mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-10-14 09:01:29 +08:00
1691 lines
61 KiB
C++
1691 lines
61 KiB
C++
// // This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// This file is modified from the colamd/symamd library. The copyright is below
|
|
|
|
// The authors of the code itself are Stefan I. Larimore and Timothy A.
|
|
// Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
|
|
// developed in collaboration with John Gilbert, Xerox PARC, and Esmond
|
|
// Ng, Oak Ridge National Laboratory.
|
|
//
|
|
// Date:
|
|
//
|
|
// September 8, 2003. Version 2.3.
|
|
//
|
|
// Acknowledgements:
|
|
//
|
|
// This work was supported by the National Science Foundation, under
|
|
// grants DMS-9504974 and DMS-9803599.
|
|
//
|
|
// Notice:
|
|
//
|
|
// Copyright (c) 1998-2003 by the University of Florida.
|
|
// All Rights Reserved.
|
|
//
|
|
// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
|
|
// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
//
|
|
// Permission is hereby granted to use, copy, modify, and/or distribute
|
|
// this program, provided that the Copyright, this License, and the
|
|
// Availability of the original version is retained on all copies and made
|
|
// accessible to the end-user of any code or package that includes COLAMD
|
|
// or any modified version of COLAMD.
|
|
//
|
|
// Availability:
|
|
//
|
|
// The colamd/symamd library is available at
|
|
//
|
|
// http://www.suitesparse.com
|
|
|
|
#ifndef EIGEN_COLAMD_H
|
|
#define EIGEN_COLAMD_H
|
|
|
|
namespace internal {
|
|
|
|
namespace Colamd {
|
|
|
|
/* Ensure that debugging is turned off: */
|
|
#ifndef COLAMD_NDEBUG
|
|
#define COLAMD_NDEBUG
|
|
#endif /* NDEBUG */
|
|
|
|
/* ========================================================================== */
|
|
/* === Knob and statistics definitions ====================================== */
|
|
/* ========================================================================== */
|
|
|
|
/* size of the knobs [ ] array. Only knobs [0..1] are currently used. */
|
|
const int NKnobs = 20;
|
|
|
|
/* number of output statistics. Only stats [0..6] are currently used. */
|
|
const int NStats = 20;
|
|
|
|
/* Indices into knobs and stats array. */
|
|
enum KnobsStatsIndex {
|
|
/* knobs [0] and stats [0]: dense row knob and output statistic. */
|
|
DenseRow = 0,
|
|
|
|
/* knobs [1] and stats [1]: dense column knob and output statistic. */
|
|
DenseCol = 1,
|
|
|
|
/* stats [2]: memory defragmentation count output statistic */
|
|
DefragCount = 2,
|
|
|
|
/* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */
|
|
Status = 3,
|
|
|
|
/* stats [4..6]: error info, or info on jumbled columns */
|
|
Info1 = 4,
|
|
Info2 = 5,
|
|
Info3 = 6
|
|
};
|
|
|
|
/* error codes returned in stats [3]: */
|
|
enum Status {
|
|
Ok = 0,
|
|
OkButJumbled = 1,
|
|
ErrorANotPresent = -1,
|
|
ErrorPNotPresent = -2,
|
|
ErrorNrowNegative = -3,
|
|
ErrorNcolNegative = -4,
|
|
ErrorNnzNegative = -5,
|
|
ErrorP0Nonzero = -6,
|
|
ErrorATooSmall = -7,
|
|
ErrorColLengthNegative = -8,
|
|
ErrorRowIndexOutOfBounds = -9,
|
|
ErrorOutOfMemory = -10,
|
|
ErrorInternalError = -999
|
|
};
|
|
/* ========================================================================== */
|
|
/* === Definitions ========================================================== */
|
|
/* ========================================================================== */
|
|
|
|
template <typename IndexType>
|
|
IndexType ones_complement(const IndexType r) {
|
|
return (-(r)-1);
|
|
}
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
const int Empty = -1;
|
|
|
|
/* Row and column status */
|
|
enum RowColumnStatus { Alive = 0, Dead = -1 };
|
|
|
|
/* Column status */
|
|
enum ColumnStatus { DeadPrincipal = -1, DeadNonPrincipal = -2 };
|
|
|
|
/* ========================================================================== */
|
|
/* === Colamd reporting mechanism =========================================== */
|
|
/* ========================================================================== */
|
|
|
|
// == Row and Column structures ==
|
|
template <typename IndexType>
|
|
struct ColStructure {
|
|
IndexType start; /* index for A of first row in this column, or Dead */
|
|
/* if column is dead */
|
|
IndexType length; /* number of rows in this column */
|
|
union {
|
|
IndexType thickness; /* number of original columns represented by this */
|
|
/* col, if the column is alive */
|
|
IndexType parent; /* parent in parent tree super-column structure, if */
|
|
/* the column is dead */
|
|
} shared1;
|
|
union {
|
|
IndexType score; /* the score used to maintain heap, if col is alive */
|
|
IndexType order; /* pivot ordering of this column, if col is dead */
|
|
} shared2;
|
|
union {
|
|
IndexType headhash; /* head of a hash bucket, if col is at the head of */
|
|
/* a degree list */
|
|
IndexType hash; /* hash value, if col is not in a degree list */
|
|
IndexType prev; /* previous column in degree list, if col is in a */
|
|
/* degree list (but not at the head of a degree list) */
|
|
} shared3;
|
|
union {
|
|
IndexType degree_next; /* next column, if col is in a degree list */
|
|
IndexType hash_next; /* next column, if col is in a hash list */
|
|
} shared4;
|
|
|
|
inline bool is_dead() const { return start < Alive; }
|
|
|
|
inline bool is_alive() const { return start >= Alive; }
|
|
|
|
inline bool is_dead_principal() const { return start == DeadPrincipal; }
|
|
|
|
inline void kill_principal() { start = DeadPrincipal; }
|
|
|
|
inline void kill_non_principal() { start = DeadNonPrincipal; }
|
|
};
|
|
|
|
template <typename IndexType>
|
|
struct RowStructure {
|
|
IndexType start; /* index for A of first col in this row */
|
|
IndexType length; /* number of principal columns in this row */
|
|
union {
|
|
IndexType degree; /* number of principal & non-principal columns in row */
|
|
IndexType p; /* used as a row pointer in init_rows_cols () */
|
|
} shared1;
|
|
union {
|
|
IndexType mark; /* for computing set differences and marking dead rows*/
|
|
IndexType first_column; /* first column in row (used in garbage collection) */
|
|
} shared2;
|
|
|
|
inline bool is_dead() const { return shared2.mark < Alive; }
|
|
|
|
inline bool is_alive() const { return shared2.mark >= Alive; }
|
|
|
|
inline void kill() { shared2.mark = Dead; }
|
|
};
|
|
|
|
/* ========================================================================== */
|
|
/* === Colamd recommended memory size ======================================= */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
The recommended length Alen of the array A passed to colamd is given by
|
|
the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. It returns -1 if any
|
|
argument is negative. 2*nnz space is required for the row and column
|
|
indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is
|
|
required for the Col and Row arrays, respectively, which are internal to
|
|
colamd. An additional n_col space is the minimal amount of "elbow room",
|
|
and nnz/5 more space is recommended for run time efficiency.
|
|
|
|
This macro is not needed when using symamd.
|
|
|
|
Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid
|
|
gcc -pedantic warning messages.
|
|
*/
|
|
template <typename IndexType>
|
|
inline IndexType colamd_c(IndexType n_col) {
|
|
return IndexType(((n_col) + 1) * sizeof(ColStructure<IndexType>) / sizeof(IndexType));
|
|
}
|
|
|
|
template <typename IndexType>
|
|
inline IndexType colamd_r(IndexType n_row) {
|
|
return IndexType(((n_row) + 1) * sizeof(RowStructure<IndexType>) / sizeof(IndexType));
|
|
}
|
|
|
|
// Prototypes of non-user callable routines
|
|
template <typename IndexType>
|
|
static IndexType init_rows_cols(IndexType n_row, IndexType n_col, RowStructure<IndexType> Row[],
|
|
ColStructure<IndexType> col[], IndexType A[], IndexType p[], IndexType stats[NStats]);
|
|
|
|
template <typename IndexType>
|
|
static void init_scoring(IndexType n_row, IndexType n_col, RowStructure<IndexType> Row[], ColStructure<IndexType> Col[],
|
|
IndexType A[], IndexType head[], double knobs[NKnobs], IndexType *p_n_row2,
|
|
IndexType *p_n_col2, IndexType *p_max_deg);
|
|
|
|
template <typename IndexType>
|
|
static IndexType find_ordering(IndexType n_row, IndexType n_col, IndexType Alen, RowStructure<IndexType> Row[],
|
|
ColStructure<IndexType> Col[], IndexType A[], IndexType head[], IndexType n_col2,
|
|
IndexType max_deg, IndexType pfree);
|
|
|
|
template <typename IndexType>
|
|
static void order_children(IndexType n_col, ColStructure<IndexType> Col[], IndexType p[]);
|
|
|
|
template <typename IndexType>
|
|
static void detect_super_cols(ColStructure<IndexType> Col[], IndexType A[], IndexType head[], IndexType row_start,
|
|
IndexType row_length);
|
|
|
|
template <typename IndexType>
|
|
static IndexType garbage_collection(IndexType n_row, IndexType n_col, RowStructure<IndexType> Row[],
|
|
ColStructure<IndexType> Col[], IndexType A[], IndexType *pfree);
|
|
|
|
template <typename IndexType>
|
|
static inline IndexType clear_mark(IndexType n_row, RowStructure<IndexType> Row[]);
|
|
|
|
/* === No debugging ========================================================= */
|
|
|
|
#define COLAMD_DEBUG0(params) ;
|
|
#define COLAMD_DEBUG1(params) ;
|
|
#define COLAMD_DEBUG2(params) ;
|
|
#define COLAMD_DEBUG3(params) ;
|
|
#define COLAMD_DEBUG4(params) ;
|
|
|
|
#define COLAMD_ASSERT(expression) ((void)0)
|
|
|
|
/**
|
|
* \brief Returns the recommended value of Alen
|
|
*
|
|
* Returns recommended value of Alen for use by colamd.
