754 Commits

Author SHA1 Message Date
Eugene Zhulenev
e9f0eb8a5e Add masked_store_available to unpacket_traits 2019-05-02 14:52:58 -07:00
Eugene Zhulenev
96e30e936a Add masked pstoreu for Packet16h 2019-05-02 14:11:01 -07:00
Eugene Zhulenev
b4010f02f9 Add masked pstoreu to AVX and AVX512 PacketMath 2019-05-02 13:14:18 -07:00
Gael Guennebaud
578407f42f Fix regression in changeset ae33e866c750c6c24ada5c6f7f3ec15815d0e683 2019-05-02 15:45:21 +02:00
Andy May
ae33e866c7 Fix compilation with PGI version 19 2019-04-25 21:23:19 +01:00
Eugene Zhulenev
68a2a8c445 Use packet ops instead of AVX2 intrinsics 2019-04-23 11:41:02 -07:00
Anuj Rawat
8c7a6feb8e Adding lowlevel APIs for optimized RHS packet load in TensorFlow
SpatialConvolution

Low-level APIs are added in order to optimized packet load in gemm_pack_rhs
in TensorFlow SpatialConvolution. The optimization is for scenario when a
packet is split across 2 adjacent columns. In this case we read it as two
'partial' packets and then merge these into 1. Currently this only works for
Packet16f (AVX512) and Packet8f (AVX2). We plan to add this for other
packet types (such as Packet8d) also.

This optimization shows significant speedup in SpatialConvolution with
certain parameters. Some examples are below.

Benchmark parameters are specified as:
Batch size, Input dim, Depth, Num of filters, Filter dim

Speedup numbers are specified for number of threads 1, 2, 4, 8, 16.

AVX512:

Parameters                  | Speedup (Num of threads: 1, 2, 4, 8, 16)
----------------------------|------------------------------------------
128,   24x24,  3, 64,   5x5 |2.18X, 2.13X, 1.73X, 1.64X, 1.66X
128,   24x24,  1, 64,   8x8 |2.00X, 1.98X, 1.93X, 1.91X, 1.91X
 32,   24x24,  3, 64,   5x5 |2.26X, 2.14X, 2.17X, 2.22X, 2.33X
128,   24x24,  3, 64,   3x3 |1.51X, 1.45X, 1.45X, 1.67X, 1.57X
 32,   14x14, 24, 64,   5x5 |1.21X, 1.19X, 1.16X, 1.70X, 1.17X
128, 128x128,  3, 96, 11x11 |2.17X, 2.18X, 2.19X, 2.20X, 2.18X

AVX2:

Parameters                  | Speedup (Num of threads: 1, 2, 4, 8, 16)
----------------------------|------------------------------------------
128,   24x24,  3, 64,   5x5 | 1.66X, 1.65X, 1.61X, 1.56X, 1.49X
 32,   24x24,  3, 64,   5x5 | 1.71X, 1.63X, 1.77X, 1.58X, 1.68X
128,   24x24,  1, 64,   5x5 | 1.44X, 1.40X, 1.38X, 1.37X, 1.33X
128,   24x24,  3, 64,   3x3 | 1.68X, 1.63X, 1.58X, 1.56X, 1.62X
128, 128x128,  3, 96, 11x11 | 1.36X, 1.36X, 1.37X, 1.37X, 1.37X

In the higher level benchmark cifar10, we observe a runtime improvement
of around 6% for AVX512 on Intel Skylake server (8 cores).

On lower level PackRhs micro-benchmarks specified in TensorFlow
tensorflow/core/kernels/eigen_spatial_convolutions_test.cc, we observe
the following runtime numbers:

AVX512:

Parameters                                                     | Runtime without patch (ns) | Runtime with patch (ns) | Speedup
---------------------------------------------------------------|----------------------------|-------------------------|---------
BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56)  |  41350                     | 15073                   | 2.74X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56)  |   7277                     |  7341                   | 0.99X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56)  |   8675                     |  8681                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56)  |  24155                     | 16079                   | 1.50X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56)  |  25052                     | 17152                   | 1.46X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) |  18269                     | 18345                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) |  19468                     | 19872                   | 0.98X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432)   | 156060                     | 42432                   | 3.68X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432)   | 132701                     | 36944                   | 3.59X

AVX2:

Parameters                                                     | Runtime without patch (ns) | Runtime with patch (ns) | Speedup
---------------------------------------------------------------|----------------------------|-------------------------|---------
BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56)  | 26233                      | 12393                   | 2.12X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56)  |  6091                      |  6062                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56)  |  7427                      |  7408                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56)  | 23453                      | 20826                   | 1.13X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56)  | 23167                      | 22091                   | 1.09X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) | 23422                      | 23682                   | 0.99X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) | 23165                      | 23663                   | 0.98X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432)   | 72689                      | 44969                   | 1.62X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432)   | 61732                      | 39779                   | 1.55X

