That means a lot of features which were available for sparse matrices
via the dense (and super slow) implemention are no longer available.
All features which make sense for sparse matrices (aka can be implemented efficiently) will be
implemented soon, but don't expect to see an API as rich as for the dense path.
Other changes:
* no block(), row(), col() anymore.
* instead use .innerVector() to get a col or row vector of a matrix.
* .segment(), start(), end() will be back soon, not sure for block()
* faster cwise product
* remove the automatic resizing feature of operator =
* add function Matrix::set() to be used when the previous
behavior is wanted
* the default constructor of dynamic-size matrices now
creates a "null" matrix (data=0, rows = cols = 0)
instead of a 1x1 matrix
* fix UnixX typos ;)
- added a MapBase base xpr on top of which Map and the specialization
of Block are implemented
- MapBase forces both aligned loads (and aligned stores, see below) in expressions
such as "x.block(...) += other_expr"
* Significant vectorization improvement:
- added a AlignedBit flag meaning the first coeff/packet is aligned,
this allows to not generate extra code to deal with the first unaligned part
- removed all unaligned stores when no unrolling
- removed unaligned loads in Sum when the input as the DirectAccessBit flag
* Some code simplification in CacheFriendly product
* Some minor documentation improvements
* introduce packet(int), make use of it in linear vectorized paths
--> completely fixes the slowdown noticed in benchVecAdd.
* generalize coeff(int) to linear-access xprs
* clarify the access flag bits
* rework api dox in Coeffs.h and util/Constants.h
* improve certain expressions's flags, allowing more vectorization
* fix bug in Block: start(int) and end(int) returned dyn*dyn size
* fix bug in Block: just because the Eval type has packet access
doesn't imply the block xpr should have it too.
* make the conj functor vectorizable: it is just identity in real case,
and complex doesn't use the vectorized path anyway.
* fix bug in Block: a 3x1 block in a 4x4 matrix (all fixed-size)
should not be vectorizable, since in fixed-size we are assuming
the size to be a multiple of packet size. (Or would you prefer
Vector3d to be flagged "packetaccess" even though no packet access
is possible on vectors of that type?)
* rename:
isOrtho for vectors ---> isOrthogonal
isOrtho for matrices ---> isUnitary
* add normalize()
* reimplement normalized with quotient1 functor
(could come back to redux after it has been vectorized,
and could serve as a starting point for that)
also make the abs2 functor vectorizable (for real types).
- finally get the Eval stuff right. get back to having Eval as
a subclass of Matrix with limited functionality, and then,
add a typedef MatrixType to get the actual matrix type.
- add swap(), findBiggestCoeff()
- bugfix by Ramon in Transpose
- new demo: doc/echelon.cpp
dimension. The advantage is that evaluating a dynamic-sized block in a fixed-size
matrix no longer causes a dynamic memory allocation. Other new thing:
IntAtRunTimeIfDynamic allows storing an integer at zero cost if it is known at
compile time.
column-major order, even if storage is row-major. Benchmark showed that adapting
the traversal order to the storage order brought no benefit.
Also do some cleanup after Gael's big patch.