|
|
* Returns -1 if any input argument is negative.
|
|
* The use of this routine or macro is optional.
|
|
* Note that the macro uses its arguments more than once,
|
|
* so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED.
|
|
*
|
|
* \param nnz nonzeros in A
|
|
* \param n_row number of rows in A
|
|
* \param n_col number of columns in A
|
|
* \return recommended value of Alen for use by colamd
|
|
*/
|
|
template <typename IndexType>
|
|
inline IndexType recommended(IndexType nnz, IndexType n_row, IndexType n_col) {
|
|
if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0)
|
|
return (-1);
|
|
else
|
|
return (2 * (nnz) + colamd_c(n_col) + colamd_r(n_row) + (n_col) + ((nnz) / 5));
|
|
}
|
|
|
|
/**
|
|
* \brief set default parameters The use of this routine is optional.
|
|
*
|
|
* Colamd: rows with more than (knobs [DenseRow] * n_col)
|
|
* entries are removed prior to ordering. Columns with more than
|
|
* (knobs [DenseCol] * n_row) entries are removed prior to
|
|
* ordering, and placed last in the output column ordering.
|
|
*
|
|
* DenseRow and DenseCol are defined as 0 and 1,
|
|
* respectively, in colamd.h. Default values of these two knobs
|
|
* are both 0.5. Currently, only knobs [0] and knobs [1] are
|
|
* used, but future versions may use more knobs. If so, they will
|
|
* be properly set to their defaults by the future version of
|
|
* colamd_set_defaults, so that the code that calls colamd will
|
|
* not need to change, assuming that you either use
|
|
* colamd_set_defaults, or pass a (double *) NULL pointer as the
|
|
* knobs array to colamd or symamd.
|
|
*
|
|
* \param knobs parameter settings for colamd
|
|
*/
|
|
|
|
static inline void set_defaults(double knobs[NKnobs]) {
|
|
/* === Local variables ================================================== */
|
|
|
|
int i;
|
|
|
|
if (!knobs) {
|
|
return; /* no knobs to initialize */
|
|
}
|
|
for (i = 0; i < NKnobs; i++) {
|
|
knobs[i] = 0;
|
|
}
|
|
knobs[Colamd::DenseRow] = 0.5; /* ignore rows over 50% dense */
|
|
knobs[Colamd::DenseCol] = 0.5; /* ignore columns over 50% dense */
|
|
}
|
|
|
|
/**
|
|
* \brief Computes a column ordering using the column approximate minimum degree ordering
|
|
*
|
|
* Computes a column ordering (Q) of A such that P(AQ)=LU or
|
|
* (AQ)'AQ=LL' have less fill-in and require fewer floating point
|
|
* operations than factorizing the unpermuted matrix A or A'A,
|
|
* respectively.
|
|
*
|
|
*
|
|
* \param n_row number of rows in A
|
|
* \param n_col number of columns in A
|
|
* \param Alen, size of the array A
|
|
* \param A row indices of the matrix, of size ALen
|
|
* \param p column pointers of A, of size n_col+1
|
|
* \param knobs parameter settings for colamd
|
|
* \param stats colamd output statistics and error codes
|
|
*/
|
|
template <typename IndexType>
|
|
static bool compute_ordering(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p,
|
|
double knobs[NKnobs], IndexType stats[NStats]) {
|
|
/* === Local variables ================================================== */
|
|
|
|
IndexType i; /* loop index */
|
|
IndexType nnz; /* nonzeros in A */
|
|
IndexType Row_size; /* size of Row [], in integers */
|
|
IndexType Col_size; /* size of Col [], in integers */
|
|
IndexType need; /* minimum required length of A */
|
|
Colamd::RowStructure<IndexType> *Row; /* pointer into A of Row [0..n_row] array */
|
|
Colamd::ColStructure<IndexType> *Col; /* pointer into A of Col [0..n_col] array */
|
|
IndexType n_col2; /* number of non-dense, non-empty columns */
|
|
IndexType n_row2; /* number of non-dense, non-empty rows */
|
|
IndexType ngarbage; /* number of garbage collections performed */
|
|
IndexType max_deg; /* maximum row degree */
|
|
double default_knobs[NKnobs]; /* default knobs array */
|
|
|
|
/* === Check the input arguments ======================================== */
|
|
|
|
if (!stats) {
|
|
COLAMD_DEBUG0(("colamd: stats not present\n"));
|
|
return (false);
|
|
}
|
|
for (i = 0; i < NStats; i++) {
|
|
stats[i] = 0;
|
|
}
|
|
stats[Colamd::Status] = Colamd::Ok;
|
|
stats[Colamd::Info1] = -1;
|
|
stats[Colamd::Info2] = -1;
|
|
|
|
if (!A) /* A is not present */
|
|
{
|
|
stats[Colamd::Status] = Colamd::ErrorANotPresent;
|
|
COLAMD_DEBUG0(("colamd: A not present\n"));
|
|
return (false);
|
|
}
|
|
|
|
if (!p) /* p is not present */
|
|
{
|
|
stats[Colamd::Status] = Colamd::ErrorPNotPresent;
|
|
COLAMD_DEBUG0(("colamd: p not present\n"));
|
|
return (false);
|
|
}
|
|
|
|
if (n_row < 0) /* n_row must be >= 0 */
|
|
{
|
|
stats[Colamd::Status] = Colamd::ErrorNrowNegative;
|
|
stats[Colamd::Info1] = n_row;
|
|
COLAMD_DEBUG0(("colamd: nrow negative %d\n", n_row));
|
|
return (false);
|
|
}
|
|
|
|
if (n_col < 0) /* n_col must be >= 0 */
|
|
{
|
|
stats[Colamd::Status] = Colamd::ErrorNcolNegative;
|
|
stats[Colamd::Info1] = n_col;
|
|
COLAMD_DEBUG0(("colamd: ncol negative %d\n", n_col));
|
|
return (false);
|
|
}
|
|
|
|
nnz = p[n_col];
|
|
if (nnz < 0) /* nnz must be >= 0 */
|
|
{
|
|
stats[Colamd::Status] = Colamd::ErrorNnzNegative;
|
|
stats[Colamd::Info1] = nnz;
|
|
COLAMD_DEBUG0(("colamd: number of entries negative %d\n", nnz));
|
|
return (false);
|
|
}
|
|
|
|
if (p[0] != 0) {
|
|
stats[Colamd::Status] = Colamd::ErrorP0Nonzero;
|
|
stats[Colamd::Info1] = p[0];
|
|
COLAMD_DEBUG0(("colamd: p[0] not zero %d\n", p[0]));
|
|
return (false);
|
|
}
|
|
|
|
/* === If no knobs, set default knobs =================================== */
|
|
|
|
if (!knobs) {
|
|
set_defaults(default_knobs);
|
|
knobs = default_knobs;
|
|
}
|
|
|
|
/* === Allocate the Row and Col arrays from array A ===================== */
|
|
|
|
Col_size = colamd_c(n_col);
|
|
Row_size = colamd_r(n_row);
|
|
need = 2 * nnz + n_col + Col_size + Row_size;
|
|
|
|
if (need > Alen) {
|
|
/* not enough space in array A to perform the ordering */
|
|
stats[Colamd::Status] = Colamd::ErrorATooSmall;
|
|
stats[Colamd::Info1] = need;
|
|
stats[Colamd::Info2] = Alen;
|
|
COLAMD_DEBUG0(("colamd: Need Alen >= %d, given only Alen = %d\n", need, Alen));
|
|
return (false);
|
|
}
|
|
|
|
Alen -= Col_size + Row_size;
|
|
Col = (ColStructure<IndexType> *)&A[Alen];
|
|
Row = (RowStructure<IndexType> *)&A[Alen + Col_size];
|
|
|
|
/* === Construct the row and column data structures ===================== */
|
|
|
|
if (!Colamd::init_rows_cols(n_row, n_col, Row, Col, A, p, stats)) {
|
|
/* input matrix is invalid */
|
|
COLAMD_DEBUG0(("colamd: Matrix invalid\n"));
|
|
return (false);
|
|
}
|
|
|
|
/* === Initialize scores, kill dense rows/columns ======================= */
|
|
|
|
Colamd::init_scoring(n_row, n_col, Row, Col, A, p, knobs, &n_row2, &n_col2, &max_deg);
|
|
|
|
/* === Order the supercolumns =========================================== */
|
|
|
|
ngarbage = Colamd::find_ordering(n_row, n_col, Alen, Row, Col, A, p, n_col2, max_deg, 2 * nnz);
|
|
|
|
/* === Order the non-principal columns ================================== */
|
|
|
|
Colamd::order_children(n_col, Col, p);
|
|
|
|
/* === Return statistics in stats ======================================= */
|
|
|
|
stats[Colamd::DenseRow] = n_row - n_row2;
|
|
stats[Colamd::DenseCol] = n_col - n_col2;
|
|
stats[Colamd::DefragCount] = ngarbage;
|
|
COLAMD_DEBUG0(("colamd: done.\n"));
|
|
return (true);
|
|
}
|
|
|
|
/* ========================================================================== */
|
|
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
|
|
/* ========================================================================== */
|
|
|
|
/* There are no user-callable routines beyond this point in the file */
|
|
|
|
/* ========================================================================== */
|
|
/* === init_rows_cols ======================================================= */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Takes the column form of the matrix in A and creates the row form of the
|
|
matrix. Also, row and column attributes are stored in the Col and Row
|
|
structs. If the columns are un-sorted or contain duplicate row indices,
|
|
this routine will also sort and remove duplicate row indices from the
|
|
column form of the matrix. Returns false if the matrix is invalid,
|
|
true otherwise. Not user-callable.
