mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-20 08:39:37 +08:00
363 lines
11 KiB
C++
363 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "common.h"
|
|
|
|
/** ZHEMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n hermitian matrix.
|
|
*/
|
|
EIGEN_BLAS_FUNC(hemv)
|
|
(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *px,
|
|
const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy) {
|
|
typedef void (*functype)(int, const Scalar *, int, const Scalar *, Scalar *, Scalar);
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::internal::selfadjoint_matrix_vector_product<Scalar, int, Eigen::ColMajor, Eigen::Upper, false,
|
|
false>::run),
|
|
// array index: LO
|
|
(Eigen::internal::selfadjoint_matrix_vector_product<Scalar, int, Eigen::ColMajor, Eigen::Lower, false,
|
|
false>::run),
|
|
};
|
|
|
|
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
|
|
const Scalar *x = reinterpret_cast<const Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
|
|
Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
|
|
|
|
// check arguments
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*lda < std::max(1, *n))
|
|
info = 5;
|
|
else if (*incx == 0)
|
|
info = 7;
|
|
else if (*incy == 0)
|
|
info = 10;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "HEMV ", &info);
|
|
|
|
if (*n == 0) return;
|
|
|
|
const Scalar *actual_x = get_compact_vector(x, *n, *incx);
|
|
Scalar *actual_y = get_compact_vector(y, *n, *incy);
|
|
|
|
if (beta != Scalar(1)) {
|
|
if (beta == Scalar(0))
|
|
make_vector(actual_y, *n).setZero();
|
|
else
|
|
make_vector(actual_y, *n) *= beta;
|
|
}
|
|
|
|
if (alpha != Scalar(0)) {
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, a, *lda, actual_x, actual_y, alpha);
|
|
}
|
|
|
|
if (actual_x != x) delete[] actual_x;
|
|
if (actual_y != y) delete[] copy_back(actual_y, y, *n, *incy);
|
|
}
|
|
|
|
/** ZHBMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n hermitian band matrix, with k super-diagonals.
|
|
*/
|
|
// EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
|
|
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** ZHPMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n hermitian matrix, supplied in packed form.
|
|
*/
|
|
// EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar
|
|
// *beta, RealScalar *y, int *incy)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** ZHPR performs the hermitian rank 1 operation
|
|
*
|
|
* A := alpha*x*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
* n by n hermitian matrix, supplied in packed form.
|
|
*/
|
|
EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) {
|
|
typedef void (*functype)(int, Scalar *, const Scalar *, RealScalar);
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::internal::selfadjoint_packed_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Upper, false, Conj>::run),
|
|
// array index: LO
|
|
(Eigen::internal::selfadjoint_packed_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Lower, false, Conj>::run),
|
|
};
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *ap = reinterpret_cast<Scalar *>(pap);
|
|
RealScalar alpha = *palpha;
|
|
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "HPR ", &info);
|
|
|
|
if (alpha == Scalar(0)) return;
|
|
|
|
Scalar *x_cpy = get_compact_vector(x, *n, *incx);
|
|
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, ap, x_cpy, alpha);
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
}
|
|
|
|
/** ZHPR2 performs the hermitian rank 2 operation
|
|
*
|
|
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
* n by n hermitian matrix, supplied in packed form.
|
|
*/
|
|
EIGEN_BLAS_FUNC(hpr2)
|
|
(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) {
|
|
typedef void (*functype)(int, Scalar *, const Scalar *, const Scalar *, Scalar);
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::internal::packed_rank2_update_selector<Scalar, int, Eigen::Upper>::run),
|
|
// array index: LO
|
|
(Eigen::internal::packed_rank2_update_selector<Scalar, int, Eigen::Lower>::run),
|
|
};
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
Scalar *ap = reinterpret_cast<Scalar *>(pap);
|
|
Scalar alpha = *reinterpret_cast<Scalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
else if (*incy == 0)
|
|
info = 7;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "HPR2 ", &info);
|
|
|
|
if (alpha == Scalar(0)) return;
|
|
|
|
Scalar *x_cpy = get_compact_vector(x, *n, *incx);
|
|
Scalar *y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, ap, x_cpy, y_cpy, alpha);
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
if (y_cpy != y) delete[] y_cpy;
|
|
}
|
|
|
|
/** ZHER performs the hermitian rank 1 operation
|
|
*
|
|
* A := alpha*x*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
* n by n hermitian matrix.
