|
#ifdef HAS_GSL
|
||||||
|
#include "gsl_helper.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||||
|
{
|
||||||
|
/* this test covers the following files:
|
||||||
|
EigenSolver.h
|
||||||
|
*/
|
||||||
|
int rows = m.rows();
|
||||||
|
int cols = m.cols();
|
||||||
|
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||||
|
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||||
|
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||||
|
|
||||||
|
// RealScalar largerEps = 10*test_precision<RealScalar>();
|
||||||
|
|
||||||
|
MatrixType a = MatrixType::Random(rows,cols);
|
||||||
|
MatrixType a1 = MatrixType::Random(rows,cols);
|
||||||
|
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
||||||
|
|
||||||
|
EigenSolver<MatrixType> ei0(symmA);
|
||||||
|
VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
|
||||||
|
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
|
||||||
|
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
|
||||||
|
|
||||||
|
EigenSolver<MatrixType> ei1(a);
|
||||||
|
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
|
||||||
|
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
|
||||||
|
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal().eval());
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_eigensolver_generic()
|
||||||
|
{
|
||||||
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
|
CALL_SUBTEST( eigensolver(Matrix4f()) );
|
||||||
|
CALL_SUBTEST( eigensolver(MatrixXd(17,17)) );
|
||||||
|
|
||||||
|
// some trivial but implementation-wise tricky cases
|
||||||
|
CALL_SUBTEST( eigensolver(MatrixXd(1,1)) );
|
||||||
|
CALL_SUBTEST( eigensolver(MatrixXd(2,2)) );
|
||||||
|
CALL_SUBTEST( eigensolver(Matrix<double,1,1>()) );
|
||||||
|
CALL_SUBTEST( eigensolver(Matrix<double,2,2>()) );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
@ -113,39 +113,7 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
|||||||
VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt());
|
VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt());
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
void test_eigensolver_selfadjoint()
|
||||||
{
|
|
||||||
/* this test covers the following files:
|
|
||||||
EigenSolver.h
|
|
||||||
*/
|
|
||||||
int rows = m.rows();
|
|
||||||
int cols = m.cols();
|
|
||||||
|
|
||||||
typedef typename MatrixType::Scalar Scalar;
|
|
||||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
||||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
||||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
|
||||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
|
||||||
|
|
||||||
// RealScalar largerEps = 10*test_precision<RealScalar>();
|
|
||||||
|
|
||||||
MatrixType a = MatrixType::Random(rows,cols);
|
|
||||||
MatrixType a1 = MatrixType::Random(rows,cols);
|
|
||||||
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
|
||||||
|
|
||||||
EigenSolver<MatrixType> ei0(symmA);
|
|
||||||
VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
|
|
||||||
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
|
|
||||||
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
|
|
||||||
|
|
||||||
EigenSolver<MatrixType> ei1(a);
|
|
||||||
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
|
|
||||||
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
|
|
||||||
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal().eval());
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
void test_eigensolver()
|
|
||||||
{
|
{
|
||||||
for(int i = 0; i < g_repeat; i++) {
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
// very important to test a 3x3 matrix since we provide a special path for it
|
// very important to test a 3x3 matrix since we provide a special path for it
|
||||||
@ -155,8 +123,11 @@ void test_eigensolver()
|
|||||||
CALL_SUBTEST( selfadjointeigensolver(MatrixXcd(5,5)) );
|
CALL_SUBTEST( selfadjointeigensolver(MatrixXcd(5,5)) );
|
||||||
CALL_SUBTEST( selfadjointeigensolver(MatrixXd(19,19)) );
|
CALL_SUBTEST( selfadjointeigensolver(MatrixXd(19,19)) );
|
||||||
|
|
||||||
CALL_SUBTEST( eigensolver(Matrix4f()) );
|
// some trivial but implementation-wise tricky cases
|
||||||
CALL_SUBTEST( eigensolver(MatrixXd(17,17)) );
|
CALL_SUBTEST( selfadjointeigensolver(MatrixXd(1,1)) );
|
||||||
|
CALL_SUBTEST( selfadjointeigensolver(MatrixXd(2,2)) );
|
||||||
|
CALL_SUBTEST( selfadjointeigensolver(Matrix<double,1,1>()) );
|
||||||
|
CALL_SUBTEST( selfadjointeigensolver(Matrix<double,2,2>()) );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user