mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-02 18:20:38 +08:00
172 lines
5.6 KiB
C++
172 lines
5.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2007 Julien Pommier
|
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
/* The sin and cos and functions of this file come from
|
|
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
|
|
*/
|
|
|
|
#ifndef EIGEN_MATH_FUNCTIONS_SSE_H
|
|
#define EIGEN_MATH_FUNCTIONS_SSE_H
|
|
|
|
#include "../Default/GenericPacketMathFunctions.h"
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4f plog<Packet4f>(const Packet4f& _x)
|
|
{
|
|
return plog_float(_x);
|
|
}
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4f pexp<Packet4f>(const Packet4f& _x)
|
|
{
|
|
return pexp_float(_x);
|
|
}
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet2d pexp<Packet2d>(const Packet2d& x)
|
|
{
|
|
return pexp_double(x);
|
|
}
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4f psin<Packet4f>(const Packet4f& _x)
|
|
{
|
|
return psin_float(_x);
|
|
}
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4f pcos<Packet4f>(const Packet4f& _x)
|
|
{
|
|
return pcos_float(_x);
|
|
}
|
|
|
|
#if EIGEN_FAST_MATH
|
|
|
|
// Functions for sqrt.
|
|
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
|
|
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
|
|
// exact solution. It does not handle +inf, or denormalized numbers correctly.
|
|
// The main advantage of this approach is not just speed, but also the fact that
|
|
// it can be inlined and pipelined with other computations, further reducing its
|
|
// effective latency. This is similar to Quake3's fast inverse square root.
|
|
// For detail see here: http://www.beyond3d.com/content/articles/8/
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4f psqrt<Packet4f>(const Packet4f& _x)
|
|
{
|
|
Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
|
|
Packet4f denormal_mask = _mm_and_ps(
|
|
_mm_cmpge_ps(_x, _mm_setzero_ps()),
|
|
_mm_cmplt_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)())));
|
|
|
|
// Compute approximate reciprocal sqrt.
|
|
Packet4f x = _mm_rsqrt_ps(_x);
|
|
// Do a single step of Newton's iteration.
|
|
x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
|
|
// Flush results for denormals to zero.
|
|
return _mm_andnot_ps(denormal_mask, pmul(_x,x));
|
|
}
|
|
|
|
#else
|
|
|
|
template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
|
|
|
|
#endif
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }
|
|
|
|
#if EIGEN_FAST_MATH
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4f prsqrt<Packet4f>(const Packet4f& _x) {
|
|
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inf, 0x7f800000u);
|
|
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(nan, 0x7fc00000u);
|
|
_EIGEN_DECLARE_CONST_Packet4f(one_point_five, 1.5f);
|
|
_EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5f);
|
|
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(flt_min, 0x00800000u);
|
|
|
|
Packet4f neg_half = pmul(_x, p4f_minus_half);
|
|
|
|
// select only the inverse sqrt of positive normal inputs (denormals are
|
|
// flushed to zero and cause infs as well).
|
|
Packet4f le_zero_mask = _mm_cmple_ps(_x, p4f_flt_min);
|
|
Packet4f x = _mm_andnot_ps(le_zero_mask, _mm_rsqrt_ps(_x));
|
|
|
|
// Fill in NaNs and Infs for the negative/zero entries.
|
|
Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps());
|
|
Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask);
|
|
Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan),
|
|
_mm_and_ps(zero_mask, p4f_inf));
|
|
|
|
// Do a single step of Newton's iteration.
|
|
x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five));
|
|
|
|
// Insert NaNs and Infs in all the right places.
|
|
return _mm_or_ps(x, infs_and_nans);
|
|
}
|
|
|
|
#else
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4f prsqrt<Packet4f>(const Packet4f& x) {
|
|
// Unfortunately we can't use the much faster mm_rqsrt_ps since it only provides an approximation.
|
|
return _mm_div_ps(pset1<Packet4f>(1.0f), _mm_sqrt_ps(x));
|
|
}
|
|
|
|
#endif
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet2d prsqrt<Packet2d>(const Packet2d& x) {
|
|
// Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation.
|
|
return _mm_div_pd(pset1<Packet2d>(1.0), _mm_sqrt_pd(x));
|
|
}
|
|
|
|
// Hyperbolic Tangent function.
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
|
|
ptanh<Packet4f>(const Packet4f& x) {
|
|
return internal::generic_fast_tanh_float(x);
|
|
}
|
|
|
|
} // end namespace internal
|
|
|
|
namespace numext {
|
|
|
|
template<>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
float sqrt(const float &x)
|
|
{
|
|
return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x))));
|
|
}
|
|
|
|
template<>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
|
double sqrt(const double &x)
|
|
{
|
|
#if EIGEN_COMP_GNUC_STRICT
|
|
// This works around a GCC bug generating poor code for _mm_sqrt_pd
|
|
// See https://bitbucket.org/eigen/eigen/commits/14f468dba4d350d7c19c9b93072e19f7b3df563b
|
|
return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x))));
|
|
#else
|
|
return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x))));
|
|
#endif
|
|
}
|
|
|
|
} // end namespace numex
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_MATH_FUNCTIONS_SSE_H
|