|
|
*/
|
|
EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) {
|
|
typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, const Scalar &);
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::selfadjoint_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Upper, false, Conj>::run),
|
|
// array index: LO
|
|
(Eigen::selfadjoint_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Lower, false, Conj>::run),
|
|
};
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *a = reinterpret_cast<Scalar *>(pa);
|
|
RealScalar alpha = *reinterpret_cast<RealScalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
else if (*lda < std::max(1, *n))
|
|
info = 7;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "HER ", &info);
|
|
|
|
if (alpha == RealScalar(0)) return;
|
|
|
|
Scalar *x_cpy = get_compact_vector(x, *n, *incx);
|
|
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, a, *lda, x_cpy, x_cpy, alpha);
|
|
|
|
matrix(a, *n, *n, *lda).diagonal().imag().setZero();
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
}
|
|
|
|
/** ZHER2 performs the hermitian rank 2 operation
|
|
*
|
|
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
*
|
|
* where alpha is a scalar, x and y are n element vectors and A is an n
|
|
* by n hermitian matrix.
|
|
*/
|
|
EIGEN_BLAS_FUNC(her2)
|
|
(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa,
|
|
int *lda) {
|
|
typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, Scalar);
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::internal::rank2_update_selector<Scalar, int, Eigen::Upper>::run),
|
|
// array index: LO
|
|
(Eigen::internal::rank2_update_selector<Scalar, int, Eigen::Lower>::run),
|
|
};
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
Scalar *a = reinterpret_cast<Scalar *>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
else if (*incy == 0)
|
|
info = 7;
|
|
else if (*lda < std::max(1, *n))
|
|
info = 9;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "HER2 ", &info);
|
|
|
|
if (alpha == Scalar(0)) return;
|
|
|
|
Scalar *x_cpy = get_compact_vector(x, *n, *incx);
|
|
Scalar *y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, a, *lda, x_cpy, y_cpy, alpha);
|
|
|
|
matrix(a, *n, *n, *lda).diagonal().imag().setZero();
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
if (y_cpy != y) delete[] y_cpy;
|
|
}
|
|
|
|
/** ZGERU performs the rank 1 operation
|
|
*
|
|
* A := alpha*x*y' + A,
|
|
*
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
* vector and A is an m by n matrix.
|
|
*/
|
|
EIGEN_BLAS_FUNC(geru)
|
|
(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) {
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
Scalar *a = reinterpret_cast<Scalar *>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (*m < 0)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
else if (*incy == 0)
|
|
info = 7;
|
|
else if (*lda < std::max(1, *m))
|
|
info = 9;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "GERU ", &info);
|
|
|
|
if (alpha == Scalar(0)) return;
|
|
|
|
Scalar *x_cpy = get_compact_vector(x, *m, *incx);
|
|
Scalar *y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
Eigen::internal::general_rank1_update<Scalar, int, Eigen::ColMajor, false, false>::run(*m, *n, a, *lda, x_cpy, y_cpy,
|
|
alpha);
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
if (y_cpy != y) delete[] y_cpy;
|
|
}
|
|
|
|
/** ZGERC performs the rank 1 operation
|
|
*
|
|
* A := alpha*x*conjg( y' ) + A,
|
|
*
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
* vector and A is an m by n matrix.
|
|
*/
|
|
EIGEN_BLAS_FUNC(gerc)
|
|
(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) {
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
Scalar *a = reinterpret_cast<Scalar *>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (*m < 0)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
else if (*incy == 0)
|
|
info = 7;
|
|
else if (*lda < std::max(1, *m))
|
|
info = 9;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "GERC ", &info);
|
|
|
|
if (alpha == Scalar(0)) return;
|
|
|
|
Scalar *x_cpy = get_compact_vector(x, *m, *incx);
|
|
Scalar *y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
Eigen::internal::general_rank1_update<Scalar, int, Eigen::ColMajor, false, Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy,
|
|
alpha);
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
if (y_cpy != y) delete[] y_cpy;
|
|
}
|