|
|
*/
|
|
template <typename IndexType>
|
|
static IndexType init_rows_cols /* returns true if OK, or false otherwise */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
IndexType n_row, /* number of rows of A */
|
|
IndexType n_col, /* number of columns of A */
|
|
RowStructure<IndexType> Row[], /* of size n_row+1 */
|
|
ColStructure<IndexType> Col[], /* of size n_col+1 */
|
|
IndexType A[], /* row indices of A, of size Alen */
|
|
IndexType p[], /* pointers to columns in A, of size n_col+1 */
|
|
IndexType stats[NStats] /* colamd statistics */
|
|
) {
|
|
/* === Local variables ================================================== */
|
|
|
|
IndexType col; /* a column index */
|
|
IndexType row; /* a row index */
|
|
IndexType *cp; /* a column pointer */
|
|
IndexType *cp_end; /* a pointer to the end of a column */
|
|
IndexType *rp; /* a row pointer */
|
|
IndexType *rp_end; /* a pointer to the end of a row */
|
|
IndexType last_row; /* previous row */
|
|
|
|
/* === Initialize columns, and check column pointers ==================== */
|
|
|
|
for (col = 0; col < n_col; col++) {
|
|
Col[col].start = p[col];
|
|
Col[col].length = p[col + 1] - p[col];
|
|
|
|
if ((Col[col].length) < 0) // extra parentheses to work-around gcc bug 10200
|
|
{
|
|
/* column pointers must be non-decreasing */
|
|
stats[Colamd::Status] = Colamd::ErrorColLengthNegative;
|
|
stats[Colamd::Info1] = col;
|
|
stats[Colamd::Info2] = Col[col].length;
|
|
COLAMD_DEBUG0(("colamd: col %d length %d < 0\n", col, Col[col].length));
|
|
return (false);
|
|
}
|
|
|
|
Col[col].shared1.thickness = 1;
|
|
Col[col].shared2.score = 0;
|
|
Col[col].shared3.prev = Empty;
|
|
Col[col].shared4.degree_next = Empty;
|
|
}
|
|
|
|
/* p [0..n_col] no longer needed, used as "head" in subsequent routines */
|
|
|
|
/* === Scan columns, compute row degrees, and check row indices ========= */
|
|
|
|
stats[Info3] = 0; /* number of duplicate or unsorted row indices*/
|
|
|
|
for (row = 0; row < n_row; row++) {
|
|
Row[row].length = 0;
|
|
Row[row].shared2.mark = -1;
|
|
}
|
|
|
|
for (col = 0; col < n_col; col++) {
|
|
last_row = -1;
|
|
|
|
cp = &A[p[col]];
|
|
cp_end = &A[p[col + 1]];
|
|
|
|
while (cp < cp_end) {
|
|
row = *cp++;
|
|
|
|
/* make sure row indices within range */
|
|
if (row < 0 || row >= n_row) {
|
|
stats[Colamd::Status] = Colamd::ErrorRowIndexOutOfBounds;
|
|
stats[Colamd::Info1] = col;
|
|
stats[Colamd::Info2] = row;
|
|
stats[Colamd::Info3] = n_row;
|
|
COLAMD_DEBUG0(("colamd: row %d col %d out of bounds\n", row, col));
|
|
return (false);
|
|
}
|
|
|
|
if (row <= last_row || Row[row].shared2.mark == col) {
|
|
/* row index are unsorted or repeated (or both), thus col */
|
|
/* is jumbled. This is a notice, not an error condition. */
|
|
stats[Colamd::Status] = Colamd::OkButJumbled;
|
|
stats[Colamd::Info1] = col;
|
|
stats[Colamd::Info2] = row;
|
|
(stats[Colamd::Info3])++;
|
|
COLAMD_DEBUG1(("colamd: row %d col %d unsorted/duplicate\n", row, col));
|
|
}
|
|
|
|
if (Row[row].shared2.mark != col) {
|
|
Row[row].length++;
|
|
} else {
|
|
/* this is a repeated entry in the column, */
|
|
/* it will be removed */
|
|
Col[col].length--;
|
|
}
|
|
|
|
/* mark the row as having been seen in this column */
|
|
Row[row].shared2.mark = col;
|
|
|
|
last_row = row;
|
|
}
|
|
}
|
|
|
|
/* === Compute row pointers ============================================= */
|
|
|
|
/* row form of the matrix starts directly after the column */
|
|
/* form of matrix in A */
|
|
Row[0].start = p[n_col];
|
|
Row[0].shared1.p = Row[0].start;
|
|
Row[0].shared2.mark = -1;
|
|
for (row = 1; row < n_row; row++) {
|
|
Row[row].start = Row[row - 1].start + Row[row - 1].length;
|
|
Row[row].shared1.p = Row[row].start;
|
|
Row[row].shared2.mark = -1;
|
|
}
|
|
|
|
/* === Create row form ================================================== */
|
|
|
|
if (stats[Status] == OkButJumbled) {
|
|
/* if cols jumbled, watch for repeated row indices */
|
|
for (col = 0; col < n_col; col++) {
|
|
cp = &A[p[col]];
|
|
cp_end = &A[p[col + 1]];
|
|
while (cp < cp_end) {
|
|
row = *cp++;
|
|
if (Row[row].shared2.mark != col) {
|
|
A[(Row[row].shared1.p)++] = col;
|
|
Row[row].shared2.mark = col;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* if cols not jumbled, we don't need the mark (this is faster) */
|
|
for (col = 0; col < n_col; col++) {
|
|
cp = &A[p[col]];
|
|
cp_end = &A[p[col + 1]];
|
|
while (cp < cp_end) {
|
|
A[(Row[*cp++].shared1.p)++] = col;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* === Clear the row marks and set row degrees ========================== */
|
|
|
|
for (row = 0; row < n_row; row++) {
|
|
Row[row].shared2.mark = 0;
|
|
Row[row].shared1.degree = Row[row].length;
|
|
}
|
|
|
|
/* === See if we need to re-create columns ============================== */
|
|
|
|
if (stats[Status] == OkButJumbled) {
|
|
COLAMD_DEBUG0(("colamd: reconstructing column form, matrix jumbled\n"));
|
|
|
|
/* === Compute col pointers ========================================= */
|
|
|
|
/* col form of the matrix starts at A [0]. */
|
|
/* Note, we may have a gap between the col form and the row */
|
|
/* form if there were duplicate entries, if so, it will be */
|
|
/* removed upon the first garbage collection */
|
|
Col[0].start = 0;
|
|
p[0] = Col[0].start;
|
|
for (col = 1; col < n_col; col++) {
|
|
/* note that the lengths here are for pruned columns, i.e. */
|
|
/* no duplicate row indices will exist for these columns */
|
|
Col[col].start = Col[col - 1].start + Col[col - 1].length;
|
|
p[col] = Col[col].start;
|
|
}
|
|
|
|
/* === Re-create col form =========================================== */
|
|
|
|
for (row = 0; row < n_row; row++) {
|
|
rp = &A[Row[row].start];
|
|
rp_end = rp + Row[row].length;
|
|
while (rp < rp_end) {
|
|
A[(p[*rp++])++] = row;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* === Done. Matrix is not (or no longer) jumbled ====================== */
|
|
|
|
return (true);
|
|
}
|
|
|
|
/* ========================================================================== */
|
|
/* === init_scoring ========================================================= */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Kills dense or empty columns and rows, calculates an initial score for
|
|
each column, and places all columns in the degree lists. Not user-callable.
