eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h

373 lines
14 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
// Copyright (C) 2009-2018 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* The exp and log functions of this file initially come from
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
*/
namespace Eigen {
namespace internal {
template<typename Packet> EIGEN_STRONG_INLINE Packet
pfrexp_float(const Packet& a, Packet& exponent) {
typedef typename unpacket_traits<Packet>::integer_packet PacketI;
const Packet cst_126f = pset1<Packet>(126.0f);
const Packet cst_half = pset1<Packet>(0.5f);
const Packet cst_inv_mant_mask = pset1frombits<Packet>(~0x7f800000u);
exponent = psub(pcast<PacketI,Packet>(pshiftright<23>(preinterpret<PacketI>(a))), cst_126f);
return por(pand(a, cst_inv_mant_mask), cst_half);
}
template<typename Packet> EIGEN_STRONG_INLINE Packet
pldexp_float(Packet a, Packet exponent)
{
typedef typename unpacket_traits<Packet>::integer_packet PacketI;
const Packet cst_127 = pset1<Packet>(127.f);
// return a * 2^exponent
PacketI ei = pcast<Packet,PacketI>(padd(exponent, cst_127));
return pmul(a, preinterpret<Packet>(pshiftleft<23>(ei)));
}
// Natural logarithm
// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
// be easily approximated by a polynomial centered on m=1 for stability.
// TODO(gonnet): Further reduce the interval allowing for lower-degree
// polynomial interpolants -> ... -> profit!
template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_float(const Packet _x)
{
Packet x = _x;
const Packet cst_1 = pset1<Packet>(1.0f);
const Packet cst_half = pset1<Packet>(0.5f);
// The smallest non denormalized float number.
const Packet cst_min_norm_pos = pset1frombits<Packet>( 0x00800000u);
const Packet cst_minus_inf = pset1frombits<Packet>( 0xff800000u);
const Packet cst_pos_inf = pset1frombits<Packet>( 0x7f800000u);
// Polynomial coefficients.
const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f);
const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f);
const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f);
const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f);
const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f);
const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f);
const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f);
const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f);
const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f);
const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f);
const Packet cst_cephes_log_q1 = pset1<Packet>(-2.12194440e-4f);
const Packet cst_cephes_log_q2 = pset1<Packet>(0.693359375f);
// Truncate input values to the minimum positive normal.
x = pmax(x, cst_min_norm_pos);
Packet e;
// extract significant in the range [0.5,1) and exponent
x = pfrexp(x,e);
// part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
// and shift by -1. The values are then centered around 0, which improves
// the stability of the polynomial evaluation.
// if( x < SQRTHF ) {
// e -= 1;
// x = x + x - 1.0;
// } else { x = x - 1.0; }
Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
Packet tmp = pand(x, mask);
x = psub(x, cst_1);
e = psub(e, pand(cst_1, mask));
x = padd(x, tmp);
Packet x2 = pmul(x, x);
Packet x3 = pmul(x2, x);
// Evaluate the polynomial approximant of degree 8 in three parts, probably
// to improve instruction-level parallelism.
Packet y, y1, y2;
y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7);
y = pmadd(y, x, cst_cephes_log_p2);
y1 = pmadd(y1, x, cst_cephes_log_p5);
y2 = pmadd(y2, x, cst_cephes_log_p8);
y = pmadd(y, x3, y1);
y = pmadd(y, x3, y2);
y = pmul(y, x3);
// Add the logarithm of the exponent back to the result of the interpolation.
y1 = pmul(e, cst_cephes_log_q1);
tmp = pmul(x2, cst_half);
y = padd(y, y1);
x = psub(x, tmp);
y2 = pmul(e, cst_cephes_log_q2);
x = padd(x, y);
x = padd(x, y2);
Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
Packet iszero_mask = pcmp_eq(_x,pzero(_x));
Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
// Filter out invalid inputs, i.e.:
// - negative arg will be NAN
// - 0 will be -INF
// - +INF will be +INF
return pselect(iszero_mask, cst_minus_inf,
por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
}
// Exponential function. Works by writing "x = m*log(2) + r" where
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet pexp_float(const Packet _x)
{
const Packet cst_1 = pset1<Packet>(1.0f);
const Packet cst_half = pset1<Packet>(0.5f);
const Packet cst_exp_hi = pset1<Packet>( 88.3762626647950f);
const Packet cst_exp_lo = pset1<Packet>(-88.3762626647949f);
const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f);
const Packet cst_cephes_exp_p0 = pset1<Packet>(1.9875691500E-4f);
const Packet cst_cephes_exp_p1 = pset1<Packet>(1.3981999507E-3f);
const Packet cst_cephes_exp_p2 = pset1<Packet>(8.3334519073E-3f);
const Packet cst_cephes_exp_p3 = pset1<Packet>(4.1665795894E-2f);
const Packet cst_cephes_exp_p4 = pset1<Packet>(1.6666665459E-1f);
const Packet cst_cephes_exp_p5 = pset1<Packet>(5.0000001201E-1f);
// Clamp x.
Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo);
// Express exp(x) as exp(m*ln(2) + r), start by extracting
// m = floor(x/ln(2) + 0.5).
Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half));
// Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
// subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
// truncation errors.
Packet r;
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
const Packet cst_nln2 = pset1<Packet>(-0.6931471805599453f);
r = pmadd(m, cst_nln2, x);
#else
const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693359375f);
const Packet cst_cephes_exp_C2 = pset1<Packet>(-2.12194440e-4f);
r = psub(x, pmul(m, cst_cephes_exp_C1));
r = psub(r, pmul(m, cst_cephes_exp_C2));
#endif
Packet r2 = pmul(r, r);
// TODO(gonnet): Split into odd/even polynomials and try to exploit
// instruction-level parallelism.
Packet y = cst_cephes_exp_p0;
y = pmadd(y, r, cst_cephes_exp_p1);
y = pmadd(y, r, cst_cephes_exp_p2);
y = pmadd(y, r, cst_cephes_exp_p3);
y = pmadd(y, r, cst_cephes_exp_p4);
y = pmadd(y, r, cst_cephes_exp_p5);
y = pmadd(y, r2, r);
y = padd(y, cst_1);
// Return 2^m * exp(r).
return pmax(pldexp(y,m), _x);
}
template <typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet pexp_double(const Packet _x)
{
Packet x = _x;
const Packet cst_1 = pset1<Packet>(1.0);
const Packet cst_2 = pset1<Packet>(2.0);
const Packet cst_half = pset1<Packet>(0.5);
const Packet cst_exp_hi = pset1<Packet>(709.437);
const Packet cst_exp_lo = pset1<Packet>(-709.436139303);
const Packet cst_cephes_LOG2EF = pset1<Packet>(1.4426950408889634073599);
const Packet cst_cephes_exp_p0 = pset1<Packet>(1.26177193074810590878e-4);
const Packet cst_cephes_exp_p1 = pset1<Packet>(3.02994407707441961300e-2);
const Packet cst_cephes_exp_p2 = pset1<Packet>(9.99999999999999999910e-1);
const Packet cst_cephes_exp_q0 = pset1<Packet>(3.00198505138664455042e-6);
const Packet cst_cephes_exp_q1 = pset1<Packet>(2.52448340349684104192e-3);
const Packet cst_cephes_exp_q2 = pset1<Packet>(2.27265548208155028766e-1);
const Packet cst_cephes_exp_q3 = pset1<Packet>(2.00000000000000000009e0);
const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693145751953125);
const Packet cst_cephes_exp_C2 = pset1<Packet>(1.42860682030941723212e-6);
Packet tmp, fx;
// clamp x
x = pmax(pmin(x, cst_exp_hi), cst_exp_lo);
// Express exp(x) as exp(g + n*log(2)).
fx = pmadd(cst_cephes_LOG2EF, x, cst_half);
// Get the integer modulus of log(2), i.e. the "n" described above.
fx = pfloor(fx);
// Get the remainder modulo log(2), i.e. the "g" described above. Subtract
// n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
// digits right.
tmp = pmul(fx, cst_cephes_exp_C1);
Packet z = pmul(fx, cst_cephes_exp_C2);
x = psub(x, tmp);
x = psub(x, z);
Packet x2 = pmul(x, x);
// Evaluate the numerator polynomial of the rational interpolant.
Packet px = cst_cephes_exp_p0;
px = pmadd(px, x2, cst_cephes_exp_p1);
px = pmadd(px, x2, cst_cephes_exp_p2);
px = pmul(px, x);
// Evaluate the denominator polynomial of the rational interpolant.
Packet qx = cst_cephes_exp_q0;
qx = pmadd(qx, x2, cst_cephes_exp_q1);
qx = pmadd(qx, x2, cst_cephes_exp_q2);
qx = pmadd(qx, x2, cst_cephes_exp_q3);
// I don't really get this bit, copied from the SSE2 routines, so...
// TODO(gonnet): Figure out what is going on here, perhaps find a better
// rational interpolant?
x = pdiv(px, psub(qx, px));
x = pmadd(cst_2, x, cst_1);
// Construct the result 2^n * exp(g) = e * x. The max is used to catch
// non-finite values in the input.
return pmax(pldexp(x,fx), _x);
}
/* The code is the rewriting of the cephes sinf/cosf functions.
Precision is excellent as long as x < 8192 (I did not bother to
take into account the special handling they have for greater values
-- it does not return garbage for arguments over 8192, though, but
the extra precision is missing).