All benchmarks on Intel Skylake server with 8 cores.
2019-04-20 06:46:43 +00:00
William D. Irons
8de66719f9 Collapsed revision from PR-619
* Add support for pcmp_eq in AltiVec/Complex.h
* Fixed implementation of pcmp_eq for double

The new logic is based on the logic from NEON for double.
2019-03-26 18:14:49 +00:00
Gael Guennebaud
f11364290e ICC does not support -fno-unsafe-math-optimizations 2019-03-22 09:26:24 +01:00
Deven Desai
51e399fc15 updates requested in the PR feedback. Also droping coded within #ifdef EIGEN_HAS_OLD_HIP_FP16 2019-03-19 21:45:25 +00:00
Deven Desai
2dbea5510f Merged eigen/eigen into default 2019-03-19 16:52:38 -04:00
Rasmus Munk Larsen
8450a6d519 Clean up half packet traits and add a few more missing packet ops. 2019-03-14 15:18:06 -07:00
Rasmus Munk Larsen
77f7d4a894 Clean up PacketMathHalf.h and add a few missing logical packet ops. 2019-03-11 17:51:16 -07:00
Gael Guennebaud
656d9bc66b Apply SSE's pmin/pmax fix for GCC <= 5 to AVX's pmin/pmax 2019-03-10 21:19:18 +01:00
Gael Guennebaud
0b25a5c431 fix alignment in ploadquad 2019-02-22 21:39:36 +01:00
Gael Guennebaud
cca6c207f4 AVX512: implement faster ploadquad<Packet16f> thus speeding up GEMM 2019-02-21 17:18:28 +01:00
Gael Guennebaud
1c09ee8541 bug #1674: workaround clang fast-math aggressive optimizations 2019-02-22 15:48:53 +01:00
Gael Guennebaud
7e3084bb6f Fix compilation on ARM. 2019-02-22 14:56:12 +01:00
Rasmus Munk Larsen
4d7f317102 Add a few missing packet ops: cmp_eq for NEON. pfloor for GPU. 2019-02-21 13:32:13 -08:00
Gael Guennebaud
d85ae650bf bug #1678: workaround MSVC compilation issues with AVX512 2019-02-15 10:24:17 +01:00
Gael Guennebaud
871e2e5339 bug #1674: disable GCC's unsafe-math-optimizations in sin/cos vectorization (results are completely wrong otherwise) 2019-02-03 08:54:47 +01:00
Gael Guennebaud
eb4c6bb22d Fix conflicts and merge 2019-01-30 15:57:08 +01:00
Christoph Hertzberg
5a52e35f9a Renaming some more I identifiers 2019-01-26 13:18:21 +01:00
Rasmus Munk Larsen
2eccbaf3f7 Add missing logical packet ops for GPU and NEON. 2019-01-17 17:45:08 -08:00
Rasmus Munk Larsen
7401e2541d Fix compilation error for logical packet ops with older compilers. 2019-01-16 14:43:33 -08:00
Gael Guennebaud
250dcd1fdb bug #1652: fix position of EIGEN_ALIGN16 attributes in Neon and Altivec 2019-01-14 21:45:56 +01:00
Gael Guennebaud
3c9e6d206d AVX512: fix pgather/pscatter for Packet4cd and unaligned pointers 2019-01-14 17:57:28 +01:00
Gael Guennebaud
61b6eb05fe AVX512 (r)sqrt(double) was mistakenly disabled with clang and others 2019-01-14 17:28:47 +01:00
Gael Guennebaud
4356a55a61 PR 571: Implements an accurate argument reduction algorithm for huge inputs of sin/cos and call it instead of falling back to std::sin/std::cos.
This makes both the small and huge argument cases faster because:
- for small inputs this removes the last pselect
- for large inputs only the reduction part follows a scalar path,
the rest use the same SIMD path as the small-argument case.
2019-01-14 13:54:01 +01:00
Gael Guennebaud
9005f0111f Replace compiler's alignas/alignof extension by respective c++11 keywords when available. This also fix a compilation issue with gcc-4.7. 2019-01-11 17:10:54 +01:00
Rasmus Munk Larsen
89c4001d6f Fix warnings in ptrue for complex and half types. 2019-01-11 14:10:57 -08:00
Rasmus Munk Larsen
df29511ac0 Fix merge. 2019-01-11 10:36:36 -08:00
Rasmus Munk Larsen
9396ace46b Merge. 2019-01-11 10:28:52 -08:00
Rasmus Larsen
74882471d0 Merged eigen/eigen into default 2019-01-11 10:20:55 -08:00
Mark D Ryan