|
|
*/
|
|
template <typename IndexType>
|
|
static void init_scoring(
|
|
/* === Parameters ======================================================= */
|
|
|
|
IndexType n_row, /* number of rows of A */
|
|
IndexType n_col, /* number of columns of A */
|
|
RowStructure<IndexType> Row[], /* of size n_row+1 */
|
|
ColStructure<IndexType> Col[], /* of size n_col+1 */
|
|
IndexType A[], /* column form and row form of A */
|
|
IndexType head[], /* of size n_col+1 */
|
|
double knobs[NKnobs], /* parameters */
|
|
IndexType *p_n_row2, /* number of non-dense, non-empty rows */
|
|
IndexType *p_n_col2, /* number of non-dense, non-empty columns */
|
|
IndexType *p_max_deg /* maximum row degree */
|
|
) {
|
|
/* === Local variables ================================================== */
|
|
|
|
IndexType c; /* a column index */
|
|
IndexType r, row; /* a row index */
|
|
IndexType *cp; /* a column pointer */
|
|
IndexType deg; /* degree of a row or column */
|
|
IndexType *cp_end; /* a pointer to the end of a column */
|
|
IndexType *new_cp; /* new column pointer */
|
|
IndexType col_length; /* length of pruned column */
|
|
IndexType score; /* current column score */
|
|
IndexType n_col2; /* number of non-dense, non-empty columns */
|
|
IndexType n_row2; /* number of non-dense, non-empty rows */
|
|
IndexType dense_row_count; /* remove rows with more entries than this */
|
|
IndexType dense_col_count; /* remove cols with more entries than this */
|
|
IndexType min_score; /* smallest column score */
|
|
IndexType max_deg; /* maximum row degree */
|
|
IndexType next_col; /* Used to add to degree list.*/
|
|
|
|
/* === Extract knobs ==================================================== */
|
|
|
|
dense_row_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs[Colamd::DenseRow] * n_col), n_col));
|
|
dense_col_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs[Colamd::DenseCol] * n_row), n_row));
|
|
COLAMD_DEBUG1(("colamd: densecount: %d %d\n", dense_row_count, dense_col_count));
|
|
max_deg = 0;
|
|
n_col2 = n_col;
|
|
n_row2 = n_row;
|
|
|
|
/* === Kill empty columns =============================================== */
|
|
|
|
/* Put the empty columns at the end in their natural order, so that LU */
|
|
/* factorization can proceed as far as possible. */
|
|
for (c = n_col - 1; c >= 0; c--) {
|
|
deg = Col[c].length;
|
|
if (deg == 0) {
|
|
/* this is a empty column, kill and order it last */
|
|
Col[c].shared2.order = --n_col2;
|
|
Col[c].kill_principal();
|
|
}
|
|
}
|
|
COLAMD_DEBUG1(("colamd: null columns killed: %d\n", n_col - n_col2));
|
|
|
|
/* === Kill dense columns =============================================== */
|
|
|
|
/* Put the dense columns at the end, in their natural order */
|
|
for (c = n_col - 1; c >= 0; c--) {
|
|
/* skip any dead columns */
|
|
if (Col[c].is_dead()) {
|
|
continue;
|
|
}
|
|
deg = Col[c].length;
|
|
if (deg > dense_col_count) {
|
|
/* this is a dense column, kill and order it last */
|
|
Col[c].shared2.order = --n_col2;
|
|
/* decrement the row degrees */
|
|
cp = &A[Col[c].start];
|
|
cp_end = cp + Col[c].length;
|
|
while (cp < cp_end) {
|
|
Row[*cp++].shared1.degree--;
|
|
}
|
|
Col[c].kill_principal();
|
|
}
|
|
}
|
|
COLAMD_DEBUG1(("colamd: Dense and null columns killed: %d\n", n_col - n_col2));
|
|
|
|
/* === Kill dense and empty rows ======================================== */
|
|
|
|
for (r = 0; r < n_row; r++) {
|
|
deg = Row[r].shared1.degree;
|
|
COLAMD_ASSERT(deg >= 0 && deg <= n_col);
|
|
if (deg > dense_row_count || deg == 0) {
|
|
/* kill a dense or empty row */
|
|
Row[r].kill();
|
|
--n_row2;
|
|
} else {
|
|
/* keep track of max degree of remaining rows */
|
|
max_deg = numext::maxi(max_deg, deg);
|
|
}
|
|
}
|
|
COLAMD_DEBUG1(("colamd: Dense and null rows killed: %d\n", n_row - n_row2));
|
|
|
|
/* === Compute initial column scores ==================================== */
|
|
|
|
/* At this point the row degrees are accurate. They reflect the number */
|
|
/* of "live" (non-dense) columns in each row. No empty rows exist. */
|
|
/* Some "live" columns may contain only dead rows, however. These are */
|
|
/* pruned in the code below. */
|
|
|
|
/* now find the initial matlab score for each column */
|
|
for (c = n_col - 1; c >= 0; c--) {
|
|
/* skip dead column */
|
|
if (Col[c].is_dead()) {
|
|
continue;
|
|
}
|
|
score = 0;
|
|
cp = &A[Col[c].start];
|
|
new_cp = cp;
|
|
cp_end = cp + Col[c].length;
|
|
while (cp < cp_end) {
|
|
/* get a row */
|
|
row = *cp++;
|
|
/* skip if dead */
|
|
if (Row[row].is_dead()) {
|
|
continue;
|
|
}
|
|
/* compact the column */
|
|
*new_cp++ = row;
|
|
/* add row's external degree */
|
|
score += Row[row].shared1.degree - 1;
|
|
/* guard against integer overflow */
|
|
score = numext::mini(score, n_col);
|
|
}
|
|
/* determine pruned column length */
|
|
col_length = (IndexType)(new_cp - &A[Col[c].start]);
|
|
if (col_length == 0) {
|
|
/* a newly-made null column (all rows in this col are "dense" */
|
|
/* and have already been killed) */
|
|
COLAMD_DEBUG2(("Newly null killed: %d\n", c));
|
|
Col[c].shared2.order = --n_col2;
|
|
Col[c].kill_principal();
|
|
} else {
|
|
/* set column length and set score */
|
|
COLAMD_ASSERT(score >= 0);
|
|
COLAMD_ASSERT(score <= n_col);
|
|
Col[c].length = col_length;
|
|
Col[c].shared2.score = score;
|
|
}
|
|
}
|
|
COLAMD_DEBUG1(("colamd: Dense, null, and newly-null columns killed: %d\n", n_col - n_col2));
|
|
|
|
/* At this point, all empty rows and columns are dead. All live columns */
|
|
/* are "clean" (containing no dead rows) and simplicial (no supercolumns */
|
|
/* yet). Rows may contain dead columns, but all live rows contain at */
|
|
/* least one live column. */
|
|
|
|
/* === Initialize degree lists ========================================== */
|
|
|
|
/* clear the hash buckets */
|
|
for (c = 0; c <= n_col; c++) {
|
|
head[c] = Empty;
|
|
}
|
|
min_score = n_col;
|
|
/* place in reverse order, so low column indices are at the front */
|
|
/* of the lists. This is to encourage natural tie-breaking */
|
|
for (c = n_col - 1; c >= 0; c--) {
|
|
/* only add principal columns to degree lists */
|
|
if (Col[c].is_alive()) {
|
|
COLAMD_DEBUG4(("place %d score %d minscore %d ncol %d\n", c, Col[c].shared2.score, min_score, n_col));
|
|
|
|
/* === Add columns score to DList =============================== */
|
|
|
|
score = Col[c].shared2.score;
|
|
|
|
COLAMD_ASSERT(min_score >= 0);
|
|
COLAMD_ASSERT(min_score <= n_col);
|
|
COLAMD_ASSERT(score >= 0);
|
|
COLAMD_ASSERT(score <= n_col);
|
|
COLAMD_ASSERT(head[score] >= Empty);
|
|
|
|
/* now add this column to dList at proper score location */
|
|
next_col = head[score];
|
|
Col[c].shared3.prev = Empty;
|
|
Col[c].shared4.degree_next = next_col;
|
|
|
|
/* if there already was a column with the same score, set its */
|
|
/* previous pointer to this new column */
|
|
if (next_col != Empty) {
|
|
Col[next_col].shared3.prev = c;
|
|
}
|
|
head[score] = c;
|
|
|
|
/* see if this score is less than current min */
|
|
min_score = numext::mini(min_score, score);
|
|
}
|
|
}
|
|
|
|
/* === Return number of remaining columns, and max row degree =========== */
|
|
|
|
*p_n_col2 = n_col2;
|
|
*p_n_row2 = n_row2;
|
|
*p_max_deg = max_deg;
|
|
}
|
|
|
|
/* ========================================================================== */
|
|
/* === find_ordering ======================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Order the principal columns of the supercolumn form of the matrix
|
|
(no supercolumns on input). Uses a minimum approximate column minimum
|
|
degree ordering method. Not user-callable.
