* get rid of BlockReturnType: it was not needed, and code was not always using it consistently anyway
* add topRows(), leftCols(), bottomRows(), rightCols()
* add corners unit-test covering all of that
* adapt docs, expand "porting from eigen 2 to 3"
* adapt Eigen2Support
* add a new Eigen2Support module including Cwise, Flagged, and some other deprecated stuff
* add a few cwiseXxx functions
* adapt a few modules to use cwiseXxx instead of the .cwise() prefix
* this allows to optimize xpr like C -= lazy_product, still have to catch "scalar_product_of_lazy_product"
* started to support conjugate in cache friendly products (very useful to evaluate A * B.adjoint() without
evaluating B.adjoint() into a temporary
* compilation fix
introduce ei_is_diagonal to check for it
DiagonalCoeffs ---> Diagonal and allow Index to by Dynamic
-> add MatrixBase::diagonal(int) with unittest and doc
deprecated). Basically there are now only 2 functions to set a
coefficient:
1) mat.coeffRef(row,col) = value;
2) mat.insert(row,col) = value;
coeffRef has no limitation, insert assumes the coeff has not already
been set, and raises an assert otherwise.
In addition I added a much lower level, but more efficient filling
mechanism for
internal use only.
That means a lot of features which were available for sparse matrices
via the dense (and super slow) implemention are no longer available.
All features which make sense for sparse matrices (aka can be implemented efficiently) will be
implemented soon, but don't expect to see an API as rich as for the dense path.
Other changes:
* no block(), row(), col() anymore.
* instead use .innerVector() to get a col or row vector of a matrix.
* .segment(), start(), end() will be back soon, not sure for block()
* faster cwise product
* extend unit tests
* add support for generic sum reduction and dot product
* optimize the cwise()* : this is a special case of CwiseBinaryOp where
we only have to process the coeffs which are not null for *both* matrices.
Perhaps there exist some other binary operations like that ?
* add a LDL^T factorization with solver using code from T. Davis's LDL
library (LPGL2.1+)
* various bug fixes in trianfular solver, matrix product, etc.
* improve cmake files for the supported libraries
* split the sparse unit test
* etc.
* several fixes (transpose, matrix product, etc...)
* Added a basic cholesky factorization
* Added a low level hybrid dense/sparse vector class
to help writing code involving intensive read/write
in a fixed vector. It is currently used to implement
the matrix product itself as well as in the Cholesky
factorization.