3c9add6598 Remove reinterpret_cast from AVX512 complex implementation
The reinterpret_casts used in ptranspose(PacketBlock<Packet8cf,4>&)
ptranspose(PacketBlock<Packet8cf,8>&) don't appear to be working
correctly.  They're used to convert the kernel parameters to
PacketBlock<Packet8d,T>& so that the complex number versions of
ptranspose can be written using the existing double implementations.
Unfortunately, they don't seem to work and are responsible for 9 unit
test failures in the AVX512 build of tensorflow master.  This commit
fixes the issue by manually initialising PacketBlock<Packet8d,T>
variables with the contents of the kernel parameter before calling
the double version of ptranspose, and then copying the resulting
values back into the kernel parameter before returning.
2019-01-11 14:02:09 +01:00
Rasmus Munk Larsen
fcfced13ed Rename pones -> ptrue. Use _CMP_TRUE_UQ where appropriate. 2019-01-09 17:20:33 -08:00
Rasmus Munk Larsen
e15bb785ad Collapsed revision
* Add packet up "pones". Write pnot(a) as pxor(pones(a), a).
* Collapsed revision
* Simplify a bit.
* Undo useless diffs.
* Fix typo.
2019-01-09 16:34:23 -08:00
Rasmus Munk Larsen
8f04442526 Collapsed revision
* Collapsed revision
* Add packet up "pones". Write pnot(a) as pxor(pones(a), a).
* Collapsed revision
* Simplify a bit.
* Undo useless diffs.
* Fix typo.
2019-01-09 16:34:23 -08:00
Rasmus Munk Larsen
e00521b514 Undo useless diffs. 2019-01-09 16:32:53 -08:00
Rasmus Munk Larsen
f2767112c8 Simplify a bit. 2019-01-09 16:29:18 -08:00
Rasmus Munk Larsen
cb955df9a6 Add packet up "pones". Write pnot(a) as pxor(pones(a), a). 2019-01-09 16:17:08 -08:00
Rasmus Larsen
cb3c059fa4 Merged eigen/eigen into default 2019-01-09 15:04:17 -08:00
Gael Guennebaud
3492a1ca74 fix plog(+inf) with AVX512 2019-01-09 16:53:37 +01:00
Gael Guennebaud
47810cf5b7 Add dedicated implementations of predux_any for AVX512, NEON, and Altivec/VSE 2019-01-09 16:40:42 +01:00
Gael Guennebaud
3f14e0d19e fix warning 2019-01-09 15:45:21 +01:00
Gael Guennebaud
aeec68f77b Add missing pcmp_lt and others for AVX512 2019-01-09 15:36:41 +01:00
Gael Guennebaud
e6b217b8dd bug #1652: implements a much more accurate version of vectorized sin/cos. This new version achieve same speed for SSE/AVX, and is slightly faster with FMA. Guarantees are as follows:
- no FMA: 1ULP up to 3pi, 2ULP up to sin(25966) and cos(18838), fallback to std::sin/cos for larger inputs
  - FMA: 1ULP up to sin(117435.992) and cos(71476.0625), fallback to std::sin/cos for larger inputs
2019-01-09 15:25:17 +01:00
Rasmus Munk Larsen
055f0b73db Add support for pcmp_eq and pnot, including for complex types. 2019-01-07 16:53:36 -08:00
Mark D Ryan
bc5dd4cafd PR560: Fix the AVX512f only builds
Commit c53eececb0415834b961cb61cd466907261b4b2f
 introduced AVX512 support for complex numbers but required
avx512dq to build.  Commit 1d683ae2f5a340a6e2681c8cd0782f4db6b807ea
 fixed some but not, it would seem all,
of the hard avx512dq dependencies.  Build failures are still evident on
Eigen and TensorFlow when compiling with just avx512f and no avx512dq
using gcc 7.3.  Looking at the code there does indeed seem to be a problem.
Commit c53eececb0415834b961cb61cd466907261b4b2f
 calls avx512dq intrinsics directly, e.g, _mm512_extractf32x8_ps
and _mm512_and_ps.  This commit fixes the issue by replacing the direct
intrinsic calls with the various wrapper functions that are safe to use on
avx512f only builds.
2019-01-03 14:33:04 +01:00
Gael Guennebaud
60d3fe9a89 One more stupid AVX 512 fix (I don't have direct access to AVX512 machines) 2018-12-24 13:05:03 +01:00