|
|
*/
|
|
template <typename IndexType>
|
|
static IndexType find_ordering /* return the number of garbage collections */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
IndexType n_row, /* number of rows of A */
|
|
IndexType n_col, /* number of columns of A */
|
|
IndexType Alen, /* size of A, 2*nnz + n_col or larger */
|
|
RowStructure<IndexType> Row[], /* of size n_row+1 */
|
|
ColStructure<IndexType> Col[], /* of size n_col+1 */
|
|
IndexType A[], /* column form and row form of A */
|
|
IndexType head[], /* of size n_col+1 */
|
|
IndexType n_col2, /* Remaining columns to order */
|
|
IndexType max_deg, /* Maximum row degree */
|
|
IndexType pfree /* index of first free slot (2*nnz on entry) */
|
|
) {
|
|
/* === Local variables ================================================== */
|
|
|
|
IndexType k; /* current pivot ordering step */
|
|
IndexType pivot_col; /* current pivot column */
|
|
IndexType *cp; /* a column pointer */
|
|
IndexType *rp; /* a row pointer */
|
|
IndexType pivot_row; /* current pivot row */
|
|
IndexType *new_cp; /* modified column pointer */
|
|
IndexType *new_rp; /* modified row pointer */
|
|
IndexType pivot_row_start; /* pointer to start of pivot row */
|
|
IndexType pivot_row_degree; /* number of columns in pivot row */
|
|
IndexType pivot_row_length; /* number of supercolumns in pivot row */
|
|
IndexType pivot_col_score; /* score of pivot column */
|
|
IndexType needed_memory; /* free space needed for pivot row */
|
|
IndexType *cp_end; /* pointer to the end of a column */
|
|
IndexType *rp_end; /* pointer to the end of a row */
|
|
IndexType row; /* a row index */
|
|
IndexType col; /* a column index */
|
|
IndexType max_score; /* maximum possible score */
|
|
IndexType cur_score; /* score of current column */
|
|
unsigned int hash; /* hash value for supernode detection */
|
|
IndexType head_column; /* head of hash bucket */
|
|
IndexType first_col; /* first column in hash bucket */
|
|
IndexType tag_mark; /* marker value for mark array */
|
|
IndexType row_mark; /* Row [row].shared2.mark */
|
|
IndexType set_difference; /* set difference size of row with pivot row */
|
|
IndexType min_score; /* smallest column score */
|
|
IndexType col_thickness; /* "thickness" (no. of columns in a supercol) */
|
|
IndexType max_mark; /* maximum value of tag_mark */
|
|
IndexType pivot_col_thickness; /* number of columns represented by pivot col */
|
|
IndexType prev_col; /* Used by Dlist operations. */
|
|
IndexType next_col; /* Used by Dlist operations. */
|
|
IndexType ngarbage; /* number of garbage collections performed */
|
|
|
|
/* === Initialization and clear mark ==================================== */
|
|
|
|
max_mark = INT_MAX - n_col; /* INT_MAX defined in <limits.h> */
|
|
tag_mark = Colamd::clear_mark(n_row, Row);
|
|
min_score = 0;
|
|
ngarbage = 0;
|
|
COLAMD_DEBUG1(("colamd: Ordering, n_col2=%d\n", n_col2));
|
|
|
|
/* === Order the columns ================================================ */
|
|
|
|
for (k = 0; k < n_col2; /* 'k' is incremented below */) {
|
|
/* === Select pivot column, and order it ============================ */
|
|
|
|
/* make sure degree list isn't empty */
|
|
COLAMD_ASSERT(min_score >= 0);
|
|
COLAMD_ASSERT(min_score <= n_col);
|
|
COLAMD_ASSERT(head[min_score] >= Empty);
|
|
|
|
/* get pivot column from head of minimum degree list */
|
|
while (min_score < n_col && head[min_score] == Empty) {
|
|
min_score++;
|
|
}
|
|
pivot_col = head[min_score];
|
|
COLAMD_ASSERT(pivot_col >= 0 && pivot_col <= n_col);
|
|
next_col = Col[pivot_col].shared4.degree_next;
|
|
head[min_score] = next_col;
|
|
if (next_col != Empty) {
|
|
Col[next_col].shared3.prev = Empty;
|
|
}
|
|
|
|
COLAMD_ASSERT(Col[pivot_col].is_alive());
|
|
COLAMD_DEBUG3(("Pivot col: %d\n", pivot_col));
|
|
|
|
/* remember score for defrag check */
|
|
pivot_col_score = Col[pivot_col].shared2.score;
|
|
|
|
/* the pivot column is the kth column in the pivot order */
|
|
Col[pivot_col].shared2.order = k;
|
|
|
|
/* increment order count by column thickness */
|
|
pivot_col_thickness = Col[pivot_col].shared1.thickness;
|
|
k += pivot_col_thickness;
|
|
COLAMD_ASSERT(pivot_col_thickness > 0);
|
|
|
|
/* === Garbage_collection, if necessary ============================= */
|
|
|
|
needed_memory = numext::mini(pivot_col_score, n_col - k);
|
|
if (pfree + needed_memory >= Alen) {
|
|
pfree = Colamd::garbage_collection(n_row, n_col, Row, Col, A, &A[pfree]);
|
|
ngarbage++;
|
|
/* after garbage collection we will have enough */
|
|
COLAMD_ASSERT(pfree + needed_memory < Alen);
|
|
/* garbage collection has wiped out the Row[].shared2.mark array */
|
|
tag_mark = Colamd::clear_mark(n_row, Row);
|
|
}
|
|
|
|
/* === Compute pivot row pattern ==================================== */
|
|
|
|
/* get starting location for this new merged row */
|
|
pivot_row_start = pfree;
|
|
|
|
/* initialize new row counts to zero */
|
|
pivot_row_degree = 0;
|
|
|
|
/* tag pivot column as having been visited so it isn't included */
|
|
/* in merged pivot row */
|
|
Col[pivot_col].shared1.thickness = -pivot_col_thickness;
|
|
|
|
/* pivot row is the union of all rows in the pivot column pattern */
|
|
cp = &A[Col[pivot_col].start];
|
|
cp_end = cp + Col[pivot_col].length;
|
|
while (cp < cp_end) {
|
|
/* get a row */
|
|
row = *cp++;
|
|
COLAMD_DEBUG4(("Pivot col pattern %d %d\n", Row[row].is_alive(), row));
|
|
/* skip if row is dead */
|
|
if (Row[row].is_dead()) {
|
|
continue;
|
|
}
|
|
rp = &A[Row[row].start];
|
|
rp_end = rp + Row[row].length;
|
|
while (rp < rp_end) {
|
|
/* get a column */
|
|
col = *rp++;
|
|
/* add the column, if alive and untagged */
|
|
col_thickness = Col[col].shared1.thickness;
|
|
if (col_thickness > 0 && Col[col].is_alive()) {
|
|
/* tag column in pivot row */
|
|
Col[col].shared1.thickness = -col_thickness;
|
|
COLAMD_ASSERT(pfree < Alen);
|
|
/* place column in pivot row */
|
|
A[pfree++] = col;
|
|
pivot_row_degree += col_thickness;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* clear tag on pivot column */
|
|
Col[pivot_col].shared1.thickness = pivot_col_thickness;
|
|
max_deg = numext::maxi(max_deg, pivot_row_degree);
|
|
|
|
/* === Kill all rows used to construct pivot row ==================== */
|
|
|
|
/* also kill pivot row, temporarily */
|
|
cp = &A[Col[pivot_col].start];
|
|
cp_end = cp + Col[pivot_col].length;
|
|
while (cp < cp_end) {
|
|
/* may be killing an already dead row */
|
|
row = *cp++;
|
|
COLAMD_DEBUG3(("Kill row in pivot col: %d\n", row));
|
|
Row[row].kill();
|
|
}
|
|
|
|
/* === Select a row index to use as the new pivot row =============== */
|
|
|
|
pivot_row_length = pfree - pivot_row_start;
|
|
if (pivot_row_length > 0) {
|
|
/* pick the "pivot" row arbitrarily (first row in col) */
|
|
pivot_row = A[Col[pivot_col].start];
|
|
COLAMD_DEBUG3(("Pivotal row is %d\n", pivot_row));
|
|
} else {
|
|
/* there is no pivot row, since it is of zero length */