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
surprising but correct result.
*/
template<bool ComputeSine,typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet psincos_float(const Packet& _x)
{
typedef typename unpacket_traits<Packet>::integer_packet PacketI;
const Packet cst_1 = pset1<Packet>(1.0f);
const Packet cst_half = pset1<Packet>(0.5f);
const PacketI csti_1 = pset1<PacketI>(1);
const PacketI csti_not1 = pset1<PacketI>(~1);
const PacketI csti_2 = pset1<PacketI>(2);
const PacketI csti_3 = pset1<PacketI>(3);
const Packet cst_sign_mask = pset1frombits<Packet>(0x80000000u);
const Packet cst_minus_cephes_DP1 = pset1<Packet>(-0.78515625f);
const Packet cst_minus_cephes_DP2 = pset1<Packet>(-2.4187564849853515625e-4f);
const Packet cst_minus_cephes_DP3 = pset1<Packet>(-3.77489497744594108e-8f);
const Packet cst_sincof_p0 = pset1<Packet>(-1.9515295891E-4f);
const Packet cst_sincof_p1 = pset1<Packet>( 8.3321608736E-3f);
const Packet cst_sincof_p2 = pset1<Packet>(-1.6666654611E-1f);
const Packet cst_coscof_p0 = pset1<Packet>( 2.443315711809948E-005f);
const Packet cst_coscof_p1 = pset1<Packet>(-1.388731625493765E-003f);
const Packet cst_coscof_p2 = pset1<Packet>( 4.166664568298827E-002f);
const Packet cst_cephes_FOPI = pset1<Packet>( 1.27323954473516f); // 4 / M_PI
const Packet cst_sincos_max_arg = pset1<Packet>( 13176795.0f); // Approx. (2**24) / (4/Pi).
Packet x = pabs(_x);
// Prevent sin/cos from generating values larger than 1.0 in magnitude
// for very large arguments by setting x to 0.0.
Packet small_or_nan_mask = pcmp_lt_or_nan(x, cst_sincos_max_arg);
x = pand(x, small_or_nan_mask);
// Scale x by 4/Pi to find x's octant.
Packet y = pmul(x, cst_cephes_FOPI);
// Get the octant. We'll reduce x by this number of octants or by one more than it.
PacketI y_int = pcast<Packet,PacketI>(y);
// x's from even-numbered octants will translate to octant 0: [0, +Pi/4].
// x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0].
// Adjustment for odd-numbered octants: octant = (octant + 1) & (~1).
PacketI y_int1 = pand(padd(y_int, csti_1), csti_not1); // could be pbitclear<0>(...)
y = pcast<PacketI,Packet>(y_int1);
// Compute the sign to apply to the polynomial.
// sign = third_bit(y_int1) xor signbit(_x)
Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(pshiftleft<29>(y_int1)))
: preinterpret<Packet>(pshiftleft<29>(padd(y_int1,csti_3)));
sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
// Get the polynomial selection mask from the second bit of y_int1
// We'll calculate both (sin and cos) polynomials and then select from the two.
Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int1, csti_2), pzero(y_int1)));
// Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4.
// The magic pass: "Extended precision modular arithmetic"
// x = ((x - y * DP1) - y * DP2) - y * DP3
x = pmadd(y, cst_minus_cephes_DP1, x);
x = pmadd(y, cst_minus_cephes_DP2, x);
x = pmadd(y, cst_minus_cephes_DP3, x);
Packet x2 = pmul(x,x);
// Evaluate the cos(x) polynomial. (0 <= x <= Pi/4)
Packet y1 = cst_coscof_p0;
y1 = pmadd(y1, x2, cst_coscof_p1);
y1 = pmadd(y1, x2, cst_coscof_p2);
y1 = pmul(y1, x2);
y1 = pmul(y1, x2);
y1 = psub(y1, pmul(x2, cst_half));
y1 = padd(y1, cst_1);
// Evaluate the sin(x) polynomial. (Pi/4 <= x <= 0)
Packet y2 = cst_sincof_p0;
y2 = pmadd(y2, x2, cst_sincof_p1);
y2 = pmadd(y2, x2, cst_sincof_p2);
y2 = pmul(y2, x2);
y2 = pmadd(y2, x, x);
// Select the correct result from the two polynoms.
y = ComputeSine ? pselect(poly_mask,y2,y1)
: pselect(poly_mask,y1,y2);
// Update the sign
return pxor(y, sign_bit);
}
template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet psin_float(const Packet& x)
{
return psincos_float<true>(x);
}
template<typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet pcos_float(const Packet& x)
{
return psincos_float<false>(x);
}
} // end namespace internal
} // end namespace Eigen