|
|
pivot_row = Empty;
|
|
COLAMD_ASSERT(pivot_row_length == 0);
|
|
}
|
|
COLAMD_ASSERT(Col[pivot_col].length > 0 || pivot_row_length == 0);
|
|
|
|
/* === Approximate degree computation =============================== */
|
|
|
|
/* Here begins the computation of the approximate degree. The column */
|
|
/* score is the sum of the pivot row "length", plus the size of the */
|
|
/* set differences of each row in the column minus the pattern of the */
|
|
/* pivot row itself. The column ("thickness") itself is also */
|
|
/* excluded from the column score (we thus use an approximate */
|
|
/* external degree). */
|
|
|
|
/* The time taken by the following code (compute set differences, and */
|
|
/* add them up) is proportional to the size of the data structure */
|
|
/* being scanned - that is, the sum of the sizes of each column in */
|
|
/* the pivot row. Thus, the amortized time to compute a column score */
|
|
/* is proportional to the size of that column (where size, in this */
|
|
/* context, is the column "length", or the number of row indices */
|
|
/* in that column). The number of row indices in a column is */
|
|
/* monotonically non-decreasing, from the length of the original */
|
|
/* column on input to colamd. */
|
|
|
|
/* === Compute set differences ====================================== */
|
|
|
|
COLAMD_DEBUG3(("** Computing set differences phase. **\n"));
|
|
|
|
/* pivot row is currently dead - it will be revived later. */
|
|
|
|
COLAMD_DEBUG3(("Pivot row: "));
|
|
/* for each column in pivot row */
|
|
rp = &A[pivot_row_start];
|
|
rp_end = rp + pivot_row_length;
|
|
while (rp < rp_end) {
|
|
col = *rp++;
|
|
COLAMD_ASSERT(Col[col].is_alive() && col != pivot_col);
|
|
COLAMD_DEBUG3(("Col: %d\n", col));
|
|
|
|
/* clear tags used to construct pivot row pattern */
|
|
col_thickness = -Col[col].shared1.thickness;
|
|
COLAMD_ASSERT(col_thickness > 0);
|
|
Col[col].shared1.thickness = col_thickness;
|
|
|
|
/* === Remove column from degree list =========================== */
|
|
|
|
cur_score = Col[col].shared2.score;
|
|
prev_col = Col[col].shared3.prev;
|
|
next_col = Col[col].shared4.degree_next;
|
|
COLAMD_ASSERT(cur_score >= 0);
|
|
COLAMD_ASSERT(cur_score <= n_col);
|
|
COLAMD_ASSERT(cur_score >= Empty);
|
|
if (prev_col == Empty) {
|
|
head[cur_score] = next_col;
|
|
} else {
|
|
Col[prev_col].shared4.degree_next = next_col;
|
|
}
|
|
if (next_col != Empty) {
|
|
Col[next_col].shared3.prev = prev_col;
|
|
}
|
|
|
|
/* === Scan the column ========================================== */
|
|
|
|
cp = &A[Col[col].start];
|
|
cp_end = cp + Col[col].length;
|
|
while (cp < cp_end) {
|
|
/* get a row */
|
|
row = *cp++;
|
|
/* skip if dead */
|
|
if (Row[row].is_dead()) {
|
|
continue;
|
|
}
|
|
row_mark = Row[row].shared2.mark;
|
|
COLAMD_ASSERT(row != pivot_row);
|
|
set_difference = row_mark - tag_mark;
|
|
/* check if the row has been seen yet */
|
|
if (set_difference < 0) {
|
|
COLAMD_ASSERT(Row[row].shared1.degree <= max_deg);
|
|
set_difference = Row[row].shared1.degree;
|
|
}
|
|
/* subtract column thickness from this row's set difference */
|
|
set_difference -= col_thickness;
|
|
COLAMD_ASSERT(set_difference >= 0);
|
|
/* absorb this row if the set difference becomes zero */
|
|
if (set_difference == 0) {
|
|
COLAMD_DEBUG3(("aggressive absorption. Row: %d\n", row));
|
|
Row[row].kill();
|
|
} else {
|
|
/* save the new mark */
|
|
Row[row].shared2.mark = set_difference + tag_mark;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* === Add up set differences for each column ======================= */
|
|
|
|
COLAMD_DEBUG3(("** Adding set differences phase. **\n"));
|
|
|
|
/* for each column in pivot row */
|
|
rp = &A[pivot_row_start];
|
|
rp_end = rp + pivot_row_length;
|
|
while (rp < rp_end) {
|
|
/* get a column */
|
|
col = *rp++;
|
|
COLAMD_ASSERT(Col[col].is_alive() && col != pivot_col);
|
|
hash = 0;
|
|
cur_score = 0;
|
|
cp = &A[Col[col].start];
|
|
/* compact the column */
|
|
new_cp = cp;
|
|
cp_end = cp + Col[col].length;
|
|
|
|
COLAMD_DEBUG4(("Adding set diffs for Col: %d.\n", col));
|
|
|
|
while (cp < cp_end) {
|
|
/* get a row */
|
|
row = *cp++;
|
|
COLAMD_ASSERT(row >= 0 && row < n_row);
|
|
/* skip if dead */
|
|
if (Row[row].is_dead()) {
|
|
continue;
|
|
}
|
|
row_mark = Row[row].shared2.mark;
|
|
COLAMD_ASSERT(row_mark > tag_mark);
|
|
/* compact the column */
|
|
*new_cp++ = row;
|
|
/* compute hash function */
|
|
hash += row;
|
|
/* add set difference */
|
|
cur_score += row_mark - tag_mark;
|
|
/* integer overflow... */
|
|
cur_score = numext::mini(cur_score, n_col);
|
|
}
|
|
|
|
/* recompute the column's length */
|
|
Col[col].length = (IndexType)(new_cp - &A[Col[col].start]);
|
|
|
|
/* === Further mass elimination ================================= */
|
|
|
|
if (Col[col].length == 0) {
|
|
COLAMD_DEBUG4(("further mass elimination. Col: %d\n", col));
|
|
/* nothing left but the pivot row in this column */
|
|
Col[col].kill_principal();
|
|
pivot_row_degree -= Col[col].shared1.thickness;
|
|
COLAMD_ASSERT(pivot_row_degree >= 0);
|
|
/* order it */
|
|
Col[col].shared2.order = k;
|
|
/* increment order count by column thickness */
|
|
k += Col[col].shared1.thickness;
|
|
} else {
|
|
/* === Prepare for supercolumn detection ==================== */
|
|
|
|
COLAMD_DEBUG4(("Preparing supercol detection for Col: %d.\n", col));
|
|
|
|
/* save score so far */
|
|
Col[col].shared2.score = cur_score;
|
|
|
|
/* add column to hash table, for supercolumn detection */
|
|
hash %= n_col + 1;
|
|
|
|
COLAMD_DEBUG4((" Hash = %d, n_col = %d.\n", hash, n_col));
|
|
COLAMD_ASSERT(hash <= n_col);
|
|
|
|
head_column = head[hash];
|
|
if (head_column > Empty) {
|
|
/* degree list "hash" is non-empty, use prev (shared3) of */
|
|
/* first column in degree list as head of hash bucket */
|
|
first_col = Col[head_column].shared3.headhash;
|
|
Col[head_column].shared3.headhash = col;
|
|
} else {
|
|
/* degree list "hash" is empty, use head as hash bucket */
|
|
first_col = -(head_column + 2);
|
|
head[hash] = -(col + 2);
|
|
}
|
|
Col[col].shared4.hash_next = first_col;
|
|
|
|
/* save hash function in Col [col].shared3.hash */
|
|
Col[col].shared3.hash = (IndexType)hash;
|
|
COLAMD_ASSERT(Col[col].is_alive());
|
|
}
|
|
}
|
|
|
|
/* The approximate external column degree is now computed. */
|
|
|
|
/* === Supercolumn detection ======================================== */
|
|
|
|
COLAMD_DEBUG3(("** Supercolumn detection phase. **\n"));
|
|
|
|
Colamd::detect_super_cols(Col, A, head, pivot_row_start, pivot_row_length);
|
|
|
|
/* === Kill the pivotal column ====================================== */
|
|
|
|
Col[pivot_col].kill_principal();
|
|
|
|
/* === Clear mark =================================================== */
|
|
|
|
tag_mark += (max_deg + 1);
|
|
if (tag_mark >= max_mark) {
|
|
COLAMD_DEBUG2(("clearing tag_mark\n"));
|
|
tag_mark = Colamd::clear_mark(n_row, Row);
|
|
}
|
|
|
|
/* === Finalize the new pivot row, and column scores ================ */
|
|
|
|
COLAMD_DEBUG3(("** Finalize scores phase. **\n"));
|
|
|
|
/* for each column in pivot row */
|
|
rp = &A[pivot_row_start];
|
|
/* compact the pivot row */
|
|
new_rp = rp;
|
|
rp_end = rp + pivot_row_length;
|
|
while (rp < rp_end) {
|
|
col = *rp++;
|
|
/* skip dead columns */
|
|
if (Col[col].is_dead()) {
|
|
continue;
|
|
}
|
|
*new_rp++ = col;
|
|
/* add new pivot row to column */
|
|
A[Col[col].start + (Col[col].length++)] = pivot_row;
|
|
|
|
/* retrieve score so far and add on pivot row's degree. */
|
|
/* (we wait until here for this in case the pivot */
|
|
/* row's degree was reduced due to mass elimination). */
|
|
cur_score = Col[col].shared2.score + pivot_row_degree;
|
|
|
|
/* calculate the max possible score as the number of */
|
|
/* external columns minus the 'k' value minus the */
|
|
/* columns thickness */
|
|
max_score = n_col - k - Col[col].shared1.thickness;
|
|
|
|
/* make the score the external degree of the union-of-rows */
|
|
cur_score -= Col[col].shared1.thickness;
|
|
|
|
/* make sure score is less or equal than the max score */
|
|
cur_score = numext::mini(cur_score, max_score);
|
|
COLAMD_ASSERT(cur_score >= 0);
|
|
|
|
/* store updated score */
|
|
Col[col].shared2.score = cur_score;
|
|
|
|
/* === Place column back in degree list ========================= */
|
|
|
|
COLAMD_ASSERT(min_score >= 0);
|
|
COLAMD_ASSERT(min_score <= n_col);
|
|
COLAMD_ASSERT(cur_score >= 0);
|
|
COLAMD_ASSERT(cur_score <= n_col);
|
|
COLAMD_ASSERT(head[cur_score] >= Empty);
|
|
next_col = head[cur_score];
|
|
Col[col].shared4.degree_next = next_col;
|
|
Col[col].shared3.prev = Empty;
|
|
if (next_col != Empty) {
|
|
Col[next_col].shared3.prev = col;
|
|
}
|
|
head[cur_score] = col;
|
|
|
|
/* see if this score is less than current min */
|
|
min_score = numext::mini(min_score, cur_score);
|
|
}
|
|
|
|
/* === Resurrect the new pivot row ================================== */
|
|
|
|
if (pivot_row_degree > 0) {
|
|
/* update pivot row length to reflect any cols that were killed */
|
|
/* during super-col detection and mass elimination */
|
|
Row[pivot_row].start = pivot_row_start;
|
|
Row[pivot_row].length = (IndexType)(new_rp - &A[pivot_row_start]);
|
|
Row[pivot_row].shared1.degree = pivot_row_degree;
|
|
Row[pivot_row].shared2.mark = 0;
|
|
/* pivot row is no longer dead */
|
|
}
|
|
}
|
|
|
|
/* === All principal columns have now been ordered ====================== */
|
|
|
|
return (ngarbage);
|
|
}
|
|
|
|
/* ========================================================================== */
|
|
/* === order_children ======================================================= */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
The find_ordering routine has ordered all of the principal columns (the
|
|
representatives of the supercolumns). The non-principal columns have not
|
|
yet been ordered. This routine orders those columns by walking up the
|
|
parent tree (a column is a child of the column which absorbed it). The
|
|
final permutation vector is then placed in p [0 ... n_col-1], with p [0]
|
|
being the first column, and p [n_col-1] being the last. It doesn't look
|
|
like it at first glance, but be assured that this routine takes time linear
|
|
in the number of columns. Although not immediately obvious, the time
|
|
taken by this routine is O (n_col), that is, linear in the number of
|
|
columns. Not user-callable.
|
|
*/
|
|
template <typename IndexType>
|
|
static inline void order_children(
|
|
/* === Parameters ======================================================= */
|
|
|
|
IndexType n_col, /* number of columns of A */
|
|
ColStructure<IndexType> Col[], /* of size n_col+1 */
|
|
IndexType p[] /* p [0 ... n_col-1] is the column permutation*/
|
|
) {
|
|
/* === Local variables ================================================== */
|
|
|
|
IndexType i; /* loop counter for all columns */
|
|
IndexType c; /* column index */
|
|
IndexType parent; /* index of column's parent */
|
|
IndexType order; /* column's order */
|
|
|
|
/* === Order each non-principal column ================================== */
|
|
|
|
for (i = 0; i < n_col; i++) {
|
|
/* find an un-ordered non-principal column */
|
|
COLAMD_ASSERT(col_is_dead(Col, i));
|
|
if (!Col[i].is_dead_principal() && Col[i].shared2.order == Empty) {
|
|
parent = i;
|
|
/* once found, find its principal parent */
|
|
do {
|
|
parent = Col[parent].shared1.parent;
|
|
} while (!Col[parent].is_dead_principal());
|
|
|
|
/* now, order all un-ordered non-principal columns along path */
|
|
/* to this parent. collapse tree at the same time */
|
|
c = i;
|
|
/* get order of parent */
|
|
order = Col[parent].shared2.order;
|
|
|
|
do {
|
|
COLAMD_ASSERT(Col[c].shared2.order == Empty);
|
|
|
|
/* order this column */
|
|
Col[c].shared2.order = order++;
|
|
/* collapse tree */
|
|
Col[c].shared1.parent = parent;
|
|
|
|
/* get immediate parent of this column */
|
|
c = Col[c].shared1.parent;
|
|
|
|
/* continue until we hit an ordered column. There are */
|
|
/* guaranteed not to be anymore unordered columns */
|
|
/* above an ordered column */
|
|
} while (Col[c].shared2.order == Empty);
|
|
|
|
/* re-order the super_col parent to largest order for this group */
|
|
Col[parent].shared2.order = order;
|
|
}
|
|
}
|
|
|
|
/* === Generate the permutation ========================================= */
|
|
|
|
for (c = 0; c < n_col; c++) {
|
|
p[Col[c].shared2.order] = c;
|
|
}
|
|
}
|
|
|
|
/* ========================================================================== */
|
|
/* === detect_super_cols ==================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Detects supercolumns by finding matches between columns in the hash buckets.
|
|
Check amongst columns in the set A [row_start ... row_start + row_length-1].
|
|
The columns under consideration are currently *not* in the degree lists,
|
|
and have already been placed in the hash buckets.
|
|
|
|
The hash bucket for columns whose hash function is equal to h is stored
|
|
as follows:
|
|
|
|
if head [h] is >= 0, then head [h] contains a degree list, so:
|
|
|
|
head [h] is the first column in degree bucket h.
|
|
Col [head [h]].headhash gives the first column in hash bucket h.
|
|
|
|
otherwise, the degree list is empty, and:
|
|
|
|
-(head [h] + 2) is the first column in hash bucket h.
|
|
|
|
For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
|
|
column" pointer. Col [c].shared3.hash is used instead as the hash number
|
|
for that column. The value of Col [c].shared4.hash_next is the next column
|
|
in the same hash bucket.
|
|
|
|
Assuming no, or "few" hash collisions, the time taken by this routine is
|
|
linear in the sum of the sizes (lengths) of each column whose score has
|
|
just been computed in the approximate degree computation.
|
|
Not user-callable.
|
|
*/
|
|
template <typename IndexType>
|
|
static void detect_super_cols(
|
|
/* === Parameters ======================================================= */
|
|
|
|
ColStructure<IndexType> Col[], /* of size n_col+1 */
|
|
IndexType A[], /* row indices of A */
|
|
IndexType head[], /* head of degree lists and hash buckets */
|
|
IndexType row_start, /* pointer to set of columns to check */
|
|
IndexType row_length /* number of columns to check */
|
|
) {
|
|
/* === Local variables ================================================== */
|
|
|
|
IndexType hash; /* hash value for a column */
|
|
IndexType *rp; /* pointer to a row */
|
|
IndexType c; /* a column index */
|
|
IndexType super_c; /* column index of the column to absorb into */
|
|
IndexType *cp1; /* column pointer for column super_c */
|
|
IndexType *cp2; /* column pointer for column c */
|
|
IndexType length; /* length of column super_c */
|
|
IndexType prev_c; /* column preceding c in hash bucket */
|
|
IndexType i; /* loop counter */
|
|
IndexType *rp_end; /* pointer to the end of the row */
|
|
IndexType col; /* a column index in the row to check */
|
|
IndexType head_column; /* first column in hash bucket or degree list */
|
|
IndexType first_col; /* first column in hash bucket */
|
|
|
|
/* === Consider each column in the row ================================== */
|
|
|
|
rp = &A[row_start];
|
|
rp_end = rp + row_length;
|
|
while (rp < rp_end) {
|
|
col = *rp++;
|
|
if (Col[col].is_dead()) {
|
|
continue;
|
|
}
|
|
|
|
/* get hash number for this column */
|
|
hash = Col[col].shared3.hash;
|
|
COLAMD_ASSERT(hash <= n_col);
|
|
|
|
/* === Get the first column in this hash bucket ===================== */
|
|
|
|
head_column = head[hash];
|
|
if (head_column > Empty) {
|
|
first_col = Col[head_column].shared3.headhash;
|
|
} else {
|
|
first_col = -(head_column + 2);
|
|
}
|
|
|
|
/* === Consider each column in the hash bucket ====================== */
|
|
|
|
for (super_c = first_col; super_c != Empty; super_c = Col[super_c].shared4.hash_next) {
|
|
COLAMD_ASSERT(Col[super_c].is_alive());
|
|
COLAMD_ASSERT(Col[super_c].shared3.hash == hash);
|
|
length = Col[super_c].length;
|
|
|
|
/* prev_c is the column preceding column c in the hash bucket */
|
|
prev_c = super_c;
|
|
|
|
/* === Compare super_c with all columns after it ================ */
|
|
|
|
for (c = Col[super_c].shared4.hash_next; c != Empty; c = Col[c].shared4.hash_next) {
|
|
COLAMD_ASSERT(c != super_c);
|
|
COLAMD_ASSERT(Col[c].is_alive());
|
|
COLAMD_ASSERT(Col[c].shared3.hash == hash);
|
|
|
|
/* not identical if lengths or scores are different */
|
|
if (Col[c].length != length || Col[c].shared2.score != Col[super_c].shared2.score) {
|
|
prev_c = c;
|
|
continue;
|
|
}
|
|
|
|
/* compare the two columns */
|
|
cp1 = &A[Col[super_c].start];
|
|
cp2 = &A[Col[c].start];
|
|
|
|
for (i = 0; i < length; i++) {
|
|
/* the columns are "clean" (no dead rows) */
|
|
COLAMD_ASSERT(cp1->is_alive());
|
|
COLAMD_ASSERT(cp2->is_alive());
|
|
/* row indices will same order for both supercols, */
|
|
/* no gather scatter necessary */
|
|
if (*cp1++ != *cp2++) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* the two columns are different if the for-loop "broke" */
|
|
if (i != length) {
|
|
prev_c = c;
|
|
continue;
|
|
}
|
|
|
|
/* === Got it! two columns are identical =================== */
|
|
|
|
COLAMD_ASSERT(Col[c].shared2.score == Col[super_c].shared2.score);
|
|
|
|
Col[super_c].shared1.thickness += Col[c].shared1.thickness;
|
|
Col[c].shared1.parent = super_c;
|
|
Col[c].kill_non_principal();
|
|
/* order c later, in order_children() */
|
|
Col[c].shared2.order = Empty;
|
|
/* remove c from hash bucket */
|
|
Col[prev_c].shared4.hash_next = Col[c].shared4.hash_next;
|
|
}
|
|
}
|
|
|
|
/* === Empty this hash bucket ======================================= */
|
|
|
|
if (head_column > Empty) {
|
|
/* corresponding degree list "hash" is not empty */
|
|
Col[head_column].shared3.headhash = Empty;
|
|
} else {
|
|
/* corresponding degree list "hash" is empty */
|
|
head[hash] = Empty;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ========================================================================== */
|
|
/* === garbage_collection =================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Defragments and compacts columns and rows in the workspace A. Used when
|
|
all available memory has been used while performing row merging. Returns
|
|
the index of the first free position in A, after garbage collection. The
|
|
time taken by this routine is linear is the size of the array A, which is
|
|
itself linear in the number of nonzeros in the input matrix.
|
|
Not user-callable.
|
|
*/
|
|
template <typename IndexType>
|
|
static IndexType garbage_collection /* returns the new value of pfree */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
IndexType n_row, /* number of rows */
|
|
IndexType n_col, /* number of columns */
|
|
RowStructure<IndexType> Row[], /* row info */
|
|
ColStructure<IndexType> Col[], /* column info */
|
|
IndexType A[], /* A [0 ... Alen-1] holds the matrix */
|
|
IndexType *pfree /* &A [0] ... pfree is in use */
|
|
) {
|
|
/* === Local variables ================================================== */
|
|
|
|
IndexType *psrc; /* source pointer */
|
|
IndexType *pdest; /* destination pointer */
|
|
IndexType j; /* counter */
|
|
IndexType r; /* a row index */
|
|
IndexType c; /* a column index */
|
|
IndexType length; /* length of a row or column */
|
|
|
|
/* === Defragment the columns =========================================== */
|
|
|
|
pdest = &A[0];
|
|
for (c = 0; c < n_col; c++) {
|
|
if (Col[c].is_alive()) {
|
|
psrc = &A[Col[c].start];
|
|
|
|
/* move and compact the column */
|
|
COLAMD_ASSERT(pdest <= psrc);
|
|
Col[c].start = (IndexType)(pdest - &A[0]);
|
|
length = Col[c].length;
|
|
for (j = 0; j < length; j++) {
|
|
r = *psrc++;
|
|
if (Row[r].is_alive()) {
|
|
*pdest++ = r;
|
|
}
|
|
}
|
|
Col[c].length = (IndexType)(pdest - &A[Col[c].start]);
|
|
}
|
|
}
|
|
|
|
/* === Prepare to defragment the rows =================================== */
|
|
|
|
for (r = 0; r < n_row; r++) {
|
|
if (Row[r].is_alive()) {
|
|
if (Row[r].length == 0) {
|
|
/* this row is of zero length. cannot compact it, so kill it */
|
|
COLAMD_DEBUG3(("Defrag row kill\n"));
|
|
Row[r].kill();
|
|
} else {
|
|
/* save first column index in Row [r].shared2.first_column */
|
|
psrc = &A[Row[r].start];
|
|
Row[r].shared2.first_column = *psrc;
|
|
COLAMD_ASSERT(Row[r].is_alive());
|
|
/* flag the start of the row with the one's complement of row */
|
|
*psrc = ones_complement(r);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* === Defragment the rows ============================================== */
|
|
|
|
psrc = pdest;
|
|
while (psrc < pfree) {
|
|
/* find a negative number ... the start of a row */
|
|
if (*psrc++ < 0) {
|
|
psrc--;
|
|
/* get the row index */
|
|
r = ones_complement(*psrc);
|
|
COLAMD_ASSERT(r >= 0 && r < n_row);
|
|
/* restore first column index */
|
|
*psrc = Row[r].shared2.first_column;
|
|
COLAMD_ASSERT(Row[r].is_alive());
|
|
|
|
/* move and compact the row */
|
|
COLAMD_ASSERT(pdest <= psrc);
|
|
Row[r].start = (IndexType)(pdest - &A[0]);
|
|
length = Row[r].length;
|
|
for (j = 0; j < length; j++) {
|
|
c = *psrc++;
|
|
if (Col[c].is_alive()) {
|
|
*pdest++ = c;
|
|
}
|
|
}
|
|
Row[r].length = (IndexType)(pdest - &A[Row[r].start]);
|
|
}
|
|
}
|
|
/* ensure we found all the rows */
|
|
COLAMD_ASSERT(debug_rows == 0);
|
|
|
|
/* === Return the new value of pfree ==================================== */
|
|
|
|
return ((IndexType)(pdest - &A[0]));
|
|
}
|
|
|
|
/* ========================================================================== */
|
|
/* === clear_mark =========================================================== */
|
|
/* ========================================================================== */
|
|
|
|
/*
|
|
Clears the Row [].shared2.mark array, and returns the new tag_mark.
|
|
Return value is the new tag_mark. Not user-callable.
|
|
*/
|
|
template <typename IndexType>
|
|
static inline IndexType clear_mark /* return the new value for tag_mark */
|
|
(
|
|
/* === Parameters ======================================================= */
|
|
|
|
IndexType n_row, /* number of rows in A */
|
|
RowStructure<IndexType> Row[] /* Row [0 ... n_row-1].shared2.mark is set to zero */
|
|
) {
|
|
/* === Local variables ================================================== */
|
|
|
|
IndexType r;
|
|
|
|
for (r = 0; r < n_row; r++) {
|
|
if (Row[r].is_alive()) {
|
|
Row[r].shared2.mark = 0;
|
|
}
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
} // namespace Colamd
|
|
|
|
} // namespace internal
|
|
#endif
|